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Abstract
In this paper, the term of gradual learning describes the process, in which an n-dimensional model is
constructed in n steps; each step increases the dimensionality of the constructed model by one. The
approach is explained using the apparatus of compositional models since its algebraic properties
seem to serve the purpose best. The paper shows also the equivalence of compositional models and
Bayesian networks, and thus the paper gives a hint that the approach applies to the graphical model
as well.
Keywords: Compositional model; multidimensionality; conditional independence; model-learning;
Bayesian network.

1. Introduction

As it can be guessed from the title, the paper does not present an algorithm for gradual model learn-
ing, it just proves that such algorithms may exist. All the more, it does not discuss the computational
efficiency of such procedures. The term of gradual learning should not be confused with the ”In-
cremental Model Learning”, which is stably used in the machine learning community to describe
those methods that use new input data to modify (hopefully to improve) the existing model (see e.g.,
(Utgoff, 1989)). In this paper, we suggest an idea of an approach to model learning that, to construct
a multidimensional model, starts with a one-dimensional model, then two-dimensional one, and so
on, until the constructed model reaches the required dimensionality. Thus, it is based on the idea
that a model construction can be viewed as an inverse process to model reduction.

If used for Bayesian network learning, this approach starts with a node representing the proba-
bility distribution for one variable, one source-node of the final Bayesian network. Then, the process
adds another variable assigned to a child of the first variable, and so on, until the full Bayesian net-
work is constructed. There is not a simpler way to get an optimum Bayesian network than that just
described. This statement holds only if one has two oracles at their disposal. The first oracle ad-
vises, which variable should be selected at each step, the other oracle advises, which nodes should
be the parents of the currently added variable.

Unfortunately, not having such oracles at our disposal, the process of getting the optimum
Bayesian network turns to be difficult (NP-complete (Chickering, 1996)). During the last thirty
years, abundant literature on different approaches to Bayesian network learning (not relying on the
above-mentioned oracles) was published. They use a great variety of tools from those based on
information theory (Heckerman et al., 1995) and minimum description length principle (Lam and
Bacchus, 1994) to those employing seemingly unrelated fields of mathematics (Leung and Lee,
1994). From the latter group of papers, let us cite the paper by Park and Klabjan (2017), which
solves exactly the problem that is expected from the second oracle: the knowledge of an ordering
of the variables, which is topological with respect the resulting Bayesian network. As pointed out
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by one of the anonymous reviewers, the below-presented approach shows some similarity with the
dynamic programming approaches to model learning starting with (Singh and Moore, 2005).

In this paper, we want to show that the oracle determining the topological order of the variables
may be bypassed. It may be bypassed even though it seems to be crucial for the goal of getting an
optimal (or suboptimal) model. This is based on a very simple idea: Having a Bayesian network,
we can subsequently delete its terminal nodes until the network diminishes. The order of deleting
the nodes is not arbitrary, one may delete only terminal nodes, and this is why we need the oracle
when realizing the inverse process. But, Ross Shachter (1986, 1988) presented a procedure based
on two rules of node deletion and edge reversal that allow for the reduction of a Bayesian network,
which deletes the variables in an arbitrary order. Therefore, there should also be an inverse process
that gradually increases the Bayesian network adding the variables in an arbitrary order.

The other oracle mentioned above advises how the variables are to be interconnected in the
model. It means, using the terminology of probability theory, it gives evidence about the conditional
independence relations among the variables. Some authors, like e.g., Švorc and Vomlel (2019), rely
on expert knowledge. Data-based model learning processes usually use different statistical tests for
this purpose. To avoid problems that are not in the focus of this paper, like those highlighted by
Edwards and Havránek (1987), who coped with the fact that the results of statistical testing may
be misleading1, we assume that these relations are known. Thus, instead of asking the statistics for
help, we can keep an idea of the oracle advising us about the relations of conditional independence
among the variables. Thus, we assume that the relations approved by the oracle meet all the required
theoretical properties.

To describe the proposed way of model learning, we do not use the terminology of Bayesian
networks and graphs. The reader familiar with the Shachter’s approach surely understands that
the inverse process of his edge reversal procedure (including parents inheritance rule) would be
rather difficult to describe. Instead, we believe the description of this study will be more lucid if
we use the terminology of probabilistic compositional models. Therefore, in the following Section,
we introduce the necessary notions and notation and show the equivalence of Bayesian networks
and compositional models. Section 3 is a brief introduction to compositional model theory, and
Section 4 introduces the operator that serves the same purpose as the Shachter’s edge reversal rule.
We call it an anticipating operator, and it makes the necessary modifications of the model structure
possible. The description of the model construction process, illustrated with examples, is the content
of Section 5.

2. Basic Notions and Notation

In this paper, we denote random variables by lower-case characters from the end of the Latin alpha-
bet (u, v, w, . . .). All the considered variables are assumed to be finite-valued. Xu, Xv, . . . denote
the finite sets of values of variables u, v, . . .. Sets of variables are denoted by upper-case characters
K, L, V, . . .. Thus, K may be, say, {u, v, w}. By a state of variables K we understand any combi-
nation of values of the respective variables, i.e., in the considered case K = {u,w,w}, a state is an

1. Edwards and Havránek coped with problems arising from the fact that results of statistical tests need not be consis-
tent with principles of probabilistic modeling. If a model corresponds to the data structure (system of conditional
independence relations) well, then all its submodels (defining only a subset of conditional independence relations)
should correspond to the data as well. And yet, it need not hold for statistical tests of models (for details, the reader
is referred to (Edwards and Havránek, 1987)).
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element of a Cartesian product XK = Xu × Xv × Xw. For a state a ∈ XK and L ⊂ K, a↓L denote
a projection of a ∈ XK into XL, i.e., a↓L is the state from XL that is got from a by dropping out all
the values of variables from K \ L.

Probability distributions are denoted by characters of Greek alphabet (κ, λ, µ, π, . . .). Recall
that it means that κ(K) : XK −→ [0, 1], for which

∑
a∈XK

κ(a) = 1. For a probability distribution
κ(K), and a subset of variables L ⊂ K, κ↓L denote a marginal distribution of κ defined for each
a ∈ XL by the formula

κ↓L(a) =
∑

c∈XK :c↓L=a

κ(c). (1)

Consider two distributions κ(K) and λ(L). We say that κ and λ are consistent if κ↓K∩L =
λ↓K∩L. For two probability distributions defined for the same group of variables, say π(K), κ(K),
we say that κ dominates π (in symbol π � κ) if

∀ a ∈ XK (κ(a) = 0 =⇒ π(a) = 0) .

Consider a probability distribution π(V ), and three disjoint subsets of variables K,L,M (K ∪
L∪M ⊆ V ). LetK and L be nonempty. Symbol πK|M is used to denote the respective conditional
distribution of variables K given M , for which πK|M · κ↓M = κ↓K∪M . We say that groups of
variables K and L are conditionally independent given M for distribution π if

π↓K∪L∪M · π↓M = π↓K∪M · π↓L∪M , (2)

in symbol K⊥⊥πL|M . Thus, (π↓K∪L∪M = π↓K∪M · πL|M ) implies K⊥⊥πL|M . In case of M = ∅
we use only K⊥⊥πL and speak about an unconditional independence.
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Figure 1: Bayesian network representing
π(s, u, v, w, x, y, z), pa(s) = ∅, pa(u) =
pa(v) = {s}, pa(w) = {u}, pa(x) =
{u, v}, pa(y) = {v}, pa(z) = {x}.

Using this notation, a Bayesian network is a cou-
ple (G,S), where G is an acyclic directed graph; its
set of variables coincides with the set of variables V ,
and there is an edge (u → v) in G if u ∈ pa(v). S
denotes a system of conditional probability distribu-
tions

S = {π{u}|pa(u) : ∀u ∈ V }.

This Bayesian network represents the probability
distribution ∏

u∈V
π{u}|pa(u). (3)

3. Compositional models

Definition 1 For arbitrary two distributions κ(K) and λ(L), for which λ↓K∩L dominates κ↓K∩L,
their composition is for each a ∈ XK∪L given by the following formula2

(κ . λ)(a) =
κ(a↓K)λ(a↓L)

λ↓K∩L(a↓K∩L)
. (4)

In case that κ↓K∩L 6� λ↓K∩L the composition remains undefined.

2. Define 0·0
0

= 0.
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By a compositional model, we understand a multidimensional probability distribution assem-
bled from a sequence of low-dimensional distributions with the help of the introduced operator of
composition, i.e., κ1 .κ2 . . . ..κn. Since the operator of composition is not associative, this expres-
sion is ambiguous. To avoid this ambiguity, let us make a convention that we omit the parentheses
if the operators are to be performed from left to right:

κ1 . κ2 . . . . . κn = (. . . ((κ1 . κ2) . κ3) . . . . . κn−1) . κn. (5)

For distributions κ1(K1), κ2(K2), . . . , κn(Kn), Formula (5) can be rewritten into the form

κ1 . κ2 . . . . . κn =
n∏
i=1

κ
Ki\(K1∪...,∪Ki−1)|Ki∩(K1∪...,∪Ki−1)
i .

It means that every distribution represented in a form of a Bayesian network (see Formula (3)) can
also be represented in a form of a compositional model:∏

u∈V
π{u}|pa(u) = π({u1}) . π({u2} ∪ pa(u2)) . . . . . π({un} ∪ pa(un)),

for any topological ordering (the ordering, in which the parents are always before their children) of
nodes of the considered Bayesian network.

It is not difficult to show that each distribution represented in a form of a compositional model
can also be represented in a form of a Bayesian network. The reader can find a simple algorithm
realizing such transform in (Jiroušek, 2004). There is still another way to show that for a composi-
tional model

κ1(K1) . κ2(K2) . . . . . κn(Kn) (6)

there exists an equivalent Bayesian network. The reader can show it using the old results of An-
dersson et al. (1997), and Studený (1997). Namely, considering Formula (6), one can construct an
acyclic chain graph GC with the set of nodes V . An undirected edge {u, v} is in GC if there is
κi such that {u, v} ⊆ Ki \ (K1 ∪ . . . ∪ Ki−1) (it means that the components of the chain graph
GC are sets Ki \ (K1 ∪ . . . ∪ Ki−1), for all i = 1, . . . , n). To specify directed edges of GC ,
one has to find for all nodes u the first distribution, in which the variable appears among the argu-
ments. Let it be κ[u] (i.e., [u] = min{i : u ∈ Ki}). Then the directed edge (v → u) is in GC

if v ∈ K[u] ∩ (K1 ∪ . . . ∪K[u]−1). Thus, GC is obviously a chain graph (the components can be
ordered in the way that for each directed edge (v → u), v belongs to the component that is before
the component containing u). And this chain graph is an essential graph for any Bayesian network
equivalent to the compositional model (6). This graphical representation of compositional models
will be used in Example 3.

4. Anticipating operator of composition

As said in Introduction, the key idea of this paper can be more easily articulated using the technique
of compositional models than using the terminology of Bayesian networks. Nevertheless, if the
reader feels it more appropriate, they can translate it into the language of Bayesian networks. This
is why we concluded the preceding Section by mentioning the equivalence of these two theoretical
frameworks.
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Recall that the studied process is inverse to the process of model reduction, which deletes at each
step one variable. Thus, the latter process marginalizes at each step one variable out. This is why
we believe that the next Section will be easier to understand, if we first describe the marginalization
procedure for compositional models that, in a way, corresponds to the process of marginalization
proposed for Bayesian networks by Ross Shachter (1986, 1988). Since we are interested in the
elimination of one selected variable from the considered model, we introduce a special symbol: for
a variable u ∈ K and distribution κ(K), its marginal κ↓K\{u} will also be denoted simply by κ−u.

As already said above, the operator of composition is generally not associative, and it is neither
commutative. To counterbalance this computational drawback, let us introduce its generalization
(Jiroušek, 2011).

Definition 2 Consider an arbitrary set of variables M and two distributions κ(K), λ(L). Their
anticipating composition is given by the formula

κ©.M λ = (λ↓(M\K)∩L · κ) . λ = (λ↓(M\K)∩L . κ) . λ. (7)

The operator ©.M is called an anticipating operator of composition.

Note that κ©.∅λ = κ . λ. Thus, it is clear that it may happen that the result of the composition
remains undefined. However, it follows immediately from the respective definitions that if κ . λ is
defined then also κ©.M λ is defined. Both κ . λ and κ©.M λ are distributions defined for the same
set of variables.

In the following theorem we summarize the properties (proved in (Jiroušek, 2011)) of the oper-
ators of composition necessary in the following exposition.

Theorem 3 Suppose κ(K), λ(L) and µ(M) are probability distributions. The following state-
ments hold under the assumption that the respective compositions are defined:

1. (Domain): κ . λ is a probability distribution for K ∪ L.

2. (Composition preserves first marginal): (κ . λ)↓K = κ.

3. (Reduction): If L ⊆ K then, κ . λ = κ.

4. (Extension): If M ⊆ K then, κ↓M . κ = κ.

5. (Commutativity under consistency): κ and λ are consistent if and only if κ . λ = λ . κ.

6. (Restricted associativity): If K ⊇ (L∩M), or L ⊇ (K ∩M) then, (κ . λ) . µ = κ . (λ . µ).

7. (Anticipating associativity): (µ . κ) . λ = µ . (κ©.M λ).

8. (Stepwise composition): If (K ∩ L) ⊆M ⊆ L then, (κ . λ↓M ) . λ = κ . λ.

9. (Exchangeability): If K ⊇ (L ∩M) then, (κ . λ) . µ = (κ . µ) . λ.

10. (Simple marginalization): If (K ∩ L) ⊆M ⊆ K ∪ L then, (κ . λ)↓M = κ↓K∩M . λ↓L∩M .

11. (Factorization): Let M ⊇ K ∪L. Then, (K \L)⊥⊥µ(L \K)|(K ∩L) if and only if µ↓K∪L =
µ↓K . µ↓L.
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The reader interested in other theoretical issues concerning the operator of composition is referred
to (Jiroušek, 2011) and the papers cited there.

Consider a compositional model π = κ1(K1) . κ2(K2) . . . . . κn(Kn), and any variable u ∈
K1 ∪ . . . ∪Kn. The marginalization over variable u means to find a new compositional model that
corresponds to π−u. It is shown in (Bína et al., 2020) that this model can always be obtained by the
application of one or several from the following three rules, each of which somehow redefines the
input model.

Marginalization rules

Variable deletion. If u ∈ Kj , and u 6∈ Ki for all i = 1, 2, . . . , j−1, j+1, . . . , n, then marginalize
variable u out of distribution κj , i.e., π−u = κ1 . . . . . κ

−u
j . . . . . κn.

Distribution deletion. If there exists index j such that Kj ⊆ K1 ∪ . . .∪Kj−1 then delete κj from
the model, i.e., π = κ1 . . . . κj−1 . κj+1 . . . . . κn.

Decrease of variable occurrences. For variable u ∈ (K1 ∪ . . .∪Kn) find indices j and k (j < k)
such that u ∈ Kj ∩ Kk, and u 6∈ Ki for all i = 1, 2, . . . , j − 1, j + 1, . . . , k − 1, and set
M = (K1 ∪ . . . ∪Kk−1) \ {u}, then
π = κ1 . . . . . κj−1 . κ

−u
j . κj+1 . . . . . κk−1 . (κj ©.M κk) . κk+1 . . . . . κn.

For the theoretical support of Decrease-of-variable-occurrences rule see (Bína et al., 2020).
Variable-deletion rule follows from Property 10 of Theorem 3, and Distribution-deletion rule is
nothing else that the application of Property 3 of Theorem 3.

The reduction of a model (i.e., the subsequent computations of its marginal distribution deleting
one variable at each step) can be performed by deleting variables in an arbitrary order. Each step
of this reduction process, i.e. the computation of the respective marginal distribution, is realized
by the application of the above-presented rules in a proper order. If the selected variable appears
among the arguments of only one distribution κj , then it can be deleted by Variable-deletion rule. In
opposite case, one has to first apply (possibly several times) Decrease-of-variable-occurrences rule
before it can be deleted by Variable-deletion rule. The application of these two rules may induce
the applicability of Distribution-deletion rule.

Example 1 Consider model

π(u1, u2, u3, u4) = ν1(u1) . ν2(u3) . ν3(u1, u3, u4) . ν4(u2, u4), (8)

and assume we want to reduce the model deleting respectively u4, u3, u2, u1. To marginalize over
variable u4, we have to first apply Decrease-of-variable-occurrences rule obtaining

π(u1, u2, u3, u4) = ν1(u1) . ν2(u3) . ν
−u4
3 (u1, u3) .

(
ν3(u1, u3, u4)©.{u1,u3} ν4(u2, u4)

)
= ν1(u1) . ν2(u3) .

(
ν3(u1, u3, u4)©.{u1,u3} ν4(u2, u4)

)
,

= ν1(u1) . ν2(u3) . (ν3(u1, u3, u4) . ν4(u2, u4)) ,

where the second equation holds due to Property 3 of Theorem 3, and the last one holds due to
Formula (7). Thus, applying Variable-deletion rule we get

π−u4(u1, u2, u3) = ν1(u1) . ν2(u3) . ν5(u1, u2, u3),
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where
ν5(u1, u2, u3) = (ν3(u1, u3, u4) . ν4(u2, u4))

−u4 .

To continue in the process of model reduction, we marginalize the model over variable u3. To
do it, we proceed in an analogous way:

π−u4(u1, u2, u3) = ν1(u1) .
(
ν2(u3)©.{u1} ν5(u1, u2, u3)

)
= ν1(u1) .

(
(ν
↓{u1}
5 (u1) . ν2(u3)) . ν5(u1, u2, u3)

)
. (9)

Thus, Variable deletion rule is applicable to Expression (9), and denoting

ν6(u1, u2) =
(
(ν
↓{u1}
5 (u1) . ν2(u3)) . ν5(u1, u2, u3)

)−u3
we get

π↓{u1,u2}(u1, u2) =
(
π−u4

)−u3 (u1, u2) = ν1(u1) . ν6(u1, u2),

and the remaining reduction using just Variable-deletion rule is trivial.

5. Model learning process

Recall the underlying idea of this paper. Like the model reduction, the model learning procedure
can process the variables in an arbitrary order, say V = {u1, u2, . . . , un}. Denote by π the mul-
tidimensional distribution, for which the compositional model is looked for. The model is com-
posed from low-dimensional marginals of π. The initialization step of the learning process is
easy: it consists of defining a one-dimensional model κ1(u1) = π(u1). Then, at each step, the
model extends by one variable. It means that after finishing ` − 1 steps, we have a compositional
model π(u1, u2, . . . , u`−1) = κ1(K1) . . . . . κm(Km), and the goal of the next step is to redefine
κ1(K1) . . . . . κm(Km) so that it represents (`)-dimensional distribution π(u1, u2, . . . , u`). The
realization of this (`)-th step starts with considering the model

π(u1, u2, . . . , u`−1, u`) = κ1(K1) . . . . . κm(Km) . π(L), (10)

where L is the smallest subset of K1 ∪ . . . ∪Km ∪ {u`}, for which u` ∈ L, and

u`⊥⊥(K1 ∪ . . . ∪Km) \ L|L \ {u`}.

Then, within this step, the structure of this (`)-dimensional model (10) must be improved. Based on
the knowledge of conditional independence relations among variables L, we start exchanging the
positions of distributions within the model given by Formula (10). The goal is to move the parts,
from which π(L) is composed, as much to left as possible. Before describing it in more detail, let
us illustrate the idea of this process with a simple example.

Example 2 Assume, the goal is to construct the model from Example 1:

ν1(u1) . ν2(u3) . ν3(u1, u3, u4) . ν4(u2, u4).

Therefore, the oracle, when being asked, produces the conditional independence relations in com-
pliance with this model, i.e., the oracle knows that u1⊥⊥u3, u2⊥⊥{u1, u3}|u4. The variables are
indexed corresponding to the order, in which the variables are to be added to the model. Thus, the
index corresponds to the number of the step, in which the variable is added. At each step we denote
the resulting model π(u1, u2, . . . , u`) = κ1(K1) . . . . . κm(Km) (naturally with different m). It
means that each step redefines both m and distributions κ1, . . . , κm.

7
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Step 1. π(u1) = κ1(u1).

Step 2. When adding variable u2 one has to ask the oracle, whether u1 and u2 are mutually de-
pendent, or not. Learning that the variables are dependent one gets the model κ1(u1) . π(u1, u2).
Therefore, we can consider only a simple model π(u1, u2) = κ1(u1, u2) (see Property 4 of Theo-
rem 3).

Step 3. When adding variable u3 one has to ask the oracle, what is the smallest subset L ⊂
{u1, u2, u3} such that u3 ∈ L, u3⊥⊥{u1, u2}\L|L\{u3}. The answer is L = {u1, u2, u3} because
even though u3⊥⊥u1, u3�⊥⊥u1|u2, u3�⊥⊥u2|u1, and u3�⊥⊥{u1, u2}. Therefore, like in the previous step,

π(u1, u2, u3) = κ1(u1, u2) . π(u1, u2, u3) = π(u1, u2, u3).

A subsequent question directed to the oracle aims at the detection whether π(u1, u2, u3) is or is not
an (anticipating) composition of its marginals. Therefore we have to ask what is the independence
structure of the set L = {u1, u2, u3}. Learning from the oracle that u1⊥⊥u3, one has to include this
information into the form how π(u1, u2, u3) is expressed:

π(u1, u2, u3) = π↓{u3}(u3)©.{u1}π(u1, u2, u3) =
(
π↓{u1}(u1) . π

↓{u3}(u3)
)
. π(u1, u2, u3),

which is, for the purpose of the next step denoted as κ1(u1) . κ2(u3) . κ3(u1, u2, u3).

Step 4. When adding variable u4 one has to ask the oracle, again, what is the smallest subset L ⊂
{u1, u2, u3, u4} such that u4 ∈ L, and u4⊥⊥{u1, u2, u3} \L|L \ {u4}. This time, the answer is L =
{u1, u2, u3, u4}. Therefore π(u1, u2, u3, u4) = κ1(u1).κ2(u3).κ3(u1, u2, u3).π(u1, u2, u3, u4).
Again, we have to find out whether π(u1, u2, u3, u4) might be an anticipating composition of its
marginals, or, in other words, what are the independence relations holding for the set of variables
L = {u1, u2, u3, u4}. Learning from the oracle that u2⊥⊥{u1, u3}|u4, one has to employ this
information:

π(u1, u2, u3, u4) = π(u1, u3, u4) . π(u2, u4) = π(u1, u3, u4)©.{u1,u3}π(u2, u4).

Thus,

π(u1, u2, u3, u4) = κ1(u1) . κ2(u3) . κ3(u1, u2, u3) . π(u1, u2, u3, u4)

= κ1(u1) . κ2(u3) . κ3(u1, u2, u3) .
(
π(u1, u3, u4)©.{u1,u3}π(u2, u4)

)
= κ1(u1) . κ2(u3) .

(
κ3(u1, u2, u3) .

(
π(u1, u3, u4)©.{u1,u3}π(u2, u4)

) )
= κ1(u1) . κ2(u3) .

( (
π(u1, u3, u4)©.{u1,u3}π(u2, u4)

)
. κ3(u1, u2, u3)

)
= κ1(u1) . κ2(u3) .

(
π(u1, u3, u4)©.{u1,u3}π(u2, u4)

)
= κ1(u1) . κ2(u3) . π(u1, u3, u4) . π(u2, u4).

Perhaps, the reader comprehended that the above-realized modifications are possible because of
Properties 6, 5, and 7 of Theorem 3.

From the above-presented example, one can see that the gradual model-learning procedure is
simple, if one knows how to modify the structure of the model described by Formula (10) at the `-th
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step. Nevertheless, neither this task is difficult when one realizes that it is nothing else than the mul-
tiple inverse application of Decrease-of-variable-occurrences rule. It means that the modification of
a structure is possible if π(L) is an anticipating composition of its marginals. First, however, it is
advantageous to move the marginal π(L) in the Formula (10) as much as possible to the left, i.e., to
find the smallest k, for which

π(u1, . . . , u`, u`+1)= κ1(K1) . . . . . κm(Km) . π(L)

= κ1(K1) . . . . . κk(Kk) . π(L) . κk+1(Kk+1) . . . . . κm(Km). (11)

Realize that this k ≤ k̃ = min
{
i ∈ {1, . . . ,m} : ∀j(i ≤ j ≤ m)(K1 ∪ . . . ∪Kj) ⊇ Kj+1 ∩ L

}
.

Namely, for k̃ one can apply Property 9 of Theorem 3 (m− k̃)-times obtaining

π(u1, . . . , u`, u`+1)= κ1(K1) . . . . . κm(Km) . π(L)

= κ1(K1) . . . . . κm−1(Km−1) . π(L) . κm(Km) = . . .

= κ1(K1) . . . . . κk̃(Kk̃) . π(L) . κk̃+1(Kk̃+1) . . . . . κm(Km).

Quite often, the required smallest k < k̃, and can be found by the subsequent application of
other properties of Theorem 3. If π(L) cannot be expressed as an anticipating composition of
its marginals, then the result of the `-th step, i.e., `-dimensional model is expressed in the form of
Formula (11).

In opposite case, further modifications of Formula (11) are possible. The only task requiring
some programmer’s wit3 is to find subsets of variables N and K such that

π(L) = π(N)©.M π(K) (12)

for M = K1 ∪ . . .∪Kk. Having such decomposition of π(L) one can go on with the modifications
of the following expression

π(u1 . . . , u`, u`+1)= κ1(K1) . . . . . κk(Kk) .
(
π(N)©.M π(K)

)
. κk+1(Kk+1) . . . . . κm(Km)

= κ1(K1) . . . . . κk(Kk) . π(N) . π(K) . κk+1(Kk+1) . . . . . κm(Km),

and its submodel κ1(K1) . . . . . κk(Kk) . π(N) can further be modified exactly in the same way as
described above for the model from Formula (10).

Let us illustrate this idea with a simple example.

Example 3 Because of the lack of space, consider just the realization of the seventh step of the
application of the gradual model construction. Consider a situation when the model

π(u1, . . . , u6) = κ1(u1, u3) . κ2(u3, u4) . κ3(u1, u2, u4) . κ4(u1, u2, u5) . κ5(u5, u6) (13)

is to be extended by variable u7. Let this new variable be conditionally independent of {u3, u6}
given all the remaining variables: u7⊥⊥{u3, u6}|{u1, u2, u4, u5}. Thus, the goal of this step is to

3. Assuming L is rather small, the task can usually be solved also by a brute force. If the task has more solutions, some
heuristics should be used. One possibility is to prefer couples with the largest N because it rises chances that π(N)
can, again, be represented in the form of an anticipating composition.

9
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modify the model

π(u1, . . . , u7)

= κ1(u1, u3) . κ2(u3, u4) . κ3(u1, u2, u4) . κ4(u1, u2, u5) . κ5(u5, u6) . π(u1, u2, u4, u5, u7)

= κ1(u1, u3) . κ2(u3, u4) . κ3(u1, u2, u4) . κ4(u1, u2, u5) . π(u1, u2, u4, u5, u7) . κ5(u5, u6)

= κ1(u1, u3) . κ2(u3, u4) . κ3(u1, u2, u4) . π(u1, u2, u4, u5, u7) . κ5(u5, u6)

= κ1(u1, u3) . κ2(u3, u4) . π(u1, u2, u4, u5, u7) . κ5(u5, u6), (14)

where the last two modifications are the applications of Property 8 of Theorem 3 (κ3 and κ4 are
marginals of π). At this stage of the model-learning process, we have to ask what is the indepen-
dence structure of π(u1, u2, u4, u5, u7). Learning that u5⊥⊥{u2, u4}|{u1, u7}, due to Property 11
of Theorem 3, we know that

π(u1, u2, u4, u5, u7) = π(u1, u2, u4, u7) . π(u1, u5, u7)

= π(u1, u2, u4, u7)©.{u1,u3,u4}π(u1, u5, u7).

Thus,

π(u1, . . . , u7) = κ1(u1, u3) . κ2(u3, u4)

.
(
π(u1, u2, u4, u7)©.{u1,u3,u4}π(u1, u5, u7)

)
. κ5(u5, u6)

= κ1(u1, u3) . κ2(u3, u4) . π(u1, u2, u4, u7) . π(u1, u5, u7) . κ5(u5, u6). (15)

Again, we are at the stage of the model-learning process when we have to ask what is the indepen-
dence structure of a newly introduced distribution, this time it is π(u1, u2, u4, u7). Learning that
u4⊥⊥u7|{u1, u2}, due to Property 11 of Theorem 3, we consider

π(u1, u2, u4, u7) = π(u1, u2, u4) . π(u1, u2, u7) = π(u1, u2, u4)©.{u1,u2,u3}π(u1, u2, u7).

Using this, one obtains the result of the described 7th step

π(u1, . . . , u7) = κ1(u1, u3) . κ2(u3, u4) .
(
π(u1, u2, u4)©.{u1,u2,u3}π(u1, u2, u7)

)
.π(u1, u5, u7) . κ5(u5, u6)

= κ1(u1, u3) . κ2(u3, u4) . κ3(u1, u2, u4) . π(u1, u2, u7) . π(u1, u5, u7) . κ5(u5, u6). (16)

The reader preferring a graphical representation of model structures can find the essential
graphs corresponding to the models from Expressions (13)–(16) in Figure 2.

Let us conclude the example by repeating that the transition from the model described by For-
mula (14) to model described by Formula (15) was possible because u5⊥⊥{u2, u4}|{u1, u7}, and
the transition from the model from Formula (15) to model described by Formula (16) was possible
due to u4⊥⊥u7|{u1, u2}.

Naturally, in the above-presented simple example we could consider only a small number of
variables. So it happened that the both independence relations making the modifications possi-
ble (and highlighted at the end of the example), contained only the variables from the respective
marginal to be decomposed. Generally, when modifying a model

κ1(K1) . . . . . κk(Kk) . π(L) . . . .

10
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Figure 2: Essential Graphs of Bayesian networks equivalent to compositional models from Exam-
ple 3.

we have to consider independence relations guaranteeing the validity of Formula (12), i.e., relations
(K \ M̃)⊥⊥(N \ M̃)|M̃ , where M̃ ⊆ (L ∪K1 ∪ . . . ∪Kk) (in the example M̃ was a subset of L,
only), and

π(N)©.M̃\Lπ(K) = π(N)©.M π(K),

for M = K1 ∪ . . . ∪Kk. Therefore, the efficient algorithmization of this step is not a trivial task.

6. Conclusions

The paper shows that there is a possibility to increase the dimension of a multidimensional model
by one without throwing away the information included in the smaller model. For this, we suggest a
procedure, which is inverse to the process of model reduction based on the Shachter’s node deletion
and edge reversal rules. We describe the procedure using the apparatus of compositional models,
proving thus that this technique can sometimes easily explain what would be hard to express in the
language of graphs.

The paper does not describe a machine-learning algorithm. It only explains the idea of the
modification process that forms the core of the described approach. Nevertheless, we believe that
using the apparatus developed by Kratochvíl (2013), the algorithmization of the procedure should
not be a great problem.

Though we use the terminology of compositional models, the results apply to Bayesian net-
works, too. This is illustrated at the end of Example 3 (Figure 2), and the description of the cor-
responding process using the terminology of graphical models may be a challenge for graphical
experts.
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