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Abstract
We revisit the problem of lifted weight learning of Markov logic networks (MLNs). We show that
there is an algorithm for maximum-likelihood learning which runs in time polynomial in the size
of the domain, whenever the partition function of the given MLN can be computed in polynomial
time. This improves on our recent results where we showed the same result with the additional
dependency of the runtime on a parameter of the training data, called interiority, which measures
how “extreme” the given training data are. In this work, we get rid of this dependency. The main
new technical ingredient that we exploit are theoretical results obtained recently by Straszak and
Vishnoi (Maximum Entropy Distributions: Bit Complexity and Stability, COLT 2019).

1. Introduction

Markov Logic Networks (MLNs, Richardson and Domingos, 2006) are a prominent statistical rela-
tional learning system (Getoor and Taskar, 2007). Generative weight learning of MLNs is typically
performed using maximum-likelihood, which is, however, generally intractable. Therefore, in prac-
tice, one often resorts to heuristic approximations. Another option besides using approximations is
to restrict the class of MLNs to those for which inference can be performed efficiently, such as the
2-variable fragment of MLNs. This has been studied in the field of lifted inference (Braz et al., 2005)
and exploited in (Van Haaren et al., 2016) for maximum-likelihood learning of MLNs, where it was
shown that gradients of log-likelihood can be computed efficiently for such tractable fragments.
However, this did not provide a bound on the total runtime of the learning algorithm, specifically,
because this work was missing a guarantee on the number of iterations of the optimization algo-
rithm. Such a bound on the runtime was later given in (Kuželka and Kungurtsev, 2019; Kuželka
and Wang, 2020), mostly building on the results from (Singh and Vishnoi, 2014). Nonetheless, even
though the latter runtime bounds are polynomial in the size of the domain for tractable MLNs, they
also depend on a parameter that measures how “extreme” given training data are (we discuss this
in detail in Section 2.6). This parameter is in general not bounded and can diverge to infinity in
some cases. In the present paper, we get rid of the dependency on this parameter by exploiting deep
results from (Straszak and Vishnoi, 2019). At least from the theoretical perspective, this seems to
be the strongest result that we can hope for. We leave the practical aspects for future work.

2. Background

In this section we describe all the necessary background.
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2.1 First Order Logic

We assume a function-free first-order language defined by a set of constants ∆, a set of variables V ,
and for each k ∈ N a setRk of k-ary predicates. Variables start with lowercase letters and constants
start with uppercase letters. An atom is r(a1, ..., ak) with a1, ..., ak ∈ ∆ ∪ V and r ∈ Rk. A literal
is an atom or its negation. A free variable is a variable that is not bound by a quantifier. A clause is
a universally quantified disjunction of a finite set of literals. A clause in which none of the literals
contains any variables is called ground. The set of grounding substitutions of a clause α w.r.t. a
set of constants ∆ is the set Θ(α,∆) = {ϑ1, ..., ϑm} that contains substitutions to all variables
occurring in α using constants from ∆. A possible world ω is represented as a set of ground atoms
that are true in ω. The satisfaction relation |= is defined in the usual way: ω |= α means that the
formula α is true in ω. When x is a list of first-order logic variables then |x| is used to denote the
length of this list.

2.2 Markov Logic Networks

A Markov logic network (MLN, Richardson and Domingos, 2006) is a set of weighted first-order
logic formulas (α,w), where w ∈ R and α is a function-free and first-order formula. The semantics
are defined w.r.t. the groundings of the first-order formulas, relative to some finite set of constants
∆, called the domain. An MLN Φ induces the probability distribution over possible worlds ω ∈
Ω: pΦ(ω) = 1

Z exp
(∑

(α,w)∈Φw ·N(α, ω)
)
, where N(α, ω) is the number of groundings of α

satisfied in ω, and Z, called partition function, is a normalization constant to ensure that pΦ is a
probability distribution.

It is often useful to also allow infinite weights which represent hard logical constraints. For an
MLN Φ, let ΦR = {(α,w) ∈ Φ|w ∈ R} be the set of the weighted rules with finite weights and
Φ∞ = {α|(α,+∞) ∈ Φ} be the set of the weighted rules with infinite weights. The distribution
given by the MLN Φ is then:

pΦ(ω) =

{
1
Z exp

(∑
(α,w)∈Φw ·N(α, ω)

)
ω |= Φ∞,

0 otherwise.

That is the possible worlds ω that do not satisfy the hard constraints in Φ∞ have probability zero.

A Note on Notation It is often more convenient to use vector notation. For a list of formulas
Φ = (α1, α2, . . . , αm) we define N(Φ, ω) = [N(α1, ω), . . . , N(αm, ω)]. If w = [w1, . . . , wm] is a
vector of weights, we can also write the distribution of an MLN as pΦ(ω) = 1

Z exp (〈w,N(Φ, ω)〉)
where 〈., .〉 denotes the dot product.

2.3 Relational Marginal Problems

Markov logic networks can be seen as solutions to the following maximum entropy problem (Kuželka
et al., 2018).1

Given: (i) A list of first-order logic formulas Ψ = (α1, . . . , αl), (ii) Real numbers θ = [θ1, . . . , θl],
(iii) A set of possible worlds Ω over a given domain ∆ (Ω is given implicitly by a set of first-order
logic sentences that correspond to the hard constraints and by the domain).

1. For a more general treatment of maximum entropy problems, we refer the reader to (Wainwright et al., 2008).
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Find: A distribution {Pω : ω ∈ Ω} that is a solution of the following convex optimization problem:

min
{Pω : ω∈Ω}

∑
ω∈Ω

Pω logPω s.t. (1)∑
ω∈Ω

Pω ·N(Ψ, ω) = θ, (2)

∀ω ∈ Ω : Pω ≥ 0,
∑
ω∈Ω

Pω = 1. (3)

Here, Pω’s are the decision variables of the problem, each representing probability of one possible
world ω ∈ Ω. The first line (1) is the maximum entropy criterion (represented here as minimization
of negative entropy), (2) are constraints on expected values of the true grounding counts of the
formulas α1, . . . , αl and (3) are normalization constraints for the probability distribution.

Assuming there exists a feasible solution satisfying ∀ω ∈ Ω : Pω > 0 (this will be referred to
as the “positivity” assumption), the optimal solution of the above maximum entropy problem is an
MLN

Pω =
1

Z
exp (〈λ,N(Ψ, ω)〉), (4)

where the parameters λ = (λ1, . . . , λl) are obtained by maximizing the dual criterion

L(λ) = 〈λ, θ〉 − log
∑
ω∈Ω

e〈λ,N(Ψ,ω)〉. (5)

This dual criterion also happens to be equivalent to the log-likelihood of the MLN (4) w.r.t. a
(possibly fictitious) training example ω̂ that has to be over the same domain ∆ and that satisfies
N(αi, ω̂) = θi for all the formula statistics.

2.4 Inference Using Weighted Model Counting

Marginal inference in Markov logic networks, which is also needed for weight learning, can be
tackled using weighted first-order model counting (Van den Broeck, 2011).

Definition 1 (WFOMC, Van den Broeck, 2011) Letw(P ) andw(P ) be functions from predicates
to real numbers (we call w and w weight functions) and let Φ be a first-order theory. Then
WFOMC(Φ, w, w) =

∑
ω∈Ω:ω|=Φ

∏
a∈P(ω)w(Pred(a))

∏
a∈N (ω)w(Pred(a)), where P(ω) and

N (ω) denote the positive literals that are true and false in ω, respectively, and Pred(a) denotes the
predicate of a (e.g. Pred(friends(Alice,Bob)) = friends).

We now show how to compute the partition function Z of a given MLN using weighted model
counting. We proceed as Van den Broeck (2011). Let a set of weighted formulas Φ be given. Here,
for simplicity of exposition, we will assume that the formulas in Φ do not contain constants (we refer
to Van den Broeck (2011) for the general case). For every weighted formula (αi, vi) ∈ Φ, where
vi ∈ R and the free variables in αi are exactly x1, . . . , xk, we create a new formula ∀x1, . . . , xk :
ξi(x1, . . . , xk) ⇔ αi(x1, . . . , xk) where ξ is a new fresh predicate. Then we set w(ξi) = exp (vi)
and w(ξi) = 1 and for all other predicates we set both w and w equal to 1. For every weighted
formula (αi,+∞), we create a new formula ∀x1, . . . , xk : αi(x1, . . . , xk). We denote the resulting
set of new formulas Γ. It is easy to check that then WFOMC(Γ, w, w) = Z, which is what we
needed to compute.
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2.4.1 LIFTABILITY

For some classes of first-order logic theories, weighted model counting is a polynomial-time prob-
lem. For instance, as shown in (Van den Broeck et al., 2014), when the theory consists only of
first-order logic sentences, each of which contains at most two logic variables, the weighted model
count can be computed in time polynomial in the number of elements in the domain ∆. This also
means that computing the partition function of 2-variable MLNs, which is a non-trivial fragment
of MLNs, can be done in time polynomial in the size of the domain. Within statistical relational
learning, the term used for problems that have such polynomial-time algorithms is domain liftability
(Van den Broeck, 2011).

Definition 2 (Domain liftability) An algorithm for computing the partition function Z of an MLN
Φ = {(α1, λ1), . . . , (αl, λl)}, where each λi is represented by two numbers2 ai, bi ∈ N as λi =
ln ai − ln bi, is said to be domain-lifted if it runs in time polynomial in the size of the domain ∆
and in the number of bits needed to encode the numbers ai and bi. A class of MLNs is said to
be domain-liftable if there is a domain lifted algorithm for computing the partition function Z for
MLNs from this class.

The definition that we use here differs slightly from the original definition by Van den Broeck (2011)
in that it also requires lifted algorithms to depend polynomially on the size of the representation of
the formulas’ weights. A justification for this alternative definition follows from the work of Jaeger
(2015, Section 4.2). In particular, all existing domain-lifted inference algorithms are also domain-
lifted according to our definition. Another small technical difference is that we define domain-
liftability directly in terms of complexity of computing the partition function Z.

2.5 Relational Marginal Polytopes

Here we define integer relational marginal polytopes (Kuželka and Wang, 2020), which represent
the expected values for the vectors of grounding counts of some given formulas that are possible.3

Definition 3 (Integer relational marginal polytope) Let Ω be a set of all possible worlds on do-
main ∆ and Ψ = (α1, . . . , αm) be a list of formulas. We define the integer relational marginal
polytope RMP(Ψ,Ω) w.r.t. Ψ as RMP(Ψ,Ω) = {(x1, . . . , xm) ∈ Rm : ∃ dist. on Ω s.t.
E[N(α1, ω)] = x1 ∧ · · · ∧ E[N(αm, ω)] = xm}.

The integer relational marginal polytope w.r.t. a list of formulas (α1, . . . , αm) can be equivalently
defined as the convex hull of the set {(N(α1, ω), . . . , N(αm, ω)) : ω ∈ Ω}.

Example 1 Let us have formulas α = sm(x) ∧ fr(x, y) ⇒ sm(y) and β = sm(x) and denote
Ψ = (α, β). Let Ω2, Ω3 and Ω4 be the sets of all possible worlds over domains of size 2, 3

2. The restriction on the representation of the weights ensures that the partition function will always be a rational
number. Moreover, one can verify that the number of bits needed to represent the partition function will also be
polynomial in the number of bits needed to represent the numbers ai, bi and in the domain size |∆|.

3. In our previous works (Kuželka et al., 2018; Kuželka and Kungurtsev, 2019; Kuželka and Wang, 2020) we worked
with relational marginal polytopes which were rescaled versions of the polytopes defined here. The reason was that
we were interested in learning MLNs over different domain sizes. Since we are not primarily interested in that in
this paper, we opted for the simpler definition, which we call integer relational marginal polytope and which was
introduced in (Kuželka and Wang, 2020).
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Figure 1: Examples of three integer relational marginal polytopes given by the first-order logic
formulas α = sm(x) ∧ fr(x, y)⇒ sm(y) and β = sm(x) for domains of size 2, 3 and 4.

and 4, respectively, and w.r.t. the first-order language containing only the predicates sm/1 and
fr/2. The three respective integer relational marginal polytopes RMP(Ψ,Ω2), RMP(Ψ,Ω3) and
RMP(Ψ,Ω4) are shown in Figure 1.

Next, we define what it means for a point to be in the η-interior of a polytope.

Definition 4 (Interiority) Let η > 0, P be a polytope and A=x = c be the maximal linearly
independent system of linear equations that hold for the vertices of P. A point θ is said to be in the
η-interior of P if {θ′|A=θ′ = c, ‖θ′ − θ‖2 ≤ η} ⊆ P.

We need to consider the system of linear equations A=x = c in the definition of interiority because
the polytope may live in a lower-dimensional subset of the given space.

An important property of polytopes, formalized in (Straszak and Vishnoi, 2019), that we need
is their unary facet complexity.

Definition 5 (Definition 5.1 in Straszak and Vishnoi, 2019) Let P ⊆ Rm be a convex polytope
with integer vertices. Let M ∈ N be the smallest integer such that P has a description of the form
P = {x ∈ Rm : 〈ai, x〉 ≤ bi, for i ∈ I} ∩H where I is a finite index set, ai ∈ Zm, ‖ai‖∞ ≤ M
and bi ∈ R for i ∈ I , andH is a linear subspace of Rm. Then we callM the unary facet complexity
of P and denote fc(P ) = M .

2.6 Existing Results on Lifted Weight Learning of MLNs

It has been shown in (Kuželka and Kungurtsev, 2019) that maximum likelihood weight learning of
Markov logic networks is domain-liftable for the 2-variable fragment of MLNs. This result was then
extended to cover all domain-liftable MLNs in (Kuželka and Wang, 2020). Previously, it had been
shown in (Van Haaren et al., 2016) that computing the gradients of log-likelihood is domain-liftable
for domain-liftable MLNs. What our previous works (Kuželka and Kungurtsev, 2019; Kuželka and
Wang, 2020) added to this was to show that the complete weight learning problem is also domain-
liftable, not just the procedure that computes the gradients. This is formally stated in the next
theorem.

Theorem 1 Let Ψ = (α1, . . . , αl) be a list of first-order logic formulas and Φ0 be a set of first-
order logic sentences. Let ΩΦ0 be the set of models of Φ0 over a given domain ∆. Let ω̂ ∈ Ω be a
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training example. If computing the partition function of the MLN given by the formulas Ψ on ΩΦ0

is domain liftable, then there is an algorithm which finds weights w = (w1, . . . , wl) such that the
L1-distance of the distribution of the MLN with these weights and the MLN with optimal weights
w∗ maximizing log-likelihood is at most ε. The algorithm runs in time polynomial in |∆|, 1/ε and
1/η where η is the interiority of the vector N(Φ, ω̂) in RMP(Φ,ΩΦ0).

The polynomial dependency on the interiority parameter 1/η in the above theorem is prob-
lematic as it makes the weight-learning algorithm’s runtime dependent not only on the size of the
training example but also on its actual structure (i.e., on how “extreme” its statistics are). It is
present because we relied on the results about polynomial-time algorithms for maximum entropy
problems from (Singh and Vishnoi, 2014). Those results were superseded by the newer results from
(Straszak and Vishnoi, 2019) that do not depend on the interiority parameter. In the present paper,
we build on these newer results and get rid of the interiority parameter for MLN weight learning.

2.7 Polynomial-Time Complexity of Maximum Entropy Problems

Let F ⊆ Zm be a subset of the integer lattice, p be a positive function from F to (0;∞) and
θ ∈ Rm be a vector. Straszak and Vishnoi (2019) define the following generalized maximum
entropy problem:4

min
{qn : n∈F}

∑
n∈F

qn log
qn
p(n)

s.t. (6)∑
n∈F

qnn = θ, (7)

∀n ∈ F : qn ≥ 0,
∑
n∈F

qn = 1. (8)

Intuitively when p is a probability distribution (note that it does not have to be), we are asking for
a distribution q “closest” to p in KL-divergence that satisfies given marginal constraints (specified
by θ).

Assuming θ is in the interior of the marginal polytope, the exact solution of the generalized
maximum entropy problem is a probability distribution of the form

P (n) = qn =
p(n)∑

n′∈F p(n
′) exp (〈n′,y〉)

exp (〈n,y〉) , (9)

where y is the solution of the following problem, which is the Lagrangian dual of the generalized
maximum entropy problem:

g(θ) = inf
y∈Rm

h(θ,y) = inf
y∈Rm

log

(∑
n∈F

p(n) exp (〈n− θ,y〉)

)
. (10)

One of the main results of Straszak and Vishnoi (2019) is the structural result given in Theo-
rem 2. This theorem bounds the norm of the vector of parameters y of an ε-optimal solution of the
dual problem (10).

4. This problem is called generalized maximum entropy problem because the classical maximum entropy is its special
case when p(n) = 1 or, in general, when p(n) is constant.
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Theorem 2 (Theorem 5.1 in Straszak and Vishnoi, 2019) Let F ⊆ Zm be a finite subset of the
integer lattice and let d ∈ [0; +∞) be its diameter, let M be the unary facet complexity of the
convex hull P of F . Then, for every function p : F → (0; +∞) and for every ε > 0 there exists
a number R > 0 which is polynomial in m, log d, M , maxn∈F | log p(n)| and log(1/ε) such that
∀θ ∈ P,∃y ∈ B(0, R) : h(θ,y) ≤ g(θ) + ε, where h and g are as in (10).

Straszak and Vishnoi then use this theorem to obtain the following important algorithmic result
that guarantees polynomial-time solvability of the generalized maximum entropy problem under
certain conditions (note that it does not require the positivity assumption, cf Section 2.3, to hold).

Theorem 3 (Theorem 6.1 in Straszak and Vishnoi, 2019) Let F ⊆ Zm be a finite subset of the
integer lattice and let d ∈ [0; +∞) be its diameter, let M be the unary facet complexity of the
convex hull P of F . Then, there exists an algorithm such that given a probability distribution p
on F (via an evaluation oracle for gp), θ ∈ P and an ε > 0, computes a vector y ∈ Rm with
‖y‖ ≤ poly(m,M, log d,maxn∈F | log p(n)|, log(1/ε)) such that ‖qy − q∗‖1 ≤ ε where q∗ is the
optimal solution to the generalized maximum entropy problem, qy is a distribution overF defined as
qyn = p(n) exp(〈n,y〉)∑

n′∈F exp(〈n′,y〉) and gp is defined as gp(x) =
∑

n∈F p(n)
∏m
i=1 x

ni
i for all x ∈ (0; +∞)m

(where ni and xi are the i-th components of n and x, respectively). The algorithm runs in time
polynomial in m, M , log d, maxn∈F | log p(n)|, and log(1/ε).

In (Straszak and Vishnoi, 2019), the result from the above theorem is proved using the ellipsoid
algorithm (Boyd and Vandenberghe, 2004), which is not the most practical algorithm but has nice
theoretical properties.

3. Lifted Weight Learning of Markov Logic Networks Everywhere

In this section, we describe our main result which is the following theorem. It shows that one can
strengthen the results from (Kuželka and Kungurtsev, 2019; Kuželka and Wang, 2020) and get rid
of the dependency on the interiority parameter (cf discussion in Section 2.6).

Theorem 4 Let Ψ = (α1, . . . , αl) be a list of first-order logic formulas and Φ0 be a set of first-
order logic sentences. Let ΩΦ0 be the set of models of Φ0 over a given domain ∆. Let ω̂ ∈ Ω be a
training example. If computing the partition function of the MLN given by the formulas Ψ on ΩΦ0

is domain liftable, then there is an algorithm which finds weights w = (w1, . . . , wl) such that the
L1-distance of the distribution of the MLN with these weights and the optimal MLN maximizing
log-likelihood is at most ε.5 The algorithm runs in time polynomial in |∆| and 1/ε.

Remark 1 Regarding the meaning of the L1-distance between two MLNs Φ and Φ∗, note that it
holds: if |Φ − Φ∗|1 ≤ ε then |Pω∼Φ[ω |= α] − Pω∼Φ∗ [ω |= α]| ≤ ε

2 (note that this is the same as
total variation distance, represented here using first-order logic concepts).

5. When N(Ψ, ω̂) lies on the boundary of the respective marginal polytope, which means that the positivity assumption
from Section 2.3 fails to hold, we understand the optimal distribution as the solution to the respective relational
marginal problem on a subset of the possible worlds Ω – those that can have positive probability in some feasible
solution of the relational marginal problem.
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Figure 2: Model-counting functions from Example 2 given by the first-order logic formulas α =
sm(x) ∧ fr(x, y)⇒ sm(y) and β = sm(x) for domains of size 3 and 4.

To prove this theorem, we translate the maximum-likelihood learning problem into the gener-
alized maximum entropy problem and show that the assumptions of Theorem 3 are satisfied for all
domain-liftable MLNs. In particular, we need to show the existence of the oracle for gp and give a
polynomial bound on the unary facet complexity of the respective marginal polytopes (which turn
out to be the same as integer relational marginal polytopes, described in Section 2.5).

3.1 The Model-Counting Function

We now describe a useful concept that will be needed in our technical arguments, the model-
counting function (MC-function).

Definition 6 (Model-Counting Function) Let Ω be a set of possible worlds on a domain ∆ and let
Ψ = (α1, α2, . . . , αm) be a list of first-order logic formulas. We define the model counting function
as: MCΨ,Ω(n) = |{ω ∈ Ω|N(Ψ, ω) = n}|.

Intuitively, for any n ∈ Zm, the model counting function gives us the number of possible worlds
(from the given set Ω) that satisfy N(Ψ, ω) = n.

Example 2 In Figure 2, we show examples of two MC-functions, MCΨ,Ω(n), for Ψ = (α, β),
where α and β are as in Example 1, i.e. α = sm(x)∧ fr(x, y)⇒ sm(y) and β = sm(x), for the sets
of all possible worlds Ω on domains domains of sizes 3 and 4, respectively.

3.2 Relational Marginal Problems as Generalized Max-Entropy Problems

We now show how to translate relational marginal problems from Section 2.3 to generalized max-
imum entropy problems from Section 2.7. This will allow us to exploit the results from (Straszak
and Vishnoi, 2019) directly and obtain domain-liftability results from that.

We start by rewriting the relational marginal problem using the model-counting function as
follows. First, since we know from the solution of the relational marginal problem (cf Section 2.3)
that any two possible worlds ω1, ω2 such that N(Ψ, ω1) = N(Ψ, ω2) must have the same probability
in the maximum entropy distribution, we can define Pn to be the probability of any possible world
ω such that N(Ψ, ω) = n. With this we can rewrite the relational marginal problem as:

8
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min
{Pn : n∈D}

∑
n∈D

Pn ·MCΨ,Ω(n) · logPn s.t. (11)∑
n∈D

Pn ·MCΨ,Ω(n) · n = θ, (12)

∀ω ∈ Ω : Pn ≥ 0,
∑
n∈D

Pn ·MCΨ,Ω(n) = 1. (13)

where D = {0, 1, . . . ,M1}×{0, 1, . . . ,M2}× · · · × {0, 1, . . . ,Ml} and M1 = |∆||vars(α1)|, M2 =
|∆||vars(α2)|, . . . , Ml = |∆||vars(αl)|.

Next, we define the set D′ = {n ∈ D|MCΨ,Ω(n) 6= 0} and introduce new variables Yn ≡
Pn ·MCΨ,Ω(n) for all n ∈ D′, we can rewrite (11), (12), (13) as:

min
{Yn : n∈D′}

∑
n∈D′

Yn · log
Yn

MCΨ,Ω(n)
s.t. (14)∑

n∈D′
Yn · n = θ, (15)

∀ω ∈ Ω : Yn ≥ 0,
∑
n∈D′

Yn = 1. (16)

This optimization problem already has the form of a generalized maximum entropy problem. That
means that we can now use the algorithmic results of Straszak and Vishnoi (2019). Now, supposing
we can efficiently solve this generalized maximum-entropy problem, how do we “extract” the MLN
from it? The ε-optimal solution of the generalized max-entropy problem is sought in the form of a
vector of weights y that represents the distribution via (cf. Eq 9):

Yn =
MCΨ,Ω(n)∑

n′∈D′ MCΨ,Ω(n) exp(〈n′,y〉)
exp(〈n,y〉). (17)

Since we have Yn = Pn · MCΨ,Ω(n) and Pn = Pω when N(Ψ, ω) = n, we also have Pω =
1∑

ω′∈Ω exp(〈N(Ψ,ω′),y〉) exp(〈N(Ψ, ω),y〉). This is already the MLN we wanted to obtain. Therefore
the vector of weights y that we obtain by solving the generalized maximum entropy problem is also
the vector of the weights of the MLN.

Now, let p and p′ denote two distributions on Ω given by Pω and P ′ω (as above). To link the
error that we incur by using the ε-optimal solution obtained by solving the generalized maximum
entropy problem, we will need to use the following observation. It holds:

‖p− p′‖1 =
∑
ω∈Ω

|Pω − P ′ω| =
∑
n∈D′

MCΦ,Ω(n) · |Pn − P ′n| =
∑
n∈D′

|Yn − Y ′n| = ‖q − q′‖1.

This means that we can use the bound on the L1-distance of the approximate solutions of the gener-
alized maximum entropy problem from Theorem 3 to also bound the L1-distance of the respective
MLNs that we extract from the solution.
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Finally, what remains in order to get our domain-liftability results is to show that the conditions
from Theorem 3 are satisfied for domain-liftable MLNs. Specifically, we need to show that (i)
there is an efficient counting oracle for gp and (ii) that the unary facet complexity of the marginal
polytope, which is the convex hull of D′, is polynomial in the domain size. We do that in Sections
3.3 and 3.4, respectively.

A note about interpretation of the optimization problem. The optimization criterion (14) does
not have a direct probabilistic interpretation (since |MCΨ,Ω(n)| is not normalized), however, we can
replace (14), without changing the optimal solution as (here the equalities of the arg min’s are valid
only subject to the constraints (16), the argument would not work without using these constraints):

arg min
{Yn : n∈D′}

∑
n∈D′

Yn · log
Yn

MCΨ,Ω(n)
= arg min

{Yn : n∈D′}

∑
n∈D′

Yn · log
Yn

MCΨ,Ω(n)
|Ω|

 .

Now p∗(n) =
MCΨ,Ω(n)
|Ω| is already a probability distribution. Specifically, p∗(n) is the probability

that N(Ψ, ω) = n for a possible world ω drawn uniformly from Ω. We can therefore interpret the
optimization problem as asking for a distribution q that satisfies the given marginal constraints and
is “closest” to the distribution p∗ in terms of the KL-divergence KL(q||p∗).

3.3 Counting Oracles

One of the assumptions in Theorem 3 is access to a polynomial-time oracle for the generalized
counting function gp(x) =

∑
n∈F p(n)

∏m
i=1 x

ni
i for x ∈ (0,+∞)m. In our case, p(n) = MCΨ,Ω(n)

and F = D′ (defined in Section 3.2). Now gp(x) can be also written as:

gp(x) =
∑
n∈D′

MCΨ,Ω(n) ·
m∏
i=1

exp (lnxi · ni) =
∑
n∈D′

MCΨ,Ω(n) · exp

(
m∑
i=1

lnxi · ni

)
=∑

n∈D′
MCΨ,Ω(n) · exp (〈w,n〉) =

∑
ω∈Ω

exp (〈w,N(Ψ, ω)〉),

where w = [lnx1, . . . , lnxm]. The last expression is nothing else than the partition function of
an MLN with formulas from Ψ and weights w = [lnx1, . . . , lnxm]. So, by definition of domain
liftability, we have an oracle for gp whenever the MLN at hand is domain liftable, which is exactly
the result we needed.6 In particular, note that we do not need to compute the MC-function explicitly
at any point!

3.4 Unary Facet Complexity of Relational Marginal Polytopes

The method from Theorem 3 runs in time polynomial in the unary facet complexity of the marginal
polytope. The marginal polytope is the convex hull of the set D′ which, as can be verified straight-
forwardly, is the integer relational marginal polytope of Ψ over the domain ∆ (cf. Section 2.5). The

6. Here we note that the vector x = [x1, . . . , xm] contains only some finite precision numbers. This is because these
numbers are passed to the gp-oracle from the algorithm from (Straszak and Vishnoi, 2019), which is based on the
ellipsoid method that only searches for approximate solutions. For theoretical details about how the analysis of the
ellipsoid algorithm deals with finite precision arithmetic, we refer to (Grötschel et al., 1988). As a result, the WFOMC
oracle which gets the numbers eln xi·n will only have to deal with rational numbers of bounded bit-lengths (we note
that we talked about the representation issues when defining domain-liftability in Section 2.4.1 for this reason).
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next proposition shows that the unary facet complexity of this polytope is polynomial in the domain
size.

Proposition 7 The unary facet complexity of every integer relational marginal polytope is polyno-
mially bounded (in the size of the domain) ∆.

Proof To prove this lemma, we only need to show that, the coefficients of the inequalities describ-
ing any integer relational marginal polytope are polynomially bounded. First, we observe that every
entry of every integer point in an integer relational marginal polytope is O(mk) where m is the do-
main size. A facet of the polytope is a hyperplane or an intersection of at most d = |Ψ| hyperplanes
each of which passes through d integer points x1, x2, . . . , xd. The normal vector of the hyperplane
is a vector orthogonal to all the (x1 − xd), . . . , (xd−1 − xd). Note that the entries in (xi − xd) are
still O(mk) for all i. Let M be the matrix whose i-th row is (xi − xd). The i-th coefficient of the
hyper-plane-defining equation is the determinant of Mi where Mi is M removing i-th column. This
determinant is at most O(d!mdk) (so still poly in m) and is an integer.

The algorithm from (Straszak and Vishnoi, 2019) actually needs an explicit bound on the unary
facet complexity of the marginal polytope. While we could also use a crude upper bound based
on the reasoning from the proof of the above proposition, we can also proceed as follows. For any
domain-liftable MLN, to compute the unary facet complexity, we can construct the respective inte-
ger relational marginal polytope in polynomial time using a WFOMC oracle as shown in (Kuželka
and Wang, 2020). Once we have the marginal polytope, computing a polynomial bound on its unary
facet complexity is straightforward.

3.5 Finishing the Proof of Theorem 4

We are practically done. In Section 3.2 we have shown how to convert a relational marginal problem
to a generalized maximum entropy problem and how to extract the solution to the original problem
from it. The dual of the relational marginal problem is the maximum likelihood problem, assuming
the domain we want to model is of the same size as that of the training example (Kuželka et al.,
2018). Hence, if we can show that we can solve the resulting generalized maximum entropy prob-
lem efficiently, the result that we need to prove will follow. To do that we need to show that the
assumptions of Theorem 3 are satisfied. That means that we need to provide an efficient oracle for
the generalized counting function gp, which we did in Section 3.3, and to show that the unary facet
complexity is bounded by a polynomial, which we did in Section 3.4. So we are done.

4. Conclusions

In this work, we improved our results from (Kuželka and Kungurtsev, 2019; Kuželka and Wang,
2020). Specifically, we removed the dependency on the interiority parameter 1/η from the runtime
of the MLN weight learning algorithm by exploiting the results from (Straszak and Vishnoi, 2019).
The argument in the present paper is also, arguably, simpler than the argument used in our previous
works, since here we reduce the problem directly to the generalized maximum entropy problem
studied by Straszak and Vishnoi.
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