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Abstract

Many real-world studies and experiments are characterized by an underlying spatial structure that
induces dependencies between observations. Most existing causal discovery methods, however,
rely on the IID assumption, meaning that they are ill-equipped to handle, let alone exploit this
additional information. In this work, we take a typical example from the field of ecology with an
underlying directional flow structure in which samples are collected from rivers and show how to
adapt the well-known Fast Causal Inference (FCI) algorithm (Spirtes et al., 2000) to learn cause-
effect relationships in such a system efficiently. We first evaluated our adaptation in a simulation
study against the original FCI algorithm and found significantly increased performance regardless
of the sample size. In a subsequent application to real-world river data from the US state of Ohio,
we identified important likely causes of biodiversity measured in the form of the Index of Biotic
Integrity (IBI) metric.
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1. INTRODUCTION

Discovering cause-effect relationships from finite data with latent confounders is a very challenging
task in the field of graphical models and structure discovery. In principle, many features of causal
structures can be determined, even from observational data (Pearl| (2014)). Constraint-based causal
discovery algorithms combine independence constraints from statistical tests to determine common
features of the true underlying causal graphs. In real-world applications, however, the assumptions
of constraint-based causal discovery algorithms are often violated.

One assumption shared by many causal discovery algorithms, including the PC algorithm and
the fast causal inference (FCI) algorithm (Spirtes et al.[(2000)), is that observations are independent
and identically distributed (IID). When observations are gathered at different locations in space
(from here on called spatial data), the IID assumption is typically violated because the observations
at locations that are close to each other are likely to be causally related. Irvine and Gitelman| (2011)
and Ebert-Uphoff and Deng| (2014) showed how to perform causal discovery from spatial data: For
each location, they introduced a separate set of all variables of interest. Irvine and Gitelman| (2011)
then compared models with different sets of undirected relationships between locations whereas
Ebert-Uphoff and Deng| (2014)) explicitly learned the cause-effect relationships between locations.



These strategies are useful when the relationships between locations are unknown and the goal
is to learn these relationships. In many settings, however, the spatial structure of the system is
known a priori and the goal is to learn the local causal structure (i.e., a causal structure that applies
independently of the location) of a set of variables. As an example of such a setting, we refer to a
common application from ecology: one main goal in ecology is to infer cause-effect relationships
between environmental variables and the integrity of biotic communities. It is an open research
question which methodology is best suited to do so and, to this point, most approaches are based
on correlations instead of cause-effect links. For lotic communities (i.e., communities that live
in rivers), observations are not IID, as observations at locations that are close to each other will be
highly correlated. On the other hand, background knowledge dictates that the river current is always
pointing downstream and thus cause-effect relationships between locations in the river should do so,
too. How to use this background knowledge to obtain the most accurate local causal structure is an
open research question. While this application is very specific, the overarching problem is generic
and applies to many spatial systems in which the direction of cause-effect relationships is known,
including, among others, blood vessels, sewerage, ocean currents, and air currents. We refer to data
originating from this type of spatial structure as current data.

Here, we explore a possible link between current data and temporal data. Temporal data is
similar to current data in that the direction of possible cause-effect relationships is known and the
quantity of interest is a causal structure that is invariant (i.e., that applies at all times or, in our case,
locations). Thus, we build on previous work on causal discovery from temporal data. |Chu et al.
(2005)) and Entner and Hoyer (2010), among others, showed how to apply constraint-based causal
discovery algorithms to temporal data: For multiple time steps, they introduced a separate set of all
variables of interest and enforced the direction of time in the resulting causal structure. Temporal
data is strictly linear, however, whereas current data is not due to possible branching of currents.

In this paper, we show how to adapt the FCI algorithm to account for our background knowledge
in the application to current data. We assume that the spatial structure of the system (i.e., the order
of the observations) is known and desire to learn a local causal structure that is space invariant (i.e.,
that applies everywhere). Our method relies on only one observation per location. In our algorithm,
we reduce the number of independence tests as much as possible. This does not only save computa-
tion time but should also improve accuracy: constraint-based causal discovery algorithms perform
conditional independence tests based on the results of previous tests (Spirtes et al.|(2000), Richard-
son|(2013)). Consequently, early mistakes in independence testing can lead to further mistakes and
thus globally inaccurate solutions (Claassen and Heskes|(2012); [Hyttinen et al.| (2014)).

The paper is structured as follows: First, we introduce key concepts of graph theory and causal
discovery. We present the data generating process that introduces the assumptions of our algorithm.
We then present our adapted FCI algorithm. On simulated data, we compare the performance of the
adapted and the standard FCI algorithm to evaluate our main research question: Does taking into
account background knowledge of the spatial structure in the proposed way improve our capability
to infer causal relationships and if so by how much? Finally, we apply our adaptation to a real-world
dataset to discover cause-effect relationships between chemical concentrations, river characteristics,
and an index that describes the integrity of a biotic community in rivers of the US state of Ohio.



2. PRELIMINARIES
2.1 Graph theory

A graph G is a pair (V, E) where V' = {1, ..., M } is a finite set of verticesand E C V' x V is a set
of ordered pairs called edges. Vertices that are connected by an edge are called adjacent. A graph
that contains only directed edges ¢ — j and no cycles is called a directed acyclic graph (DAG). For
directed edges ¢ — j, we say that i is the parent of j and for directed paths ¢ — ... — 7, j is the
descendant of i. Three vertices i — j — k are called (i, j, k) a triple. If additionally, ¢ and k are not
connected by an edge, then the triple is called unshielded. In a triple ¢ — j < k, the middle vertex
7 is called a collider. A graph in which all vertices are connected is called complete. The graph that
results from a DAG by replacing all directed edges with undirected edges is called its skeleton.

For a DAG G to describe a data-generating process, we associate each vertex ¢ with a ran-
dom variable X; and a conditional distribution P(X;|Pag(X;)). The joint distribution P(X) is
faithful to G if the conditional independence relations of the distribution are entailed in G through
d-separation: Vertices i and j are d-separated given a subset M C V \ {i,j} if for each path
between 7 and j, a collider on the path or a descendant of the collider is not in M or a non-collider
on the path is in M. Adjacent vertices ¢ and j cannot be d-separated by any set.

In the presence of latent confounders, DAGs are not sufficient to describe a causal system be-
cause DAGs are not closed under marginalization (Richardson and Spirtes| (2002)). For this reason,
a new class of graphs, called maximal ancestral graphs (MAGs), has been introduced. Each DAG
with latent variables can be described by a unique MAG. MAGs contain directed and bidirected
edges. A bidirected edge ¢ <+ 7 in a MAG can be interpreted as a latent confounder of ¢ and j.

Conditional independence relations are entailed in MAGs through the criterion of m-separation
which is an extension of d-separation in DAGs. Different MAGs can share the same conditional
independence relations and together they form a Markov equivalence class. Each Markov equiv-
alence class is represented by a unique partial ancestral graph (PAG) that entails the conditional
independence relations shared by all MAGs of the class (Zhang| (2007)). PAGs contain four types
of edges: —, <+, o—o and o—, where a circle represents an unknown edge mark.

2.2 Causal discovery without causal sufficiency

The goal in causal discovery is to infer the Markov equivalence class of the true underlying graph
from observational data. In this work, we focus on constraint-based causal discovery without the
assumption of causal sufficieny. Causal sufficiency states that there are no latent confounders in the
system which is rarely satisfied in practice.

Here, we briefly describe the fast causal inference (FCI) algorithm (Spirtes et al.|(2000)) which
consists of three phases. In the first phase (skeleton phase), we infer the skeleton by testing for
conditional independence of ordered pairs of vertices (i, j). We start from a complete graph and
test for marginal independence (n = 0) first, increasing the size n of the conditioning set after all
possible combinations of ordered vertices have been tested. In subsequent iterations of n, we test
for conditional independence of 7 and j given all subsets of variables that are adjacent to ¢ excluding
7. When we find an independence, the corresponding edge is marked for removal at the end of the
current iteration of n, following an adaptation by Colombo and Maathuis|(2014) called stable FCI.
In the second phase (possible d-separation phase), we perform conditional independence tests with
additional conditioning sets to find independence relations that we missed in the skeleton phase



due to causal insufficiency. In the third phase (orientation phase), we orient all remaining edges
as o—o and subsequently apply a set of orientation rules by [Zhang| (2008)). Given faithfulness,
the FCI algorithm is sound (i.e., all edges and directions in the inferred PAG are present in the true
underlying MAG) and complete (i.e., all edges and directions in the true underlying PAG are present
in the inferred MAG; [Spirtes et al.| (2000)).

2.3 Causal discovery from temporal data

In later sections, we will explore the connection between current data and temporal data. A dynamic,
probabilistic graphical model that represents a set of variables and their conditional dependencies
via a DAG is called a Dynamic Bayesian Network (Dagum et al.| (1992)). These can be inferred
with the same algorithms as non-dynamic graphical models. Entner and Hoyer (2010) presented an
adaptation for time series data called tsFCI. This adaptation introduces the concept of homologous
edges: two edges are homologous if they connect the same pair of variables at the same temporal
distance. The assumption of time invariance then allows to remove all homologous edges if one
independence is found. In the orientation phase, all edges are oriented forward in time. Additionally,
when one edge is oriented, all homologous edges are oriented in the same direction.

3. CAUSAL DISCOVERY FROM CURRENT DATA

In this chapter, we present our approach for causal discovery from data with a directional flow. First,
we introduce the assumed data generating process. Second, we show how how to manipulate the
data to subsequently apply an adapted version of the FCI algorithm.

3.1 Data generating process

We assume that the data is generated by the following process: Let X (k) = (X1 (k), ..., Xn(k)) be
a set of NV continuous variables measured at locations k£ € K. Locations are connected by currents
which together form a spatial network (fig. [Ta).
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Figure 1: An example of the type of system that we consider. It is described by two separate
graphs: (a) a graph describing the spatial network, indicating relations between locations and (b)
a graph describing the causal network, indicating relations between variables at the same location.
We intentionally use different symbols in the two figures to stress their different function.

This network is similar to a Markov chain as each location depends only on itself and the directly

preceding locations in the direction of the current (Breiman| (1992))). Importantly, locations are not
influenced by locations further down the current. In contrast to a chain, however, the current arms of

4



the network can split and unite. The entire set of locations directly preceding location & is denoted
by Pre(k). In addition to the spatial network, the system is described by a causal network (fig. .
We assume spatial invariance, meaning that the causal network is shared among all locations k. The
following definition describes the different types of variables in the system that we consider.

Definition 1 Let X be a set of variables measured in a system with a directional current. Then
there is a partitioning (I, O, R) with:

1. The subset I(k) = (I1(k),...,In,(k)) of variables that are an effect of previous locations
and a cause of subsequent locations (i.e., the variables that are affected by the current, e.g.,
chemical concentrations).

2. The subset O(k) = (O1(k), ..., On,, (k)) of variables that are exogenous to the system: These
may be a cause of the other variables, but not an effect (e.g., riverside activities). Exogenous
variables of different locations are assumed to be uncorrelated.

3. The subset R(k) = (R1(k), ..., Ry (k)) of variables that do not fit either of these categories
(e.g., the substrate of a river).

The spatial structure of the system is captured by an additional set of variables, constructed from po-
tentially multiple sets of variables I (one for each preceding location), U (k) = (U1 (k), ..., Up, (k))
= (f(Ii(Pre(k))), ..., f(In,(Pre(k)))), with f being a function used to merge multiple locations.

With the constructed variables U, the system can be represented by a single graph G with
vertices V' = {U,O, R, I} and edges E C V x V (fig.[2). For each i and location k, X; (k) is

Figure 2: Schematic graph describing the data generating process system. Variables I are affected
by the current and are thus potentially caused by locations further up the stream (U). Variables O
are exogenous to the system, while variables R may interact with variables I, but only locally. An
edge from one variable set into another indicates that a variable in the first set can potentially be a
cause of a variable in the second set.

drawn from a distribution P(X;|Pag(X;)) with the system at equilibrium. Note that P does not
depend on the location £ which means that the IID assumption is satisfied. Our main assumption
then is that causal relationships against the direction of the current are impossible. We further
assume that variables in I are always caused by their counterpart in U. The subgraph over vertices
{I, R} is called the local causal graph. Latent variables are allowed, but cycles are not.



3.2 Preprocessing

We start from a set of measured variables X at measurement locations K to learn a local causal
graph G that is valid for all locations. Trivially, we could run the FCI algorithm. This, however,
is suboptimal due to several reasons. First, the measurements are not 1ID, violating one of the
basic assumptions of the FCI algorithm. Second, by neglecting the spatial structure, we would be
neglecting a lot of information that could potentially be useful (Spirtes et al.|(2000)).

To avoid this loss of information, we construct upstream variables U as outlined in def.
using the mean as function f. We stress that this choice depends on the application. For example,
for a system with currents of largely differing discharge volume, the weighted average might be
a better choice. Further, we note that not all locations have a preceding location which results
in locations with an incomplete set of variables. In this work, we wanted to evaluate our general
approach, which is why we decided to exclude missing data imputation as a potential influence on
modeling performance. In principle, however, the missing data problem could be tackled by any
appropriate strategy, including regression imputation and Bayesian estimation (Enders|(2010)). The
spatial structure of the system could offer additional information here that could allow for better
imputation of missing data. Note that our strategy of excluding locations with an incomplete set of
variables slightly reduces the size of the data set. Our preprocessing strategy is outlined in alg. [}

Algorithm 1: Current data preprocessing

Input : Set of measured variables X at locations K in a system with directional currents,
with K’ being the set of locations k& € K for which Pre(k) # ()
Output: Set of variables X’ = {U, O, R, I'} at locations K’
1 Partition variables into subsets I, O and R following def.
2 repeat
3 Select an unvisited measurement location k € K’ and calculate U (k) following def. ,
using the average as the function f;
4 until All measurement points k € K’ have been visited,
5 Remove entries of locations k € K for which Pre(k) = 0;

3.3 Connection to time series

After preprocessing, the data is very similar to time series data: Whereas for time series, temporal
invariance says that processes do not change over time, spatial invariance says that processes are
invariant of the location. Time series are most commonly analyzed with the concept of Granger
causality (Granger (1969)). which is based on the assumption that a cause precedes an effect in
time. If a variable x holds information on another variable y at a later time point, it is said that x
Granger-causes .

This principle does not align well with our setup. First, it is not obvious how to incorporate
variables that do not adhere to the current (R and O). Second, Granger causality needs extensions
(see, e.g., |[Eichler| (2007)) to allow for contemporaneous causal relationships between variables.
Third, Granger causality does not allow for latent variables which is often unrealistic (but see (Chu
and Glymour| (2008))). Fourth, our data is not a single series of observations. Due to branching, it is
not possible to order the observations which means that the basic idea of Granger causality which
is to predict one variable using the time series of another variable cannot reach its full potential.



3.4 Adaptation of FCI: currentFCI

We build our approach on the FCI algorithm which allows for latent confounders. Trivially, we
could apply the standard FCI algorithm to our extended set of measurements. We do, however, have
additional information readily available that enables us to do better.

1. There cannot be a cause-effect relationship of any variable in X \ U on any variable in U, or
of any variable in X \ O on any variable in O.

2. Counterpart variables always have a cause-effect relationship in the direction of the current.

3. Spatial invariance dictates that the causal structure is independent of the location. Therefore,
the graph over U has to be the same as the graph over 1.

Parts of our adjustments of the FCI algorithm (alg. contribute directly to a more accurate
causal graph. As we know that variables in U and O cannot be caused by variables in X \ U and
X \ O, respectively, we can orient all edge marks of U and O into another vertex as arrowheads.
Edges between a variable in U and a variable in O are oriented as confounders solely based on this
strategy. For counterpart variables, we orient the edges into the variables in U as tails, because there
has to be a causal relationship due to our assumptions on the data generating process (line 6).

Likewise, parts of our adjustments improve the inferred causal graph indirectly by reducing
the number of conditional independence tests that we have to perform. We know that counterpart
variables will be connected by an edge. Therefore, we do not have to test for these edges, reducing
the number of potential mistakes (line 4). Lastly, as the structure of U is equivalent to the structure
of I, we would like to avoid testing for conditional independence of edges within U. We have
to make sure, though, that not doing the tests does not compromise our ability to learn the rest
of the causal graph. We have two trivial options: To cut all edges or to keep all edges within U.
Both options, however, negatively impact our ability to test for conditional independence between
variables in U and variable in X \ U (see fig. SI 1 in|Mielke|(2020)).

We propose to, again, use spatial invariance to our advantage. Spatial invariance dictates that
the causal graph over vertices U and the causal graph over vertices I are the same with variables
replaced by their counterparts. This allows us to infer the graph over I first (line 1), which we then
use as the graph over U (line 3). Theorem [2]states the guarantees of our algorithm. A sketch of the
proof is in the supplementary information (available viaMielke| (2020)).

Theorem 2 Given the data generating process outlined in section the adapted FCI algorithm
outlined in alg. [l|and alg. 2| gives sound results for the local part of the PAG.

4. EXPERIMENTS

The code of our experiments is available at Mielke| (2020). We used R, version 3.6.3. (R Core
Team| (2020)). Our implementation of currentFCI is based on the R package pcalg, version 2.6.6.
(Kalisch et al.| (2012))) and we used a partial correlation test to test for conditional independence
with the assumption of linearity and a maximum size of conditioning sets of 3.

4.1 Simulations

We first compared the performance of currentFCI on simulated data to that of standard FCI. For that,
we generated 100 random spatial current structures (fig. [[a) with pre-set numbers of measurement



Algorithm 2: currentFCIL.

Input : Set of variables X' = {U, O, R, I} at measurement locations K’
Output: PAG over vertices X’
1 Infer the undirected graph M on the vertex set I following the stable FCI skeleton phase;
2 Form the complete undirected graph G on the vertex set X';
3 Remove all edges from G that were removed in M and translate M to counterpart
variables to remove edges within U';
4 Standard skeleton search while avoiding tests for edges between two variables in U and
edges between counterpart variables;
5 Conservatively orient colliders (Ramsey et al.|(2012)) in M and translate to counterpart
variables to orient edges in U;
6 Orient edges involving U as U o—, edges involving O as O o—and edges between
counterpart variables as U — I;
7 Possible d-separation phase while not overruling background knowledge;
8 Remove edges within U, orient all remaining edges as o—o and repeat step 6;
9 Standard orientation phase [Zhang (2008)) while not overruling background knowledge;

locations of nmeas € {250, 1000,4000}. For each current structure, we generated a random causal
structure. We adapted a method described in [Kalisch and Bithlmann| (2007)) to the data generating
process described in section [3.1] We imposed the causal link between counterpart variables and
excluded links that were ruled out by the data generating process. All other links were present
with probability s = 0.2 and each pair of variables that were not linked was confounded with a
probability [ = 0.01. The noise was sampled from a normal distribution and links between variables
were linear with a random strength of £[0.1, 1]. We simulated / = 10, O = 5 and R = 5 variables
and build models for different confidence levels « of the conditional independence tests.

To evaluate the algorithms, we calculated evaluation metrics for both edges and edge marks. We
compared the inferred models of both algorithms to the true underlying models and counted true
positives (TPs), true negatives (TNs), false positives (FPs) and false negatives (FNs) for edges and
edge marks across the 100 random realizations of each combination of npeys and . We summed
over all realizations and calculated the precision = TP/(TP + FP) and the recall = TP/(TP + FN)
for edges, arrowhead marks and tail marks separately. To make the comparison fair, we evaluated
the local causal structure only, excluding edges and edge marks that we imposed in our algorithm.

The results are shown in fig. [3| and table [, Both the precision and the recall of currentFCI
were higher than those of standard FCI, independent of the number of locations. As currentFCI
uses more information than standard FCI, it is better able to assess the relevancy of a correlation
and to identify latent confounders. In table [I, we show the confusion matrices for one specific
configuration (1000 observations and o = 0.01). For the edges, we found that the number of false
positives of currentFCI is very low, meaning that edges that are present in the inferred model are
almost always part of the true underlying graph. For the edge marks, currentFCI has much higher
recall (> +100%) and accuracy (> +20%).

To test the stability of currentFCI in situations in which the true function to merge multiple
locations is unknown, we performed an additional analysis. In this analysis, we imitated a distorted
aggregation function by adding additional normally distributed noise to the upstream variables U'.
The full results of the analysis are available in the supplementary information (Fig. SI 2 - 4 in
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Figure 3: Results of the simulation study. Recall (x-axis) against precision (y-axis) obtained for the
standard FCI (green) and the currentFCI (red) for different numbers of observations (columns) and
edges (top) and edge marks (center and bottom), respectively.

Mielke| (2020)). We found that the performance of currentFCI declined slightly with increasing
levels of additional noise, but was still superior to that of standard FCI in all tested scenarios.

currentFCI standard FCI
— —o — X — —o - X
— 709 884 44 — 380 1326 24
— 145 1127 357 585 — 159 1494 51 >01
X 97 8185 X 398 7884

Table 1: Confusion matrices for nmess = 1000 and o« = 0.05 for currentFCI (left) and standard FCI
(right) with inferred edge marks in columns and true edge marks in rows.



4.2 Case Study

Finally, we applied currentFCI to find causes of fish community integrity in rivers in the US state
of Ohio (fig. @ Using hydrosheds (Lehner et al.| (2008))), we linked each observation to the clos-
est river. Fish community integrity is measured by the multimetric Index of Biotic Integrity (IBI).
Potential causes include chemical concentrations (which together formed the set I') and stream char-
acteristics (R), as well as riverside activities and geographic location (O). Knowing the potential
causes of fish community integrity is vital to perform cost-effective conservation measures. We
assumed that fish integrity cannot be a cause of any other variable and consequently oriented all
resulting edges into the IBI as arrowheads.

(a)

Chemicals

Physical
habitat

Substrate

Figure 4: Case study: (a) a small extract of rivers (black) and measurement locations (red) in the
US state of Ohio and (b) inferred PAG over the Index of Fish Integrity (red, IBI), chemicals (blue),
and stream characteristics (green). The width of an edge is proportional to the number of graphs
that it appeared in. For clarity, we do not show vertices of U and O variables here.

As some of our variables were highly non-normally distributed, we calculated ranks for all
variables and used Spearman’s rank correlations as the input of the conditional independence tests.
After preprocessing, our data set consisted of 1167 observations without missing values. I consisted
of 8 variables, R consisted of 6 variables and O consisted of 4 variables. To get a robust final result,
we performed bootstrapping with 1000 samples with each sample being drawn with replacement and
of the size of the original data set. In the modeling, we used a confidence level for the conditional
independence tests of « = 0.01. Both edges and edge marks had to be found in at least 50% of the
graphs to be reported in the combined graph. The final PAG is shown in fig. fb]

We found three causes of the IBI. The quality of the river channel (Channel), the quality of
fast-flowing, shallow river parts (Riffle), and the concentration of nitrogen in the water (N). Of these
three causes, Channel was by far the most reliable one (being found in more than 97% of all samples)
whereas the connections to Riffle and N appeared only in a relatively small subset of models (less
than 60%). A previous study with boosted regression trees (Piliere et al.[ (2014)) concluded that
Channel and Riffle have the strongest association with the IBI. Our analysis suggests that these
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associations are likely causal. [Piliere et al.| (2014), however, also reported a strong association of
the IBI and phosphorus concentration (P), which in our model are not adjacent. In general, we found
the water chemistry to have less of an impact on the IBI than physical habitat quality. This finding
indicates that physical habitat should be the main focus of conservation efforts in lotic ecosystems.

S. DISCUSSION

We found that currentFCI outperformed the standard FCI algorithm regardless of the size of the
dataset. We were consistently able to identify edges with better precision, while for edge marks
both precision and recall were higher. The differences were largest for medium and large datasets
(1000 or 4000 observations). Specifically here, the standard FCI algorithm struggled with latent
confounders in the form of upstream and out of stream variables. As we included those in current-
FCI, we were able to identify the missing confounders which improved the overall performance.

Finally, we hint to possible extensions that we did not incorporate in our work. We assumed
that out of stream variables are not correlated between different locations. This assumption might
not be justified in some situations and might require an extension. As these correlations are likely
undirected, we think that chain graphs (Lauritzen and Richardson| (2002)) would be a natural choice.
Further, we encountered infrequent conflicts (< 1%) between background knowledge and orienta-
tion rules. In this work, we let background knowledge overrule orientation rules. While the low
conflict rate strengthens our approach in general, further investigation into the best strategy to han-
dle conflicts is required.
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