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Abstract
During the last decade, some exact algorithms have been proposed for learning decomposable

models by maximizing additively decomposable score functions, such as Log-likelihood, BDeu,
and BIC. However, up to the date, the proposed exact approaches are practical for learning models
up to 20 variables. In this work, we present an approximated procedure that can learn decomposable
models over hundreds of variables with a remarkable trade-off between the quality of the obtained
solution and the amount of the computational resources required. The proposed learning procedure
iteratively constructs a sequence of coarser decomposable (chordal) graphs. At each step, given a
decomposable graph, the algorithm adds the subset of edges due to the actual minimal separators
that maximizes the score function while maintaining the chordality. The proposed procedure has
shown competitive results for learning decomposable models over hundred of variables using a
reasonable amount of computational resources. Finally, we empirically show that it can be used to
reduce the search space of exact procedures, which would allow them to address the learning of
high-dimensional decomposable models.
Keywords: Probabilistic graphical models, decomposable models, efficient learning

1. Motivation

This work tackles the problem of learning decomposable models (DM) from data. The family of
DMs is a subclass of Bayesian networks with an undirected chordal graph (decomposable graph,
DG) representation. The family of DMs is one of the most important probabilistic graphical models
due to its theoretical properties (Lauritzen, 1996). For instance, they represent probability distribu-
tions that factorize according to a product of lower-order marginals, and they are the basis of the
most exact probabilistic inference algorithms.

The problem of learning DMs consists of learning the structure and the parameters. Given a
data set, the parametric learning of DMs can be performed in closed form using likelihood estimate
and Bayesian estimates. Thus, in this work, we concentrate on the structural learning of DMs.

There are two main approaches to deal with the structural learning problem: To find the DG
that better codifies the conditional (in)dependence relations between the involved random vari-
ables (de Campos and Huete, 1997), e.g. PC algorithm (Spirtes et al., 2000); and to find the
structure that maximizes a quality measure, such as Bayesian Dirichlet equivalent uniform score
(BDeu) (Heckerman et al., 1995). In this work, we focus on this last approach from a combi-
natorial optimization point of view over the space of DGs. A particularly interesting family of
quality measures correspond to the additively decomposable scores (Koller and Friedman, 2009),
e.g. log-likelihood, Bayesian information criteria (BIC) (Schwarz, 1978) and BDeu (Heckerman
et al., 1995). These scores can be expressed in terms of sums of measures defined over subsets of
vertices.

Problem 1 (Maximum weighted decomposable graph (MWDG)) Let G be the set of DGs defined over n
vertices, V, and let w be a score function (weight) that assigns a real number to every decomposable graph,
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w(G) 7→ R, that is additively decomposable over all the complete subsets of the given DG:

w(G) =
∑

R∈R(G)

w(R), (1)

where R(G) ⊆ 2V is the set of all complete subsets of vertices of G. The maximum weighted DG (MWDG)
problem is defined as finding a graph G ∈ G that maximizes the score function w(G):

argmax
G∈G

w(G). (2)

The MWDG problem is NP-hard (Dasgupta, 1997), and during the last decade, several exact
procedures have been proposed to solve it (Corander et al., 2013; Kangas et al., 2014; Studený
and Cussens, 2016; Janhunen et al., 2017; Rantanen et al., 2017; Studený and Cussens, 2017). In
(Corander et al., 2013) the authors propose a junction tree characterization described in terms of
constraints over separators. They translate these constraints into different optimization problems,
such as the Maximum Satisfiability Problem. Janhunen et al. (2017) replace the balancing condi-
tion and maximum spanning tree considerations proposed in (Corander et al., 2013) by a perfect
elimination ordering, and they obtain a more compact representation in terms of model constraints.
Kangas et al. (2014) propose a recursive characterization of junction trees that is used together with
a dynamic programming algorithm for tackling the MWDG problem. In (Rantanen et al., 2017)
a branch and bound approach is proposed based on an alternative recursive characterization of the
junction trees. They combine the branch and bound algorithm with dynamic programming for up-
per bounding the score function and pruning the search space. Studený and Cussens (2017) propose
an alternative characterization of DGs using characteristic imsets (Hemmecke et al., 2012), binary
vectors indexed by subsets of nodes. The space of DGs is represented as the convex hull of the
characteristic imsets associated to each DG. They propose a set of inequalities that appear to define
the facets of the convex hull, and a method for finding the most suitable inequality as the base for
a cutting plane method. Up to the date, the proposed exact approaches are practical for learning
models up to 20 variables, and they can not deal with the MWDG problem in high-dimensional
domains.

An alternative to tackle the problem in higher dimensions is to consider a reduced search space.
A particularly important reduction of the search space can be performed a priori by bounding the
maximum clique size K (Kangas et al., 2014; Studený and Cussens, 2017). For instance, for
K = 2 the problem reduces to finding a maximum weighted forest, which can be solved using
Prim’s algorithm with a computational complexity ofO(n2) (Eisner, 1997), where n is the number
of vertices of the problem. In (Studený and Cussens, 2017), the authors suggest a more general
way for reducing the search space using a set of subsets of nodes closed under inclusion.

Another alternative is to use approximate algorithms, which sacrifice the quality of the learned
DG to achieve a reduction in computational cost. In this work we are particularly interested in
greedy algorithms that construct the approximation to the MWDG problem incrementally (Malves-
tuto, 1991; Srebro, 2000; Deshpande et al., 2001; Karger and Srebro, 2001; Chechetka and Guestrin,
2008; Malvestuto, 2012; Pérez et al., 2016). From a combinatorial optimization point of view,
greedy algorithms belong to the family of local search algorithms, and they mainly differ on the
neighborhood considered in the iterative construction of the DG (Aarts et al., 2003), i.e. the set
of DGs that can be obtained from a given one. In (Malvestuto, 1991), given a K value, the au-
thors propose a local search algorithm that considers the addition of a clique that is of size K and
shares K − 1 vertices with a previously added clique. Deshpande et al. (2001) propose an effi-
cient implementation of a local search algorithm which neighborhood is given by all the DGs that
can be obtained by the addition of a single edge. In (Srebro, 2000; Karger and Srebro, 2001) the
authors present an approximate algorithm for learning K-hypertrees, a special class of DGs with
all the cliques of size K and minimal separators of size K − 1. The algorithm is shown to have
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weak theoretical guarantees at expenses of being exponential in K. Chechetka and Guestrin (2008)
propose a probably approximately correct algorithm for leaning DGs with bounded treewidth with
a computational complexity exponential in the maximum clique size considered. In (Malvestuto,
2012), the authors propose an iterative deletion procedure of a set of edges for the special case of
K-hypertrees. Pérez et al. (2016) propose a neighborhood that includes all the DGs that can be
obtained by considering the addition of every subset of edges in the neighborhood of the minimal
separators.

Contributions In this work we propose a divide-and-conquer approach to Problem 1 (see Sec-
tion 3), called iterative coarsening algorithm (IC). This approach consists of generating a sequence
of coarser DGs G1 ≺ ... ≺ GK , where G1 is the empty graph. Each coarsening step is performed
using an adaptation of the Integer Linear Programming (ILP) formulation presented in (Pérez et al.,
2014). IC is a local search algorithm that adds the optimal set of edges due to the minimal sep-
arators of a given DG. It includes a parameter that allows controlling the trade-off between the
quality of the obtained solution and the computational resources required for learning DMs. IC has
obtained competitive results learning DMs compared with exact and approximated approaches (see
Section 4). Finally, we adapt IC to reduce the search space of exact procedures (see Section 5). The
adaptation has obtained promising results in terms of the percentage of edges recovered from the
optimal solution to the MWDG problem.

2. Notation and main concepts
Let G = (V,E) be an undirected graph, where V = {1, ..., n} is the set of vertices and E is
a set of pairs of vertices {u, v} called edges. We say that G+ = (V +, E+) is coarser than G
(or equivalently, G is thinner than G+) when V = V + and E ( E+. The coarser and thinner
terms are used to induce a partial ordering among the graphs, G ≺ G+. An undirected graph is
called a decomposable graph1 (DG) if for any cycle of length greater than 3 there exists a chord.
Henceforth, we deal with DGs only.

A set of vertices is said to be complete in G when it induces a complete subgraph. A maximal
complete set C is called clique, and the set of all the cliques of G is denoted by C. The neighbor-
hood of u in G is the set of vertices connected by an edge to u, Nu = {v ∈ V : {u, v} ∈ E}.
We define the neighborhood of a set of vertices S in G as the set of vertices connected to all the
vertices in S, NS = {v ∈ V : ∀u ∈ S, {u, v} ∈ E} =

⋂
u∈S Nu. Note that this definition of

neighborhood is the intersection of the neighborhood of each vertex instead of the union. The set
of (minimal) separators of G is denoted by S. The set of minimal separators between u and v is
denoted by Su,v . The set of connected components that is obtained by the removal of a separator
S from G is denoted by VS . The set of substantial components of a separator S correspond to
{R ∈ VS : NS ∩ R 6= ∅}, and its size is called the degree of the separator S, dS . The degree of a
separator corresponds to one plus its multiplicity.

Any DG coarser than a given DG,G, can be obtained by sequential addition of edges that main-
tains the decomposability of all the intermediate coarser graphs (Lauritzen, 1996). We call potential
edge an edge whose addition maintains the chordality of a DG. An edge {u, v} is a potential edge
iff there exists S ⊆ V \{u, v} such that (1) S is a separator for u and v inG, S ∈ Su,v , and (2) u and
v are both completely connected to S, {u, v} ⊆ NS . In this case, we say that {u, v} can be added
due to S. Clearly, the addition of a potential edge {u, v} due to S creates the clique {u, v} ∪ S.
Therefore, the obtained coarser DG has the additional complete subsets {{u, v}∪R : R ⊆ S}, and
thus we can associate the next weight to the addition of the potential edge {u, v} due to S:

w(u, v|S) =
∑
R⊆S

w({u, v} ∪R). (3)

1. Chordal graph, triangulated graph.
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Table 1: Main concepts
G ≺ G+ G+ is coarser than G C Cliques of G
Nu Neighborhood of u NS Neighborhood of S
S Minimal separators of G Su,v Minimal separators for {u, v}
VS Connected comps. separated by S dS Degree of S
ES Candidate edges due to S wu,v|S Weight of {u, v} due to S

Finally, we call ES = {{u, v} : S ∈ Su,v} the set of candidate edges due to S in G, and
when {u, v} ∈ ES we say that {u, v} is a candidate edge due to S. We define the length of a
candidate edge {u, v} 6∈ E as the number of minimal separators for {u, v}, lu,v = |Su,v|. The
set of candidate edges due to the separators of a DG will be the basis for the coarsening step of
the proposed learning algorithm: a subset of candidate edges will be added at each iteration of the
algorithm. The selected candidate edges have to guarantee that, at least, there exists an order of
addition for which they become potential edges.

The notation introduced in this section is summarized in Table 1.

3. Learning by coarsening

In this section, we propose an algorithm to deal with Problem 1. The algorithm follows the general
heuristic proposed in (Pérez et al., 2016) that consists of creating a sequence of coarser DGs, G1 ≺
G2 ≺ ... ≺ GK , where G1 and GK are the empty graph and the obtained DG, respectively.

In the previous section, we have indicated that any DG can be learned from a thinner DG by
adding potential edges iteratively. In this work, we propose to perform a coarsening step, which
consists of learning Gk+1 from Gk, by adding iteratively potential edges from the set of candidate
edges due to the separators of Gk, for k = 1, ...,K − 1. Each coarsening step increases the
maximum clique size at most in one. The next problem formalizes the coarsening steps of the
algorithm:

Problem 2 (The coarsening problem) Given a DG, G, and a decomposable score, w (see Eq. 2), find the
maximum weighted coarser DG G+ that can be obtained by adding a subset of the candidate edges ES due
to S for all S ∈ S.

This problem can be solved by finding the sequence of the addition of the candidate edges in
which they are chordal. That is, before adding {u, v} due to S we have to ensure that S ∈ Su,v and
{u, v} ∈ NS , by adding other candidate edges when it is required. The proposed procedure can be
seen as a local search that finds the best neighbor in a huge neighborhood by solving Problem 2.

The coarsening problem can be solved by using Integer Linear Programming (Pérez et al.,
2014). Given a DG, G, the set of decision variables in the ILP formulation of the coarsening
problem corresponds to the candidate edges due to the separators of G, X = {Xu,v|S : S ∈
S, {u, v} ∈ ES}, where Xu,v|S ∈ {0, 1}, and Xu,v|S = 1 represents that the edge {u, v} is added
to G due to the separator S.

Given a DG G = (V,E), a decomposable score function w (see Equation 2 and Equation 3)
and the set of decision variables X , the ILP formulation of Problem 2 is given by

max
∑
S∈S

∑
{u,v}∈ES

w(u, v|S) ·Xu,v|S ,

subject to the constraints:

4



LEARNING DECOMPOSABLE MODELS BY COARSENING

1) For {u, v} 6∈ E:∑
S∈Su,v

Xu,v|S ≤ 1

2) For S ∈ S and {u, v} ∈ ES :
[
∑

s∈S
∑

R∈Su,s
Xu,s|R]− |S| ·Xu,v|S +

∑
s∈S 1u,s ≥ 0, and

[
∑

s∈S
∑

R∈Sv,s
Xv,s|R]− |S| ·Xu,v|S +

∑
s∈S 1v,s ≥ 0,

where 1u,v is 1 if {u, v} ∈ E, and 0 otherwise.

3) For S ∈ S and V ⊆ VS :∑
T∈V

∑
U∈V\{T}

∑
u,v∈T,U Xu,v|S ≤ |V| − 1

Constraints (1) guarantee that the edges are added at most due to a single separator; constraints (2)
guarantee that to allow the addition of {u, v} due to S both vertices are in the neighborhood of S,
{u, v} ⊆ NS ; and constraints (3) ensures that the addition of a set of edges due to a separator S can
not form cycles among the set of connected components separated by S, VS , and thus that S is the
minimal separator for all the added edges. In summary, for every set of candidate edges satisfying
constraints (1), (2) and (3) there is at least an order of addition for which they become potential,
and thus the obtained graph is a DGs.

We can control the number of variables and the number (and the size) of constraints of the ILP
formulation proposed to solve Problem 2 by considering only the subset of edges with a maximum
length of l. By constraining the maximum length of the edges considered to tackle Problem 2
we are discarding the edges that have a lower prior probability of being included in the optimal
solution (Pérez et al., 2018). Selecting an appropriate value of l, we can effectively control the
trade-off between the required computational resources for solving Problem 1 and the quality of
the obtained solution.

At this point, we would like to highlight that some of the edges considered in Problem 2 can
not be added due to the separators in S, and thus the ILP formulation can be reduced drastically
by removing them. For example, given the DG G with C = {{1, 2}, {2, 3, 4}, {3, 4, 5}} we can
not add {1, 5} due to {3, 4} because we have to add both {1, 3} and {1, 4}, and we have a single
separator {2} to do it. A subset of the non-eligible edges can be efficiently characterized as follows:
{u, v} due to S can not be part of the solution to Problem 2 if exists a pair of vertices {r, s} ⊆ S
not connected to u for which Su,r = Su,s. The rest of non-eligible edges can be determined by
inspecting when the constraints (2) for the addition of the edge {u, v} due to S can not be fulfilled.
From here on, we will consider that ES represents the set of candidate edges due to S that can not
form part of the solution to Problem 2.

3.1 The iterative coarsening algorithm

In this section, we propose an algorithm for learning DMs using decomposable scores such as BIC
and BDeu. The algorithm is an approximated approach to Problem 1 that progresses by solving
Problem 2 iteratively. The pseudo-code of the iterative coarsening (IC) algorithm is shown in
Algorithm 1.

IC starts by learning the maximum weighted forest (MWF ) over n vertices using Prim’s algo-
rithm, which solves Problem 2 given the empty graph with a computational complexity of O(n2).
Next, the algorithm uses the ILP formulation for solving the coarsening problem (LearnCoarser
procedure) iteratively until convergence. The set of weights W indicates to LearnCoarser the
edges that can be considered to deal with Problem 2.

The algorithm has two optional parameters that can be used to control its running time: K is
a positive integer that bounds the maximum clique size of the obtained DGs, and it can be used
to explicitly control the complexity of the associated decomposable models (by default K = ∞);
l is a positive integer that bounds the maximum length of the candidate edges considered at each
coarsening step, and thus it controls the search space of the coarsening steps (by default l =∞).
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Algorithm 1: The iterative coarsening (IC) algorithm
Input: A decomposable scoring function w (see Eq. 2), the number of vertices n.
Optionally: The maximum clique size, K =∞, the maximum length of the candidate

edges, l =∞.
Output: A DG, G+.
G = (V,E) with E = ∅
G+ = (V,E+) with E+ =MWF (w, n)
while G 6= G+ do

G = G+

W = {wu,v|S : {u, v} ∈ ES(G), S ∈ S(G), lu,v ≤ l, |S| < K − 2}
G+ = LearnCoarser(G,W )

return G+

4. Experiments

In this section, we present three types of experiments that illustrate the effectiveness of IC for
learning DMs using the BDeu score (Heckerman et al., 1995). First, we deal with Problem 1 using
data sets of small dimensionality, and we compare the obtained solutions with GOBNILP (Studený
and Cussens, 2016, 2017), the maximum spanning tree (MST) and the local search algorithm that
considers the addition of the best chordal edge at each step (Greedy) (Deshpande et al., 2001). We
have selected Greedy because it has polynomial complexity in n and K, and its one of the most
popular algorithms for learning DGs. Then, we deal with Problem 1 using high-dimensional data
sets and we compare the obtained solutions with MST and Greedy.

In the experiments, we have solved the ILP formulations of Problem 2 using Gurobi R© as it
allows us to solve ILPs in high-dimensional problems. This is also the same solver used by GOB-
NILP. As our approach requires solving a sequence of ILPs, we set the MIPFocus = 1. This
causes Gurobi R© to focus on locating feasible solutions quickly. Additionally, we set the time
limit for each ILP to be 500 seconds. The implementation of Greedy is taken from the python
library pgmpy, which follows the design given in (Koller and Friedman, 2009, Section 18.4.3)
with a slight modification: the allowed edges are chordal. The IC algorithm has been imple-
mented in Python and the source code is available at https://github.com/georgeAO/
IterativeCoarsening/.

All experiments are conducted on the DIPC Atlas cluster which contains Intel Xeon R© E5-
2680/2863, Xeon Gold R© 6140, and Xeon Platinum R© processors. Individual problems are limited
to using at most 12 cores and 128 GB of RAM, however, most experiments are completed using
less that 64 GB.

4.1 Low-dimensional domains

In this section, we consider some standard data sets which are typically used in learning probabilis-
tic graphical models. In total, ten data sets from the URLearning Bayesian network data repository2

are used for learning DM. Scores will be compared from MST, Greedy, IC, and GOBNILP.
Following the default settings of GOBNILP, we set the maximal clique size of each approach to

be four and use a BDeu scoring function with an equivalent sample size of one, α = 1. Additionally,
we change the default settings of GOBNILP to chordal = True and pruning = False.

2. http://urlearning.org/datasets.html
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Table 2: This table shows the obtained results using 10 low-dimensional data sets. The column Data
Set shows the names of the data sets used in the experiment, n represents the number of variables
of each data set and MST shows the scores of MST. The columns w represent the increment in
the scores obtained with Greedy, IC, and GOBNILP with respect to MST. The columns t show the
computation time (in seconds) for Greedy, IC, and GOBNILP. All the values have been rounded to
the closest integer.

Greedy IC GOBNILP
Data Set n MST w t w t w t

Wine 14 -1274 13 3 13 0 13 8
Voting 17 -4654 5 4 5 1 11 13

Hepatitis 20 -1343 1 1 4 1 4 22
Heart 23 -2455 32 3 32 2 32 52
Autos 26 -1711 42 13 97 2 138 11072
Horse 28 -4588 25 8 27 3 28 183

Flag 29 -2811 19 13 24 3 34 926
Water1000 32 -13322 29 19 35 12 35 497

Alarm 37 -14638 171 29 200 16 200 1788
Bands 39 -5252 29 19 47 10 70 4669

This allows GOBNILP to search for the optimum MWDG with a maximum clique size of four.
The maximum length of the allowed edges for IC, l, is unbounded.

The summary of the results obtained is shown in Table 2. The table shows the BDeu score for
MST (MST column), and for Greedy, IC, and GOBNILP the increment in the score with respect
to MST (w columns). The running times for Greedy, IC, and GOBNILP are reported in their
corresponding t columns. IC and Greedy obtain the optimal DG in Wine, Hepatitis, and Heart
datasets (three of the four smallest data sets). In the rest of the data sets, IC consistently outperforms
Greedy in terms of both the score and the running time. The highest improvements of IC with
respect to Greedy in the BDeu score are obtained in Autos (55), Alarm (29), and Bands (28), where
the numbers in parenthesis represent the difference in the obtained BDeu scores. IC learns DGs
very close to the optimal (GOBNILP) in 7 out of 10 datasets: Wine (0), Hepatitis (0), Voting (6),
Heart (0), Horse (1), Flag (10), Watter100 (<1) and Alarm (<1).

4.2 High-dimensional domains

The following experiment considers three high-dimensional data sets, namely: Semeion Handwrit-
ten Digit Data Set (SHD, n = 256 variables, 1593 instances), QSAR Androgen Receptor (QAR,
n = 1024 variables, 1687 instances) and QSAR Oral Toxicity (QOT, n = 1024 variables, 8992
instances). These high-dimensional data sets would not be approachable with exact methods for
Problem 1, and we will analyze the scalability of IC compared to MST and Greedy. For the IC
algorithm, we restrict the search space by changing the maximum edge length value, l ∈ {4, 8, 12}.
Unlike the low-dimensional experiment, no upper bound on the clique size is enforced. The maxi-
mum permitted running time for each algorithm in each data set is one hour. Hence, we only report
results from experiments which could be completed within this time. Again, we score DGs using
the BDeu score with an equivalent sample size of α = 1.

The summary of the result obtained in SHD is shown in Table 3, which follows the same
format as Table 2. IC outperforms Greedy in terms of the BDeu score for all the values of l
considered in the experiment. The difference in the score increases as l increases. We would like
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Table 3: This table summarizes the results obtained with the SHD data set. The organization of the
table is equivalent to Table 2. The column l shows the maximum length of the edges allowed for IC.

Greedy IC
n MST w t l w t

4 20466 167
256 -156383 979 3601 8 23351 1389

12 23953 2934

Table 4: This table summarizes the results obtained with the QAR and QOT data sets. The organi-
zation of the table is equivalent to Table 2. The column l shows the maximum length of the edges
allowed for IC.

Greedy IC
n MST w t l w t

4 208 2504 14 174
50 -17784 -94297 190 2092 114 557 8 221 2647 48 520

12 222 2693 82 898
4 761 7364 58 373

100 -34101 -176914 647 5510 3158 3600 8 808 7959 216 1790
12 806 - 551 -
4 2113 18600 186 1162

200 -64673 -337545 561 3185 3601 3601 8 2242 - 1026 -
12 2252 - 2758 -
4 5423 46997 401 2155

400 -122350 -640162 218 1228 3602 3603 8 5859 - 2653 -

to highlight that the difference in the score has increased several orders of magnitude with respect
to low dimensional data sets, which motivates the next experiment.

In order to study the scalability of IC with respect to the number of variables n, for the QAR
and QOT data sets, we have selected uniformly at random n ∈ {50, 100, 200, 400} variables. For
each n value, we have repeated the experiment 5 times.

The summary of the result obtained in QAR and QOT is shown in Table 4, which follows the
same format as Table 2. The scores and running times have been averaged over the 5 runs of the
experiment. IC consistently outperforms Greedy in terms of the score for different n and l values.
As n increases the differences in the improvements with respect to MST among Greedy and IC in-
creases being more than 25 and 40 times bigger for n = 400 with QAR and QOT, respectively. This
strong empirical evidence suggests that the use of IC instead of Greedy is advisable for learning
DMs in high dimensional domains.

5. Reducing the search space

In this section, by using IC, we propose a simple procedure for reducing the search space for exact
methods to tackle Problem 1. Then, we empirically evaluate the proposal comparing the found
structures with the optimal solution to the problem (GUROBI).
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The proposed algorithm is based on a slight modification of the ILP formulation introduced in
Section 3 by imposing equality conditions over the next subset of constraints (3):

For S ∈ S :
∑

T 6=U∈VS

∑
u,v∈T,U

Xu,v|S = dS − 1

By using these equality constraints in ILP formulation we are forcing to add dS − 1 edges due to
separator S, for S ∈ S. Intuitively, we are constructing a maximum weighted tree between the
substantial components of S, for S ∈ S. Thus, we are forcing to add a fixed number of candidate
edges to the DG due to the current set of separators S, even when the score of the obtained DG
decreases. It is important to note, that the set of equality constraints can be satisfied for any DG,
even when we only allow the addition of edges of length l = 1 because every substantial component
of S has at least one vertex in the neighborhood of S, for SinS. In the particular case of l = 1, we
can obtain the solution to the problem by learning a maximum weighted tree in the neighborhood
of S, NS , using the weights {w(u, v|S) : lu,v = 1, {u, v} ∈ ES}, for S ∈ S (Pérez et al., 2016).
This solution can be obtained with a computational complexity of O(

∑
S∈S d

2
S).

Algorithm 2: The forced iterative coarsening (FIC) algorithm
Input: An oracle of a decomposable scoring function w (see Eq. 2), the number of vertices
n, and the number of iterations with the maximal coarsening process, K+.

Optionally: The maximum clique size, K =∞, the maximum lengths of the candidate
edges l =∞, l+ =∞

Output: A DG, G+, where G+ has at least a maximum clique size of min{K+,K}.
G = (V,E) with E = ∅
G+ = LC(w, n;K, l)
for k = 1, ...,K+ do

G = G+

W = {wu,v|S : {u, v} ∈ ES(G), S ∈ S(G), lu,v ≤ l+, |S| < K − 2}
G+ = LearnMaximalCoarser(G,W )

return G+

The pseudo-code of the procedure proposed for reducing the search space of exact methods
(forced iterative coarsening, FIC) is shown in Algorithm 2. FIC starts by learning a DG utilizing
IC, and then it forces the addition of a maximal set of edges by using the ILP formulation with
equality constraints (LearnMaximalCoarser) during K+ iterations. In the pseudo-code, the set
of weights W implicitly indicates to LearnMaximalCoarser the set of candidate edges consid-
ered in Problem 2, which depends on the maximum clique size value K and the maximum length
of the edges l+.

To analyze the behavior of FIC for constraining the search space of exact procedures we com-
pare the obtained DGs with the optimal solutions found by GOBNILP. For this purpose, we have
used the low-dimensional data sets of the experiments in Section 4.1 with the same experimental
conditions. The experiments have been performed with different number of iterations for the max-
imal coarsening process (LearnMaximalCoarser), K+ ∈ {0, 1, 2}, where K+ = 0 represents
the DG obtained with IC. The maximum length of allowed edges in the maximal coarsening is
l+ = 1.

The summary of the results is shown in Table 5. The columns associated to MST, Greedy and
FIC for K+ = 0, 1, 2 show the percentage of edges recovered from the optimal solution (V,E∗)
(i.e., the sensitivity, |E∗ ∩ E|/|E∗|), and the percentage of edges that are not included in the
optimal solution (i.e., the false discovery rate |E \ E∗|/|E|) separated by −. As K+ increases,
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Table 5: This table shows the sensitivity and the false discovery rate of the edges found (separated
by –) for MST, Greedy and FIC compared to the optimal DGs (GUROBI).

FIC, K+

Data Set n MST Greedy 0 1 2

Wine 14 81 - 0 100 - 0 100 - 0 100 - 36 100 - 43
Voting 17 52 - 19 64 - 16 64 - 16 80 - 39 80 - 39

Hepatitis 20 83 - 0 87 - 0 100 - 0 100 - 43 100 - 44
Heart 23 82 - 0 100 - 0 100 - 0 100 - 29 100 - 31
Autos 26 35 - 16 45 - 36 75 - 25 85 - 37 85 - 37
Horse 28 72 - 4 89 - 6 100 - 3 100 - 39 100 - 41
Flag 29 49 - 11 65 - 13 80 - 13 92 - 33 92 - 33

Water1000 32 65 - 10 84 - 16 88 - 16 91 - 46 93 - 48
Alarm 37 66 - 3 93 - 6 100 - 2 100 - 35 100 - 36
Bands 39 44 - 24 52 - 28 65 - 20 80 - 38 80 - 40

the sensitivity of FIC increases. The highest increase in the sensitivity is obtained from K+ = 0
to K+ = 1 for all the data sets. For K+ = 1, it is 90% in 8 out of 10 data sets, and the lowest
value is 80%. A remarkable property of IC (K+ = 0) is its low false discovery rate: lower than
5% in 5 out of 10 data sets and between 10% and 20% in 4 out of 10. It is possible to obtain better
results considering higher values for l+ at the expense of using more computational resources. The
obtained results suggest that FIC can be used for reducing the search space of the exact algorithm
to tackle the problem of learning DMs in high-dimensional domains.

6. Conclusions
This work proposes an efficient algorithm called iterative coarsening (IC) for learning the struc-
ture of decomposable models through the maximization of a given decomposable score, i.e. the
maximum weighted decomposable graph problem (MWDG). The algorithm is a local search algo-
rithm with a huge neighborhood from which the optimal decomposable graph (DG) is obtained by
using Integer Linear Programming (ILP). IC constructs a sequence of coarser DGs iteratively. At
each coarsening step, given a DG, the algorithm identifies the set of edges that can be added given
the current minimal separators, and finds the optimal subset. The algorithm allows to control the
trade off between the quality of the obtained solution and the amount of computational resources
required, and to bound the maximum clique size of the obtained DG.

IC has shown very competitive results for learning decomposable models compared to GOB-
NILP (Studený and Cussens, 2016, 2017), an exact procedure for solving the MWDG problem.
IC outperforms the popular greedy heuristic proposed in (Deshpande et al., 2001), especially in
high-dimensional domains for which the application of GOBNILP is unfeasible. Finally, based on
a slight modification of the ILP formulation used in the coarsening steps of IC, we have proposed a
suitable approach for reducing the search space of exact algorithms in high-dimensional domains.
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