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Abstract

In this work, we propose Sum-Product-Transform Networks (SPTN), an extension of sum-product
networks that uses invertible transformations as additional internal nodes. The type and placement
of transformations determine properties of the resulting SPTN with many interesting special cases.
Importantly, SPTN with Gaussian leaves and affine transformations pose the same inference task
tractable that can be computed efficiently in SPNs. We propose to store and optimize affine
transformations in their SVD decompositions using an efficient parametrization of unitary matrices
by a set of Givens rotations. Last but not least, we demonstrate that G-SPTNs pushes the state-of-
the-art on the density estimation task on used datasets.

1. INTRODUCTION

Modeling and manipulating complex joint probability distributions are central goals in machine learn-
ing. Its importance derives from the fact that probabilistic models can be understood as multi-purpose
tools, allowing them to solve many machine learning tasks using probabilistic inference. However,
recent flexible and expressive techniques for density estimation, such as normalizing flows Rezende
and Mohamed (2015); Kobyzev et al. (2019) and neural auto-regressive density estimators Uria et al.
(2016), lag behind when it comes to performing inference tasks efficiently. Motivated by the absence
of tractable probabilistic inference capabilities, recent work in probabilistic machine learning has
put forth many instances of so-called Probabilistic Circuits (PCs), such as Sum-Product Networks
(SPNs) Poon and Domingos (2011), Probabilistic Sentential Decision Diagrams (PSDDs) Kisa et al.
(2014) and Cutset network Rahman et al. (2014). In contrast to auto-regressive and flow-based
techniques, PCs guarantee that many inference tasks can be computed exactly in time linear in
their representation size. The critical insights for PCs are that: i) high-dimensional probability
distributions can be efficiently represented by composing convex combinations, factorizations, and
tractable input distributions; and that ii) decomposability Darwiche (2003) simplifies many inference
scenarios to tractable inference at the input distributions. Due to their favorable properties, PCs have
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Figure 1: Figures (a-b), respectively, show the density function of an SPN and SPTN overlayed onto
a subset of training data. SPTNs can fit the data more effectively, by exploiting transformations of
the density function and result in a more compact representation, c.f. Figure (c).

been successfully applied for many complex machine learning tasks, e.g. image segmentation Rathke
et al. (2017), semantic mapping Zheng et al. (2018), and image classification Peharz et al. (2019).

To model complex probability distributions, PCs leverage a hierarchy of convex combinations and
factorizations, resulting in a compact representation of an exponentially large mixture distribution.
However, by restricting to compositions of tractable input distributions using convex combinations
and factorizations, PCs cannot exploit geometric properties, such as symmetries, in the density
function and lack a compact representation in low-dimensional scenarios. Thus, potentially resulting
in efficient representations of complex joint probability distributions in various scenarios.

In this paper, we propose to extend PCs to additionally include invertible transformations. In
particular, we introduce Sum-Product-Transformation Networks (SPTNs), which combine SPNs,
i.e. complete and decomposable PCs, with an additional change of variables transformations. The
resulting model class naturally combines tractable computations in normalizing flows with tractable
computations in SPNs. SPTNs are an expressive and flexible probabilistic model that enables ex-
ploitation of the geometry, e.g. symmetries, while facilitating tractable inference scenarios, depending
on the network structure.

To show the merits, consider the flower dataset illustrated in Figure 1, which consists of nine petal
leaves located symmetrically around zero. Naturally, one would like this symmetry to be leveraged
by model, e.g. using rotations around the origin, but this is currently impossible with SPNs. SPTNs
makes this possible. Subfigure (a) shows the density of a fitted SPN model with 145 nodes and
Subfigure (b) that of a fitted SPTN model with just 23 nodes (both models full covariance Gaussian
leaves). The density function of SPTN model fits the petal leaves better. Subfigure (c) charts average
log-likelihood on the testing set with respect to the number of nodes. That thanks to the ability to
exploit symmetry, SPTNs achieve higher log-likelihood with almost order of magnitude fewer nodes.
The experimental evaluation further confirms this.

Our main contributions can be summarised as follows: (i) we introduce an extension of proba-
bilistic circuits (PCs) which interleaves common compositions in PCs with invertible transformations,
resulting in a flexible tractable probabilistic model, which unifies two paradigms: probabilistic
circuits and flow models into a single framework; (ii) we introduce a new affine flow and conjecture
that for many interesting applications an affine transformation is sufficient; (ii) Our affine flow has a
native parametrization in SVD decomposition, which allows efficient inverse and efficient calculation
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of determinant of the Jacobian and its gradients. (iii) we introduce a tractable subclass, G-SPTNs,
consisting of sum and product nodes, Gaussian leaves, and only affine transformations. G-SPTNs
support efficient marginalization and computation of conditionals.

2. BACKGROUND

Probabilistic circuits (PCs) are a large class of tractable probabilistic models that admit many
probabilistic inference tasks in linear time (linear in their representation size).

Definition 1 (Probabilistic Circuit) Given a set of random variables (RVs) X, a Probabilistic
Circuit (PC) is defined as tuple (G, ψ, θ) consisting of a computational graph G = (V,E), which is a
directed acyclic graph (DAG) containing sum, product and leaf nodes, a scope-function ψ : V → 2X

and a set of parameters θ.

In SPNs nodes are as follows:

• leaf node L ∈ V is a (tractable) distribution over its scope ψ(N) parametrized by θL;
• sum node is a weighted sum with non-negative weights of its children,

i.e. S(x) =
∑

N∈ch(S)wS,NN(x) with wS,N ≥ 0, w.l.o.g. we assume
∑

N∈ch(S)wS,N = 1;
• product node is a product of its children , i.e. P(x) =

∏
N∈ch(P)N(xψ(N)), where ch(N)

returns the set of children of node N.

In general, we additionally expect the scope-function to fulfil the following properties: i) for all
internal nodes N ∈ V we have ψ(N) =

⋃
N′∈ch(N) ψ(N

′) and ii) for each root node N, i.e. each node
without parents, we have ψ(N) = X. To guarantee many inference scenarios to be tractable, we
additionally require the scope-function to fulfil that, for each product node P ∈ V the scopes of the
children of P are disjoint, i.e.

⋂
N′∈ch(P) ψ(N

′) = ∅ (decomposability). In this paper, we further as-
sume that, for each sum node S ∈ V that ψ(N) = ψ(N′)∀N,N′ ∈ ch(S) (completeness/smoothness).
Complete/smooth and decomposable PCs are often referred to as Sum-Product Networks (SPNs).

SPNs have recently gained increasing attention, due to their success in various applications,
e.g. Stelzner et al. (2019); Peharz et al. (2019). Inspired by these successes, various flexible extensions
of SPNs have recently been proposed, e.g. SPNs over variational autoencoders (VAEs) Tan and
Peharz (2019), SPNs over Gaussian processes Trapp et al. (2020) and quotient nodes to represent
conditional distributions within the SPN Sharir and Shashua (2018). However, to the best of our
knowledge, SPNs and PCs have not been extended to incorporate invertible transformations as of yet.

3. SUM-PRODUCT- TRANSFORMATION NETWORKS

Sum-Product-Transformation Networks (SPTNs) naturally combine SPNs with normalizing flows.
by extending them with nodes representing a change of variables formulas.

Definition 2 (Sum-Product-Transformation Network) A Sum-Product-Transformation Network
(SPTN) over a set of RV X is an extension of PCs which is recursively defined as:

• An arbitrary (tractable) input distribution is an SPTN (leaf node), i.e. L(x) = p(x | θL).
• A product of SPTNs is an SPTN (product node), i.e. P(x) =

∏
N∈ch(P)N(xψ(N)).

• A convex combination of SPTNs is an SPTN (sum node), i.e. S(x) =
∑

N∈ch(S)wS,NN(x) with
wS,N ≥ 0.
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• An invertible transformation of an SPTN is an SPTN (transformation node), i.e. T(N(x)) =
N(g(x)) det |Jg(x)| where g(x) is a bijection and Jg(x) denotes the Jacobian of the transfor-
mation.

In the course of this paper, we will generally assume SPTNs to be complete/smooth and de-
composable. Note that those properties are akin to completeness and decomposability in SPNs, as
transformation nodes (T) have only a single child and, thus, ψ(T) = ψ(N)∀N ∈ ch(T).

3.1 REALIZATION OF TRANSFORMATION NODES

To calculate the density of a transformed random variable z = f(x) constraints f(x) to be invertible
(bijection) and for practical reasons the determinant of the Jacobian of f(x) has to be efficiently
calculated. Recently introduced normalizing flows Rezende and Mohamed (2015) (see Papamakarios
et al. (2019) for an overview) achieve these by imposing a special structure on f or by relying on
properties of ODE equations. Although these approaches can be used in the proposed SPTN, the
tractability of marginalization would be lost. We, therefore, extend this family by introducing a
variant of dense layers in feed-forward networks, which allows efficient inversion, computation of
the Jacobian, and in a special case does not destroy the tractability.

Recall that feed-forward neural networks implement a function f(x) = φ(Wx+ b), where W
is a weight matrix, b is a bias term, and φ(x) is a (non-)linear transformation. We further require
W ∈ Rd,d to have full rank, as it has to be invertible, and b ∈ Rd. Furthermore, singular value
decomposition (SVD) tells that W can be expressed as W = UDV>, where U and V are unitary
matrices and D is a diagonal matrix. SVD decomposition allows for a convenient calculation of the
inverse of f as f−1(z) = VD−1U>(φ−1(z) − b) , and also simplifies calculation of Jacobian as
log
(∣∣∣∂f∂x ∣∣∣) =

∑d
i=1 log |dii|+

∑d
i=1 log

∣∣∣∂φi∂oi

∣∣∣ , where o = UDV>x+ b. Unfortunately, the SVD
decomposition is generally expensive to calculate to be used directly.

We propose to keep W in SVD decomposition and optimize directly in it, which eliminates the
expensive decomposition. This is possible by parametrizing group of unitary matrices U by θ ∈ Θ
such that (i) U(θ) ∈ Θ is a unitary square matrix for arbitrary θ ∈ Θ and (ii) for every unitary matrix
U′ there exists θ′Θ such that U′ = U(θ′); and (iii) a gradient ∂U(θ)

∂θ exists and can be computed
efficiently. Discussion of two possible parametrizations are in the next section.

The type of Transformation nodes and their placements in the computational graph has an impact
on the tractability of the resulting model. Since they realize just transformation of variables, they can
be shared within the model, which allows a compact representations (recall the Flower dataset in
Introduction). We now discuss a few important special cases:

Affine Gaussian SPTN (G-SPTN): SPTNs with Gaussian leaves and arbitrarily placed affine
transformations can be transformed into an exponentially large mixture of Gaussians, c.f. Theorem 3.
This has an important consequence as marginalization is now analytically tractable, which arises
from the fact that affine-transformed Gaussian distributions remain Gaussian.

Flow models: Any SPTN consisting only of transformation and product nodes is a flow Papamakar-
ios et al. (2019). Note, however, that marginalization and computation of moments are generally not
tractable.
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SPN with Flexible Leaves: An SPTN with transformations only just above the leaf nodes extends
the set of possible leaf node distributions. Since the transformation is deferred only to leaves, in the
univariate case, tractability is generally preserved, as in Tan and Peharz (2019).

SPTN allows exploiting tractability in certain parts of the model while sacrificing it in favor of
complex transformations in others, which provides flexibility to adjust models according to needs.

Theorem 3 Inference tasks that are tractable in SPNs are also tractable in SPTN with affine
transformation nodes and Gaussian distribution at the leaves (called G-SPTN).

Proof Let the SPTN be composed of sum, product, affine transformation, and Gaussian leaf nodes.
Further, let us assume that all µ· are vectors and all Σ· are matrices of appropriate dimensions.

Then, (i) An affine transformation of a Gaussian distributed vector is Gaussian. Specifically, let
x ∼ N (µx,Σx). Then y ∼ N (µy,Σy) with µy = Wµx + b and Σy =WΣxW

>.
(ii) The product distribution of Gaussian distributed vectors is Gaussian. Let x1 ∼ N (µ1,Σ1)

and x2 ∼ N (µ2,Σ2). Then, [
x1
x2

]
∼ N

([
µ1
µ2

]
,

[
Σ1 0
0 Σ2

])
. (1)

(iii) The density function of any SPN can be represented by an exponentially large mixture. As
shown in Zhao et al. (2016); Trapp et al. (2019), any SPN can be represented by an exponentially
large mixture distribution over so-called induced trees. The same applies to SPTNs as transformation
nodes have only a single child, i.e., if a transformation node is included in the induced tree its child
and the respective edge will also be included.

By applying (iii), we can express SPTN as a mixture of induced trees. Since every induced
tree has Gaussian distributions on leaves and its inner nodes are only transformation and product
nodes, by recursive application of (i) and (ii) it can be equivalently represented by a single Gaussian
distributions. Thus G-SPTN can be expressed as a mixture of Gaussians, which are tractable.

Corollary 4 Marginal and conditional distributions of G-SPTN have the same analytical properties
as SPNs using Gaussian distributions at the leaves with a block-diagonal covariance structure.

NODE SHARING SPTNs allow reducing the number of parameters via node sharing. Since the
introduced transformation is just a new type of node, it can be shared in the computational graph just
like the sum and product nodes. This is illustrated in schematics, such as in Figure 2.

4. PARAMETERIZING UNITARY MATRICES

We now discuss methods to parametrize groups of unitary matrices and then discuss the pros and
cons. 1

1. Both methods are implemented in a publicly available package https://github.com/pevnak/Unitary.jl.
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4.1 GIVENS PARAMETRIZATION

The first parametrization relies on a set of Givens rotations. Let us assume a Givens rotation(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
in R2×2, parametrized by θ ∈ R. This matrix is unitary for every value of θ and

vice-versa for every unitary matrix U ∈ R2,2 with positive determinant there exists θ such that
U = U(θ). As shown by Polcari (2014), for any d = 2k, k > 1 a group of unitary matrices in the
space Rd,d is parametrized by a set of Givens transformations. We generalize this to matrices of
arbitrary dimension d > 1 as follows.

Theorem 5 Let U ∈ Rd,d, d > 1 be a unitary matrix and let Gr,s(θ) denotes an almost diagonal
matrix, with a Givens rotation on r and s columns.2 Then there exist {(Gr,s(θr,s))|1 ≤ r < s ≤
d, θi ∈ R}, such that U =

∏d,d
1<r<s Gr,s(θr,s) .

Proof Proof is in the supplementary at https://arxiv.org/abs/2005.01297

The corollary of this theorem is that
∏d,d

1<r<s Gr,s(θr,s), parametrizes a whole group of positive
definite unitary matrices in Rd,d using 1

2d(d− 1) parameters. The parametrization is not unique due
to periodicity of goniometric functions and U(0) is equal to identity.

4.2 HOUSEHOLDER PARAMETERIZATION

The second parametrization relies on the representation of unitary matrix U ∈ Rd,d as a product
of at most d Householder transformations Urı́as (2010), i.e. U = PdPd−1 . . .P1, where each Pi

is defined by vector yi as Pi = I − tiyiy>i , for ti = 2/ ‖yi‖2. By using d reflections Pi we can
effectively generate a whole group of unitary matrices. This construction over-parametrizes the
group, as it uses d2 parameters for a group with only 1

2d(d− 1) degrees of freedom.

4.3 COMPUTATIONAL COMPLEXITY

The computational complexity of Givens parametrization is 2d(d− 1) multiplications and d(d− 1)
additions while that of Householders is 2d2 multiplications and the same number of additions.
In both cases, the backpropagation is three times more expensive if intermediate results of sub-
transformations are not stored but computed on the fly as has been proposed in Gomez et al. (2017).

Because Givens parametrization has lower computational complexity and the identity coincides
with all parameters being zero, we prefer it, yet both are compared in the experimental section.

5. RELATED WORK

The proposed approach combines mixture models, probabilistic circuits, flow models, and repre-
sentation of unitary matrices. Although each of these topics has a rich literature, the proposed
combination is unique, and only the most relevant works combining the transformation of variables
and mixtures/PCs are reviewed below.

Sum-Product Networks The works by Tan and Peharz (2019) and Trapp et al. (2020) can be
understood as a flexible extension of SPNs that uses transformation in leave nodes. In particular,

2. For example G1,3(θ) in R4,4 has the form G1,3(θ) =

( cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1

)
.
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(a) Sharing sum and transforma-
tion nodes

+
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p1(x)
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(b) Sharing only transformation
nodes
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Figure 2: Different modes of sharing nodes (parameters) in SPTNs. The model in Subfigure (a)
shares sum nodes ⊕ and transformation nodes {gi}n2

i=1, which means that all {fi}n1
i=1 have the same

child node⊕ and {gi}n2
i=1 thereof; that in Subfigure (b) shares only transformation nodes {gi}n2

i=1; and
finally that in Subfigure (c) does not share any node except leaf, which does not have any parameters.

Tan and Peharz (2019) proposed to combine SPNs with variational autoencoders (VAE) on leaves,
while Trapp et al. (2020) proposed to extend SPNs with Gaussian processes at leaves. However, both
approaches do not exploit invertible transformations as internal nodes and are therefore conceptually
different from our proposal.

Mixture models The use of mixture models on the latent layer of variational autoencoder Dilok-
thanakul et al. (2016) may be understood as a transformation node as the root followed by a summing
node. Mixtures of flow models have been recently suggested in Papamakarios et al. (2019) using a
shallow structure but without any experimental evidence. Further, optimal transport has been used
within Gaussian mixture models in Chen et al. (2018).

Unitary matrices Unitary matrices have been proposed for autoencoders Tomczak and Welling
(2016), convolution layers Putzky and Welling (2019), and for recurrent neural networks Arjovsky
et al. (2016), to the best of our knowledge, they have not been applied to invertible flows and/or
combined with SVD.

6. EXPERIMENTS

We have compared G-SPTNs to the prior art, specifically to SPNs, GMMs, and Masked Auto-
regressive Flows Papamakarios et al. (2017) (MAF), on the task of density estimation, which is
the usual benchmark problem for these models Poon and Domingos (2011); Peharz et al. (2019).
Experiments were carried out on 21 real-valued problems designed for anomaly detection Pevný
(2016). They were originally derived from the UCI database for evaluation of anomaly detectors,
such that the complexity of the problem is maximized. All experiments were repeated five times with
different random division of data from the “normal” / majority class into training (64%), validation
(16%), and testing sets (20%).
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6.1 ESTIMATING PARAMETERS

Since SPTNs are a strict superset of SPNs, which are a strict superset of GMMs, we have used the
same method to estimate the parameters of all models. In particular, we used stochastic gradient
descend to maximize the log-likelihood as done in Peharz et al. (2019). Since parameters of
transformation nodes in SPTNs are differentiable, we can apply automatic differentiation to learn all
parameters of SPTNs. Specifically, we have used Adam Kingma and Ba (2014) with a batchsize of
100 in all experiments.

6.2 COMPARED MODELS

Since advanced structure learning in SPTN is not yet available, we have used a random sampling of
architectures to learn both SPNs and SPTNs, akin to Peharz et al. (2019); Rashwan et al. (2016). The
very same references also showed that randomly generated architectures are competitive to those
found by structure learning algorithms. The best structure was selected on the validation set. Unless
said otherwise, the experimental setting is as described below.

Gaussian Mixture Model The only free architectural parameter is the number of components.
We trained mixture models with n ∈ {2, 4, 8, 16, . . . , 512} components and full covariance Gaussian
distributions implemented using an affine transformation before each leaf node with N(0, I).

Sum-Product network In case of SPNs, we have varied number of children of each sum node,
n ∈ {2, 4, 8, 16, . . . , 128}, the number of partitions under each product node, b ∈ {1, 2, 4, 8, 16, 32},
and the number of layers, l ∈ {1, 2, 3, 4, 5}, where by layer we mean a combination of a sum and
product node. Similarly to GMMs, full covariance Gaussian distributions were implemented using
an affine transformation before each leaf node with N(0, I).

Affine Gaussian Sum-Product-Transform network To decrease the degrees of freedom in
architecture search for SPTNs, we omitted product nodes in our architecture search. The sampled
architectures had l ∈ {1, 2, 3}, layers (a layer is the combination of a sum node followed by an affine
transformation node) and the number of children under each sum nodes, n ∈ {2, 4, 8, 16}. We also
distinguished between architectures with {no sharing, sharing of transformation nodes, sharing of
sum, and transformation nodes} as outlined in Figure 2. Leaf nodes were fixed to N(0, I).

Masked auto-regressive flows In the case of MAFs, we performed a similar random search
for the architecture as for G-SPTNs. We randomly sampled the number of masked auto-regressive
layers Germain et al. (2015) l ∈ {5, 10, 20}, the number of layers in these layersm ∈ {1, 2, 3, 4}, and
the number of neurons in each layer k ∈ {10, 20, 40, 80}. The non-linearity was fixed to tanh, as was
used in the reference implementation https://github.com/gpapamak/maf. Parameters of
MAFs have been learned as described above, by maximizing the log-likelihood Papamakarios et al.
(2017). Similarly to all the above models, we performed 10,000 optimization steps.

SPTNs, SPNs, and GMMs were implemented using the same library available at https:
//github.com/pevnak/SumProductTransform.jl designed to implement arbitrarily
DAGs containing sum, product, transformation nodes, and leaves represented by their density
functions. All algorithms were trained for 10,000 iterations. In the case of (G)-SPTN and MAF,
we restricted the random search to 100 architectures or 3 days of total CPU time per problem and
repetition of the problem.
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6.3 EXPERIMENTAL RESULTS

dataset G-SPTN SPN GMM MAF
breast-cancer-wisconsin -0.07 -20.55 -6.05 -1874.29
cardiotocography 45.91 11.06 10.95 -598.63
magic-telescope -4.12 -5.78 -4.58 -3.44
pendigits -1.16 -6.51 -2.3 1.21
pima-indians -7.35 -8.18 -8.7 -68.81
wall-following-robot -12.59 -4.45 -7.9 -21.08
waveform-1 -23.87 -23.85 -23.9 -29.56
waveform-2 -23.91 -23.85 -23.89 -25.19
yeast 8.22 -0.62 -3.17 0.28
ecoli 0.66 -3.21 -3.79 -3.93
ionosphere -11.75 -22.15 -12.69 -3457.46
iris -1.79 -2.28 -1.87 -53.97
miniboone 162.46 73.75 43.53 -965573.45
page-blocks 12.46 2.58 3.75 5.67
parkinsons -3.55 -19.68 -10.13 -2931.57
sonar -74.8 -74.88 -84.88 -18991.33
statlog-satimage 4.6 -9.65 2.52 4.1
statlog-segment 34.39 9.63 11.07 -191.06
statlog-vehicle -2.76 -11.73 -5.38 -106.13
synthetic-control-chart -39.51 -43.92 -40.21 -9433.77
wine -13.61 -13.39 -13.92 -3074.69
rank 1.38 2.57 2.62 3.43

Table 1: Average log-likelihood of the best mod-
els (higher is better) on the test set. Best models
were selected according to the performance on the
validation set. The best model is in bold blue. The
average rank is calculated according to the ranking
of each model on each problem (lower is better).

Table 1 shows the average test log-likelihood
of G-SPTNs, SPNs, GMMs, and MAFs cal-
culated as 1

n

∑n
i=1 log p(xi). Reported values

are macro averages over five repetitions of the
experiment. On 15 out of 21 datasets, G-
SPTNs obtain the highest log-likelihood, and
in some cases like miniboone, statlog-segment,
and cardiotocography the difference is signif-
icant. Contrary, the difference of SPTN to
the best model in Waveforms, Pendigits
(less than 0.1) and Wine is negligible with
the only significant difference being only on
wall-following-robot. We conjecture
this to be caused by the omission of product
nodes in our architecture search. The poor per-
formance of MAFs is caused by over-fitting,
which can be seen from a high log-likelihood on
training data (Table 4 in supplementary).3

Influence of parametrization of Unitary
matrices Although both Givens and House-
holder parametrizations generate the whole
group of Unitary matrices, they might influence
learning, for example, due to overparameteriza-
tion in Householder or more natural represen-
tation of identity in Givens. We have therefore
executed the above experiments with G-SPTN with unitary matrices in affine Transformation nodes
realized by both parametrizations. There are certainly differences between them, but across datasets,
they perform the same, since Givens was better on 10 problems while Householder on 11. Complete
results are in Table 2 in the supplementary.

Influence of node sharing Since SPTN allows flexible sharing of nodes within the network,
we have compared no sharing, sharing transformation nodes, and sharing sum and transformation
nodes outlined in Figure 2. Networks sharing sum and transformation nodes were generally inferior
being best on six problems, whereas two other modes of sharing were best on nine problems. We
conjecture that sharing only transformation nodes greatly improves flexibility for a small increase in
the number of parameters. Complete results are in Table 3 in the supplementary.

Influence of (non)-linearity Since Transformation nodes in SPTN permit non-linear functions
after the affine transformation, we were curious to see if non-linear transformations improve the fit
(the average likelihood). We have therefore compared SPTN with linear, leaky-relu Maas et al. (2013),
and selu Klambauer et al. (2017) transformations applied element-wise after affine transformation in
transformation nodes. According to average log-likelihood on the testing set, G-SPTN with linear
functions was the best on 19 out of 21 problems, which implies affine transformations (G-SPTNs)
are sufficient for these problems. Complete results are in Table 1 in the supplementary.

3. Full version is available at https://arxiv.org/abs/2005.01297.
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7. CONCLUSION

In this paper, we suggest extending the compositions used in Probabilistic Circuits to additionally
include invertible transformations. Within this new class, called Sum-Product-Transform Networks
(SPTN), two frameworks, Probabilistic Circuits, and Flow models unite and each becomes a special
case. Since models in SPTNs, in general, do not support efficient marginalization and conditioning,
an important sub-class (called G-SPTN) for which these operations are efficient was identified.
G-SPTN restricts transformations to be affine and leaf nodes to be Gaussian distributions. The affine
transformations keep their projection matrices in SVD forms, which is facilitated by parametrizing
groups of unitary matrices, which is treated in detail.

The proposed approach was experimentally compared to Sum-Product Networks (SPNs), Gaus-
sian mixture models, and Masked autoregressive flows on a corpus of 21 publicly available problems.
Because SPTNs unify flow models and SPNs, it should not be surprising that the results confirm their
good modeling properties. But importantly, this good performance was achieved by G-SPTN, which
still features efficient marginalization and conditioning.

Despite good experimental results, there remain several open problems some of which we plan
to address in the future. Specifically, a major challenge in learning SPNs is structure learning, which
has inspired many sophisticated techniques, e.g. Vergari et al. (2015); Peharz et al. (2019); Trapp
et al. (2019). Learning structures for SPTNs is even more challenging and we hope that some of
the existing techniques for SPNs can be extended to SPTNs in the future. Moreover, we want to
explore more efficient parameter learning for SPTN, as done in the SPN literature, and conduct a
more in-depth investigation of the capacities of SPTNs for anomaly detection.
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