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Abstract
Sum-Product Networks (SPNs) can be seen as deep mixture models that have demonstrated effi-
cient and tractable inference properties. In this context, graph and parameters learning have been
deeply studied but the standard approaches do not apply to interval censored data. In this paper, we
derive an approach for learning SPN parameters based on maximum likelihood using Expectation-
Maximization (EM) in the context of interval censored data. Assuming the graph structure known,
our algorithm makes possible to learn Gaussian leaves parameters of SPNs with right, left or inter-
val censored data. We show that our EM algorithm for incomplete data outperforms other strategies
such as the midpoint for censored intervals or dropping incomplete values.

Keywords: Sum-Product Network; EM algorithm; Interval censoring; Maximum likelihood

1. Introduction

Sum-Product Networks (SPNs), introduced by Poon and Domingos (2011) are a recent type of deep
probabilistic models that are able to represent high dimensional distributions and are attractive due
to their inference properties. Contrary to other probabilistic models such as the Bayesian networks
(BNs) or the Markov Networks (MNs), SPNs can perform exact and tractable inference in linear
time of the Network. Moreover Zhao et al. (2015) have shown that it is possible to convert SPNs to
BNs or MNs and vice-versa. One can think of SPNs as deep neural networks where the non linearity
of activation functions are replaced by product nodes. However SPNs own a specific semantic in
the sense they can encode a joint probability distribution over a set of random variables and can be
seen as a deep and hierarchical mixture model (Martens and Medabalimi, 2014).

Many algorithms have been proposed to estimate parameters of SPNs such as discriminative training
of SPNs (Gens and Domingos, 2012), Expectation-Maximization (EM) algorithm (Peharz, 2015;
Desana and Schnörr, 2016), Bayesian Moment Matching (Rashwan et al., 2016) or Concave-Convex
procedure (Zhao et al., 2016). Moreover, Trapp et al. (2019b) have proposed a Bayesian approach to
learn both graph and parameters at the same time and which deal with missing data. Finally, Peharz
et al. (2016) have suggested the idea of using EM algorithm to deal with with missing data. However
none of those approaches can deal with interval censored data. The aim of this paper is to develop
a new method designed to learn the parameters from a fixed SPN graph in the context of interval
censoring. Our approach is based on maximum likelihood and hierarchical mixture representation
(see Desana and Schnörr, 2016).
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The paper is constructed as follows. In Section 2 we will review SPN definition and properties.
Then, Section 3 explains the hierarchical mixture model representation of SPNs. In Section 4, the
focus is on the Gaussian truncated leaves of SPNs designed to take into account incomplete data.
Then we derive an EM algorithm for SPNs in the context of incomplete data in Section 5. Section
6 demonstrates effectiveness of this algorithm to learn parameters of SPNs in the context of interval
censored data on three real datasets.

2. Background

Considering X a set of random variables which can be discrete or continuous, Sum-Product Net-
works denoted S have been introduced by Poon and Domingos (2011) and can be defined as rooted
Directed Acyclic Graphs (DAGs), G(V,E) with distributions over random variables in X as leaves
and sum and product nodes as internal nodes. We will write ϕq(Xq) the probability densities mea-
sure of a leave q on the random variablesXq ⊂ X . For any node q, its children are denoted i ∈ ch(q)
and the density of a node Sq can be defined recursively as:

Sq(Xq) =


ϕq(Xq) if q is a leaf∏
i∈ch(q) Si(Xq) if q is product node∑
i∈ch(q)w

q
iSi(Xq) if q is a sum node

weights wqi of the SPN, are strictly positive and we will said that a SPN is normalised if all weights
of a sum node sum up to 1 i.e :

∑
i∈ch(q)w

q
i = 1 . In the following, we will only consider normalised

SPNs. We write sc(q) the scope of a node q which is the set of all random variables in the leaves of
the sub-SPN rooted at node q. Under the two following conditions (Poon and Domingos, 2011) on
product and sum nodes, SPNs are able to encode a joint probability density over X and is said to be
valid.

Definition 1 (Decomposability) A product node q of S is said to be decomposable iff :

∀i, i′ ∈ ch(q), i 6= i′ ⇒ sc(i) ∩ sc(i′) = ∅

If all product node of S are decomposable, then the SPN S is said to be decomposable.

Definition 2 (Completeness) We say that a sum node q of S is complete iff :

∀i, i′ ∈ ch(q) sc(i) = sc(i′)

If all sum nodes of S are complete, then the SPN S is said to be complete.

Forward and backward passes in SPNs : We can evaluate the probability of an evidence x
which is a realisation of X . Using forward pass or bottom-up evaluation for every node q, we will
denote Sq(x) the evaluation of x at node q. Moreover, we introduce the backward pass of S at node
q, the formal partial derivative ∂S

∂Sq
which can be computed in linear size of the network like forward

pass (Gens and Domingos, 2012). Forward and backward passes will be of capital importance in
the derivation of the EM algorithm in SPNs.
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Parameters of the SPN S : Let Sum(S) be the set of all sum nodes of S. In this paper, we
attempt to estimate the parameters of S which are all the sum node weights included in W =
{wqi |q ∈ Sum(S), i ∈ ch(q)} and all the leaves parameters denoted as θ = {θ` |` ∈ L(S} with
L(S) the set of all leaves of the SPN. Finally, the evaluation of the density at node q given all
weights and leaves parameters will be written as Sq(x|W, θ) for a node q and S(x|W, θ) for the root
node of S.

3. SPNs as Deep Mixture Models

SPNs can be seen as mixture models (Dennis and Ventura, 2015; Desana and Schnörr, 2016). The
notion of membership to a class in classic mixture models is replaced by the notion of membership
to an induced tree. These induced trees will be denoted as c ∈ C with C the set of all induced trees.
They can be constructed as follows according to Desana and Schnörr (2016):

Definition 3 An induced tree c ∈ C is defining starting from the root of S as follows:

• Include the root of S in c

• If q is a product node, include in c all children i ∈ ch(q). Continue with all children.

• If q is a sum node, include only one child i ∈ ch(q). Continue with the only chosen child.

• Then if q is a leaf, include it in c.

Figure 1: An induced tree in red.

An induced tree is represented in Fig. 1. Considering i ∈ ch(q) and q ∈ Sum(c), we denote E(c)
the set of all edges of c starting from a sum node q to one of its child i. Then the probability of
belonging to an induced tree c is:

p(c|W ) =
∏

(q,i)∈E(c)

wqi

Considering the set of all leaves included in c, L(c) the likelihood of x at the root given an induced
tree c is the product of the leaves evaluations included in L(c).

p(x|c, θ) =
∏

`∈L(c)

ϕ`(x|θ`)
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In Fig. 1, withX = (X1, X2) we get for the induced c in red : p(c|W ) = w0
1w

3
7w

4
10 and p(x|θ, c) =

ϕ1(X1)ϕ4(X2)

The fundamental property of induced trees (Dennis and Ventura, 2015) is that summing out all the
induced trees, we obtain the likelihood at the root of the SPN S(x|θ).

Theorem 1 Dennis and Ventura (2015)

S(x|θ,W ) =
∑
c∈C

p(x, c|θ) =
∑
c∈C

p(c)p(x|c, θ) =
∑
c∈C

∏
(q,i)∈E(c)

wqi
∏

`∈L(c)

ϕl(x|θ`) (1)

This property allows us to use induced trees as latent classes to estimate parameters of the SPN
using the EM algorithm.

4. Gaussian Incomplete Data

One of the characteristics of real data is the existence of incomplete observations. Indeed, data are
often only partially collected which could lead censorship and truncation. For all j in [[1;n]], Xj =
(Xj,1, . . . , Xj,N ) is not observed but is known to lie into the interval [aj,1, bj,1]× . . .× [aj,n, bj,N ]
written with a slide abuse of notation [aj , bj ] with aj , bj ∈ RN . Four types of censoring can occur.
For ` in [[1;N ]]:

• If −∞ < aj,` < bj,` < ∞, then Xj,l is censored by interval that is, Xj,l ∈ [aj,l, bj,l] with
probability one.

• If−∞ = aj,` < bj,` <∞, thenXj,l is left-censored, that isXj,l ∈]−∞, bj,l] with probability
one.

• If−∞ < aj,` < bj,` =∞, thenXj,l is right-censored, that isXj,l ∈ [aj,l,∞[ with probability
one.

• If aj,` = −∞ and bj,` = +∞ the data provide no indication on Xj,`.

In the following we assume Xj to be a Gaussian vector and we assume non informative interval
censoring in the same way as in Zhang et al. (2005). One can easily derive the Gaussian truncated
density in one dimension. Considering one random variable Xj,`, then for xj,` 6 bj,` :

P (Xj,` 6 xj,`|aj,` 6 Xj,` 6 bj,`) =
P (aj,` 6 Xj,` 6 xj,`)

P (aj,` 6 Xj,` 6 bj,`)
=

Φ`(xj,`)− Φ`(aj,`)

Φ`(bj,`)− Φ`(aj,`)

With Φ` the cumulative distribution function of the random variable Xj . For xj,` > bj,`, this
probability is one. In the Gaussian case, let ϕ` the Gaussian density of leave `, then
ϕ`(x) = 1

σ`
√
2π

exp
(
− 1

2σ2
`
(x− µ`)2

)
.The density of the truncated variable X is of the form :

ϕ`(xj,`|aj,` 6 Xj,` 6 bj,`) =
ϕ`(xj,`)

Φ`(bj,`)− Φ`(aj,`)
1{xj,` ∈ [aj,`, bj,`]}

Integrating this density, one can compute the different moments of univariate truncated Gaussian
density which will be useful for the EM updates in the next section. The expectation mj,` and
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variance Vj,` for observation j and leaf ` in the case of finite interval censoring are :

mj,` = E[Xj,`|aj,` 6 Xj,` 6 bj,`] = µ` +
ϕ`(aj,`)− ϕ`(bj,`)
Φ`(bj,`)− Φ`(aj,`)

Vj,` = V [Xj,`|aj,` 6 Xj,` 6 bj,`] = σ2 +
(aj,` − µ`)ϕ`(aj,`)− (bj,` − µ`)ϕ`(bj,`)

Φ`(bj,`)− Φ`(aj,`)
−
(ϕ`(aj,`)− ϕ`(bj,`)

Φ`(bj,`)− Φ`(aj,`)

)2
In the case of incomplete data, we still have forward and backward pass which are well defined and
we will write these quantities Sq([aj , bj ]) and ∂S

∂Sq
([aj , bj ]). Moreover, for multivariate truncated

Gaussian probability measure, there are no simple form of moments and numerical approximation
are often used to compute mean and variance (BG and Wilhelm, 2009). The aim of the following
section is to learn parameters of truncated Gaussian leaves in SPNs.

5. EM for Incomplete Data

In this section, we will derive a version of the Expectation-Maximisation algorithm for SPNs and
apply it to incomplete data. EM algorithm apply in SPNs learning has shown interesting results,
outperforming direct optimization method such as Stochastic Gradient Descent (Rashwan et al.,
2016) The EM algorithm (Dempster et al., 1977) is an iterative algorithm especially effective for
maximizing the likelihood in the context of hidden variables. In our example, there are two types
of hidden variables: the membership to an inducted tree c is not observed and some observations
Xjl are partially or not observed. At each iteration of EM, given the current update of the parameter
Wold, θold, we aim at maximizing a surrogate function Q with respect to W and θ of the form :

Q(W, θ|Wold, θold) =

n∑
j=1

∑
c∈C

∫
[aj ,bj ]

p(xj , c|aj , bj ,Wold, θold) log p(xj , c, aj , bj |W, θ)dxj , (2)

where the integral is N-multidimensional. The joint probability of latent class and observed vari-
ables can be expressed according to Theorem 1.

p(xj , c, aj , bj |θ,W ) = p(xj |c, aj , bj , θ)p(aj , bj |W, θ, c)p(c|W ) ∝
∏

(q,i)∈E(c)

wqi
∏

`∈L(c)

ϕ`(xj |aj , bj , θ)

The posterior of latent classes given parameters of the previous iteration can be decomposed into :

p(xj , c|aj , bj ,Wold, θold) = p(xj |c, aj , bj ,Wold, θold)p(c|aj , bj ,Wold, θold)

= ηcj
∏

`∈L(c)

ϕl(xj |aj , bj , θold),

with ηcj = p(c|aj , bj ,Wold, θold) the probability of membership to an induced tree c given the old
parameter which is a constant for the new parameters of interest. After some computation and
removing notations of old parameters which are constants for W and θ (See Annex B), Q can be
decomposed into two terms : one depending on W called QW (W ) and another term depending
only on θ denoted Qθ(θ). This decomposition allows to separate the maximization with respect to
W and θ.

Q(W, θ|Wold, θold) = QW (W ) +Qθ(θ) (3)
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5.1 Weights Updates

In this part, the parameter of interest is W and we are looking for W ∗ = arg maxW QW (W ) with
(See B.1):

QW (W ) =
∑

q∈Sum(S)

∑
i∈ch(q)

βqi logwqi and βqi =
n∑
j=1

wqi,old
1

S([aj , bj ])

∂S

∂Sq
([aj , bj ])Si([aj , bj ])

The quantity βqi is a constant with respect to W and only depends on the weights of the previous
iteration, forward, backward passes which are computed in linear time of the network. Carrying out
the optimization under constraints : ∀q ∈ Sum(S),

∑
i∈ch(q)w

q
i = 1 we obtain :

wqi =
βqi∑

i′∈ch(q) β
q
i′

(4)

This is exactly the same form of updates for weights updates as Peharz (2015); Desana and Schnörr
(2016); Zhao et al. (2016) for complete data (see Desana and Schnörr, 2016, for more details).
The only difference with complete data is that we do not evaluate forward and backward passes in
a single point but for the interval [aj , bj ]. The main difference between updates of complete and
incomplete data lies in the updates of leaves.

5.2 Leaves Updates

Simplifying the quasi likelihood (see B.2), we obtain a function which only depends on θ of the
form :

Qθ(θ) =
n∑
j=1

( ∑
`∈L(S)

αj,`Ij,`(θ)

)
with αj,` =

1

S([aj , bj ])

∂S

∂S`
([aj , bj ])S`([aj , bj ])

and Ij,`(θ) =

∫ bj,`

aj,`

ϕ`(xj,`|aj,`, bj,`) logϕ`(xj,`|θ, aj,`, bj,`)dxj,`

Finally after some computation (see B.2), we derive the following updates of mean and variance of
Gaussian leaves:

µ` =

∑n
j=1 αj,lmj,`∑n
j=1 αj,`

σ2` =

∑n
j=1 αj,`

(
Vj,` + (mj,` − µ`)2

)∑n
j=1 αj,`

(5)

They are a function of forward, backward passes, mean and variance of truncated density mj,` and
Vj,`. For Gaussian leaves, we obtain a closed form of updates under the context of missing data.
Peharz et al. (2016) has obtained similar updates with a different approach. Simple expressions for
other parametric leaves could be derived such as truncated exponential distribution but there exists
no closed form for truncated binary variables for example. In this case, approximate numerical
optimization would be necessary for this type of variables in the M step of the EM algorithm. In the
following experimentation, we will focus only on Gaussian leaves but extension to other truncated
parametric leaves could also be possible. Algorithm 1 summarizes all steps of the EM algorithm for
SPNs in the context of incomplete data.
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Algorithm 1: EM for a Gaussian SPN with incomplete data
Input: A fixed SPN with its graph G, incomplete data [aj , bj ], and all forward Sq([aj , bj ])

and backward passes ∂S
∂Sq

([aj , bj ]).
1 for q ∈ Sum(S)and i ∈ ch(q) do
2 βqi = wqi

∑n
j=1

1
S([aj ,bj ])

∂S
∂Sq

([aj , bj ]))Si([aj , bj ])

3 wqi =
βq
i∑

i∈ch(q) β
q
i

4 for each leaf ` do
5 αj,` ← 1

S(x)
∂S
∂Sq

([aj , bj ])S`([aj , bj ])

6 µ` =
∑n

j=1 αj,lmj,`∑n
j=1 αj,`

7 σ2` =
∑n

j=1 αj,`

(
Vj,`+(mj,`−µ`)2

)∑n
j=1 αj,`

6. Evaluation and Results

In this section we evaluate the performance of our estimation method on simulated data. The simula-
tions are based on real data which are sampled (with replacement) and modified in order to generate
a mixture of exact, interval-censored and missing data. Evaluation of the estimation parameters is
then performed by comparing our estimates to the one based on the complete dataset.

Protocol: Starting from the complete dataset, a graph structure is learned using the LearnSPN al-
gorithm (Gens and Pedro, 2013). In what follows, parameters estimation will be performed based on
this structure. Then, we generate n samples by resampling with replacement the complete dataset.

For each of these samples, a proportion of interval-censored data is created given an observation
xj,`. We simulate the length of the censoring interval L ∼ U [0, 5] and the position of the observa-
tion in the interval t ∼ U [0, 1]. Then the lower and upper bounds of the interval are : aj,` = xj,`−tL
and bj,` = xj,` + (1 − t)L. For left censoring (right censoring) we replace the left bound by −∞
(respectively by +∞). A proportion of missing data is also created by simply randomly removing
some observations. As a result, two scenarios are considered:

• In the first simulation setting all the observations are interval-censored. In this setting, we
will compare our estimator to the mid-point estimator which consists in replacing intervals
by their midpoint and obtain exact data. Then the standard EM approach for SPNs is applied
(Desana and Schnörr, 2016).

• The second simulation setting consists of a mixture of 5% of missing data, 5% of left censored
data, 5% right censored data and 5% interval censored data. Two competitors are studied in
this setting. The first one uses the DROP strategy where all incomplete observations are
excluded and only exact data are kept. In the second one, interval-censored data are replaced
by their midpoint. For left and right censored data, they are replaced by the interval bound: in
case of left censoring, the interval] −∞, bj ] is replaced by bj and in case of right-censoring,
the interval [aj ,∞[ is replaced by aj . Finally missing data are replaced by the median of the
observations in the corresponding leaf. This strategy is called EM median/mid/detection.
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In those two simulation scenarios, our EM estimator for SPNs with incomplete data is also imple-
mented. Our algorithm is initialized from the parameters learned via LearnSPN. Finally, in order
to evaluate the performance of all estimators a criterion is constructed based on the EM estimator
evaluated on the complete dataset Desana and Schnörr (2016). We denote by W ∗, θ∗ this estimator
and we compute:

MSE =
1

m

m∑
i=1

( ∑
w∈W

(w∗ − ŵi)2 +
∑
µ∈θ

(µ∗ − µ̂i)2 +
∑
σ∈θ

(σ∗ − σ̂i)2
)

= MEAN2 + VAR

where m = 500 is the number of replications, and ŵ, µ̂, σ̂ are the estimates obtained from one of
the aforementioned estimation strategy. The second equality comes from the standard bias/variance
decomposition. In our simulations, 500 replications were generated from different sample sizes
on each dataset. The three real dataset come from UCI Machine Learning Repository and are the
Banknote dataset composed of 4 Gaussian variables, the Abalone and the Wine dataset composed
of 8 Gaussian variables. For all methods, MSE, squared mean and variance are reported in Table 2
for the first scenario and in Table 3 for the second scenario. The implementation was based on the
SPFlow library (Molina et al., 2019).

Banknote dataset (4 variables)
Our method EM midpoint

MSE MEAN2 VAR MSE MEAN2 VAR
n=300 32.2± 11.6 18.3± 2.78 13.9± 3.26 33.1± 11.7 19.0± 3.08 14.1± 3.93

n=500 28.9± 15.3 13.5± 4.0 15.4± 5.5 33.3± 16.1 16.1± 1.9 17.2± 4.4

n=1000 12.9± 9.9 4.4± 1.2 8.5± 1.3 23.3± 7.8 15.1± 0.9 8.2± 5.4

Wine dataset (8 variables)
Our method EM midpoint

MSE MEAN2 VAR MSE MEAN2 VAR
n=500 1125.7

±356.4
288.1
± 18.7

837.6
± 527.6

1369.1
± 310.1

739.1
± 12.1

630.0
± 217.7

n=1000 429.2
±178.9

53.7
± 19.0

375.5
± 97.9

461.1
± 176.0

113.2
± 18.3

347.9
± 108.7

n=1500 195.0
±32.2

27.0
± 14.6

168.0
± 18.0

434.0
± 255.9

59.7
± 16.9

374.3
± 128.3

Abalone dataset (8 variables)
Our method EM midpoint

MSE MEAN2 VAR MSE MEAN2 VAR
n=1000 51.1± 55.6 25.3± 6.8 25.8± 23.1 70.3± 4.4 61.1± 1.6 9.2± 7.9

n=2000 23.4± 5.2 18.3± 1.2 5.1± 0.6 68.6± 1.6 65.9± 2.3 2.7± 1.8

n=3000 19.2± 4.8 13.6± 3.3 5.6± 1.8 68.5± 1.9 63.9± 3.8 4.6± 2.4

Table 1: Result for 100% interval censoring datasets
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Banknote dataset (4 variables)
Our method EM median/mid/detection DROP

MSE MEAN2 VAR MSE MEAN2 VAR MSE MEAN2 VAR
n=300 31.9

±14.8
12.7
± 1.9

19.2
± 6.26

48.2
± 20.1

32.6
± 0.9

15.6
± 4.7

46.4
± 13.6

30.0
± 10.1

16.4
± 8.1

n=500 30.5
±18.1

11.1
± 4.5

19.4
± 8.0

33.8
± 29.6

11.0
± 5.2

22.8
± 16.8

42.7
± 32.9

12.7
± 5.19

30.0
± 16.4

n=1000 23.1
±10.3

9.9
± 1.4

13.2
± 3.1

33.4
± 12.0

17.7
± 1.18

15.7
± 2.8

33.7
± 11.0

14.7
± 1.42

19.0
± 2.8

Wine dataset (8 variables)
Our method EM median/mid/detection DROP

MSE MEAN2 VAR MSE MEAN2 VAR MSE MEAN2 VAR
n=500 222.0

±172.9
52.8
± 6.72

169.2
±114.3

1526.8
±173.1

766.7
± 4.9

760.1
±309.4

1698.8
±1418.9

266.1
± 27.1

1432.7
±919.4

n=1000 139.1
±109.4

31.4
± 1.57

107.6
± 52.3

1447.2
± 22.2

1276.3
± 9.81

170.9
± 8.25

1208.7
± 562.0

68.0
± 20.3

1140.7
±374.7

n=1500 72.8
±26.5

12.4
± 3.6

60.4
± 30.0

1173.6
± 40.5

1013.9
± 1.9

159.7
± 58.8

947.9
± 412.4

22.1
± 13.7

926.8
±299.7

Abalone dataset (8 variables)
Our method EM median/mid/detection DROP

MSE MEAN2 VAR MSE MEAN2 VAR MSE MEAN2 VAR
n=1000 33.1

±30.4
6.3
± 3.05

26.8
± 19.9

106.2
± 2.4

101.1
± 1.2

5.1
± 3.4

51.0
± 45.2

13.4
± 4.7

37.6
± 26.6

n=2000 10.8
±10.3

3.1
± 2.9

7.7
± 5.6

103.7
± 2.1

102.6
± 0.8

1.1
± 0.4

12.3
± 6.3

6.6
± 3.1

5.7
± 4.7

n=3000 3.2
±2.1

1.7
± 1.5

1.5
± 1.1

93.4
± 6.7

91.9
± 3.2

1.5
± 0.4

14.4
± 13.8

2.5
± 2.1

11.9
± 9.9

Table 2: Results for ”mixed interval censoring” datasets

In the first experiment with 100% interval-censored data, our EM estimator with incomplete data
has better results than the midpoint strategy in terms of MSE. The variance of the mid point strategy
is sometimes lower than the variance of our algorithm but has always a bigger bias.

In the second experiment with mixed interval censoring, the EM with incomplete data outperforms
DROP and the EM median/mid/detection strategy in the three datasets for all sample size. When n
increases, the DROP method outperforms the EM median/mid/detection which has a strong bias that
does not decrease when the dataset becomes larger because of left and right censoring which are
difficult to tackle. DROP method is often outperformed by our algorithm as it has higher variance
as we drop several points.
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7. Conclusion

We derived in this paper an algorithm to learn the parameters of SPNs in the context of incomplete
Gaussian data using the EM algorithm. This approach gives closed solutions for the update param-
eters by adapting the EM algorithm to incomplete data. Experimental results based on three real
datasets showed that our algorithm outperforms classic strategies in the context of incomplete data.
This idea could be extended to other parametric leaves but without the assurance of having closed
form of updates parameters. As a result, this would require some numerical approximations during
the M step of the EM algorithm.

Appendix A.

These two properties are of capital importance and have been demonstrated in Desana and Schnörr
(2016). They allow to link the expectation on an induced tree c to forward and backward passes
flowing in edge (q, i) or in leaf ` and they allow fast computation of this expectation.

Theorem 2 Desana and Schnörr (2016) Let δc(i,q) = 1 and δc` = 1 if respectively the edge (i, q)
or the leaf ` belongs to an induced tree c, 0 otherwise then :

∑
c∈C

ηcjδ
c
(i,q) = wqi,old

1

S([aj , bj ])

∂S

∂Sq
([aj , bj ])Si([aj , bj ])

∑
c∈C

ηcjδ
c
` =

1

S([aj , bj ])
T`([aj , bj ])S`([aj , bj ]) = αj,`

Appendix B.

Starting from the quasi likelihood and removing old parameter notations we obtain :

Q(θ,W ) =

n∑
j=1

∑
c∈C

ηcj

( ∑
(q,i)∈E(c)

logwqi +

∫
[aj ,bj ]

ϕl(xj |aj , bj)
∑
l∈L(c)

logϕl(xj |θl)dxj
)

=
n∑
j=1

∑
c∈C

ηcj

( ∑
(q,i)∈E(c)

logwqi +
∑
l∈L(c)

∫ bj,l

aj,l

ϕl(xj |aj , bj) logϕl(xj |θl, aj , bj)dxj
)

=
n∑
j=1

( ∑
(q,i)∈E(S)

logwqi

(∑
c∈C

δc(q,i)η
c
j)
))

+

( ∑
l∈L(S)

∫ bj,`

aj,`

ϕ`(xj,`|aj,`, bj,`) logϕ`(xj,`|θ, aj,`, bj,`)dxj,`
(∑
c∈C

δcjη
c
j

))
= QW (W ) +Qθ(θ)
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B.1 Weight updates

Considering QW (W ) =
∑n

j=1

(∑
(q,i)∈E(S) logwqi

(∑
c∈C δ

c
(q,i)η

c
j)
))

we use theorem 2 to ex-

press the sum over c with respect to forward and backward passes and we obtain :

QW (W ) =
∑

q∈Sum(S)

∑
i∈ch(q)

βqi logwqi with βqi =
n∑
j=1

wqi,old
1

S([aj , bj ])

∂S

∂Sq
([aj , bj ])Si([aj , bj ])

B.2 Leaves updates

Using theorem 2 to replace the sum over induced trees with the constant αj,` we obtain :

Q(θ) =
n∑
j=1

( ∑
l∈L(S)

∫ bj,`

aj,`

ϕ`(xj,`|aj,`, bj,`) logϕ`(xj,`|θ, aj,`, bj,`)dxj,`
(∑
c∈C

δcl η
c
j

))

=
n∑
j=1

( ∑
l∈L(S)

αj,lIj,l

)
with Ij,` =

∫ bj,`

aj,`

ϕ`(xj,`|aj,`, bj,`) logϕ`(xj,`|θ, aj,`, bj,`)dxj,`

One can easily compute Ij,` = − log(σl) −
(Vj,l+(mj,l−µl)2

2σ2
l

+ C, with C ∈ R a constant. Then we

compute the derivative of Qθ(θ) with respect to the two parameters of interest µ` and σ`.

∂Q(θ|θold)
∂µ`

=
n∑
j=1

∑
`∈L(S)

αj,`
∂Ij,`
∂µ`

=
n∑
j=1

αj,`
(mj,` − µ`)

σ2`
= 0

∂Q(θ|θold)
∂σ`

=
n∑
j=1

∑
`∈L(S)

αj,l
∂Ij,`
∂σ`

=
n∑
j=1

αj,`

(−1

σ`
+
Vj,` + (mj,` − µ`)2

σ3`

)
= 0

This gives the new updates :

µ` =

∑n
j=1 αj,lmj,`∑n
j=1 αj,`

σ2` =

∑n
j=1 αj,`

(
Vj,` + (mj,` − µ`)2

)∑n
j=1 αj,`
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