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Abstract

Arithmetic Circuits (AC) and Sum-Product Networks (SPN) have recently gained significant interest
by virtue of being tractable deep probabilistic models. We propose the first gradient-boosted method
for structure learning of discriminative ACs (DACs), called DACBOOST. In discrete domains ACs
are essentially equivalent to mixtures of trees, thus DACBOOST decomposes a large AC into smaller
tree-structured ACs and learns them in sequential, additive manner. The resulting non-parametric
manner of learning DACs results in a model with very few tuning parameters making our learned
model significantly more efficient. We demonstrate on standard data sets and real data sets, efficiency
of DACBOOST compared to state-of-the-art DAC learners without sacrificing effectiveness.

Keywords: Probabilistic Machine Learning; Ensemble Learning; Tractable Probabilistic Models;
Structure Learning.

1. Introduction

There is a recent surge in interest towards tractable probabilistic graphical models where inference
is significantly more efficient [Zhao et al. (2016); Darwiche (2003); Poon and Domingos (2011)].
Of these models, both Arithmetic Circuits (AC) [Darwiche (2003)] and Sum-Product Networks
(SPN) [Poon and Domingos (2011)] have garnered particular interest due to their mutual equivalence
and their ability to model several other tractable models [Rooshenas and Lowd (2016)]. As pointed
out by Rooshenas and Lowd[2016], most of the learning methods developed for these models are
generative. So they developed and learned discriminative ACs that are a better fit for capturing
log-linear models due to their ability to directly represent parameters in their nodes (as against
weights in SPNs). While successful, their work has two limitations: (1) a large no. of parameters that
must be tuned and (2) ACs are typically limited to being tree-structured and, hence, may break loops.

To overcome these limitations, we propose the first non-parametric learning method for dis-
criminative ACs (DACs) based on gradient-boosting, called DACBOOST. Inspired by the intuition
that multiple weak learners, in our case tree-structured ACs, could be more successful in learning a
conditional distribution, DACBOOST introduces parameters as necessary, effectively making it more
representative than a single tree-structured DAC. We derive the gradient updates that are used to
reweigh the examples after each iteration and present the algorithm for learning weak, tree-structured
ACs in a sequential manner. The benefits of DACBOOST are two-fold. First, it can repair broken
loops by mixing different tree-structured ACs in a stage-wise manner. Second, it reduces the space
of structure search and parameter updates at the same time, avoiding the seemingly difficult task
of repeated full parameter estimation during structure scoring. Our extensive experiments on both
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Figure 1: Figure shows how a complete and decomposable AC, here actually an SPN, is a mixture of trees. The leaves
indicate univariate distributions over X1 and X2. Different colors highlight unique trees, which are products of univariate
distributions. (Best viewed in color).

standard data sets due to Rooshenas and Lowd[2016] and on five real-world ones, DACBOOST is
shown to be both effective and efficient.

We make a number of important contributions. We present the first ensemble learning approach
for ACs. Establishing this is especially significant because (as we state later) structure learning of
SPNs or ACs — for discrete domains, SPNs and ACs are equivalent [Rooshenas and Lowd (2016)] —
is difficult [Zhao et al. (2016)]. Boosting reduces the space of possible structure search for learning
the structure (the weak ACs) and parameter (leaves of these ACs) simultaneously, hence rendering
the learning task more practical. Next, most of the prior approaches have focused on tree-structured
ACs to retain tractability in learning. Triggered by the view of ACs as mixtures of trees [Zhao et al.
(2016)], DACBOOST extends these tree-structured learners towards learning valid and complete
ACs via boosting. Finally, our experimental evaluations on both standard and some novel and
interesting real-world data clearly establish the superiority of our learner. In nearly all the domains,
we achieve equal or better performance for a fraction of the learning time when compared to
the state-of-the-art DAC learner.

2. Background

Figure 2: Left: Example arithmetic circuit that rep-
resents a Markov random field over two variables x1
and x2 and having potentials w1 and w2 for 2 features
x1 ∧x2 and x2. Right: Conditional AC that represents
distribution P (y|x1) where y is a query variable and
x1 is an evidence variable.

Arithmetic Circuits: There is an increased inter-
est in tractable probabilistic models [Chandrasekaran
et al. (2008)], particularly in the presence of large
amounts of evidence. While other methods ex-
ist [Bouman and Shapiro (1994); Bach and Jordan
(2002); Gogate et al. (2010); Karger and Srebro
(2001); Osokin et al. (2011); Vernaza et al. (2008);
Taskar et al. (2004); Munoz et al. (2008)], we focus
on a class of methods that compile models into rep-
resentations suitable for efficient inference such as
(deep) probabilistic architectures like Arithmetic Cir-
cuits (ACs) [Darwiche (2003)] and Sum-Product Net-
works (SPNs) [Poon and Domingos (2011)]. Specifi-
cally, we consider ACs and explore an efficient learn-
ing algorithm while retaining the tractability.

An Arithmetic CircuitAC(X ) is a rooted, directed acyclic graph over the variables X . It contains
+ or ∗ as internal nodes and its leaf nodes are labeled with either a non negative parameter w or an
indicator λ. For an instantiation x, the value of the circuit AC(X ) is computed by assigning indicator
λx the value 1 if X is compatible with x and 0 otherwise. For example, consider the simple AC in
Fig 2.(a) that models the joint distribution over two binary random variables x1 and x2. This joint
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distribution is; λx1λx2w1w2 + λx1λ¬x2 + λ¬x1λx2w2 + λ¬x1λ¬x2 The complexity of evaluating
an AC is linear in circuit size. Two key properties of tractable ACs [Darwiche (2003); Lowd and
Rooshenas (2013)] are, (1) Decomposibility : An AC is decomposable iff ∀ pairs of nodes 〈l1, l2〉:
l1 and l2 are children of ∗ node (product)⇒ var(l1) ∧ var(l2) = ∅ and (2) smoothness : An AC is
smooth iff ∀ nodes : l is a child of + node n and var(l) = var(n). Zhao et al.[2016] have shown
that ACs can be viewed as mixtures of trees (Fig. 1).
Learning (Conditional) Arithmetic Circuits: Many structure learning algorithms have been
proposed for discriminative SPNs such as employing an efficient SVD-approach [Adel et al.],
training with the Extended Baum-Welch [Rashwan et al. (2018); Duan et al. (2020)]. Lowd and
Rooshenas[2013] are the first to learn arithmetic circuits directly from data as against the expensive
compilation from a different model such as Bayes Net or a Markov net. When learning discrimina-
tively, i.e. P (Y|X ), marginzalizing over the evidence X can be avoided. Rooshenas and Lowd[2016]
proposed DACLEARN a discriminative learning method that learns the structure of a DAC by op-
timizing the penalized conditional log-likelihood (CLL). Specifically, they optimize logP (Y|X )
(where X is the set of evidence variables) for learning DAC. This is considerably more tractable even
for large tree-width models, as opposed to typical generative training. DACLEARN, thus, iteratively
grows the DAC, choosing a set of most informative features at each step of the gradient of penalized
CLL. Their structure update technique employs their work on transforming MRFs to ACs [Lowd
and Rooshenas (2015)]. Fig 2.(b) illustrates a Conditional AC with one query and one evidence
variable. A similar approach has been proposed for discriminative learning of SPNs by Gens and
Domingos[2012; 2013], an equivalent representation based on network polynomials. We consider
ACs but observe that the work can be translated to SPNs as well.
Functional Gradient Boosting (FGB) transforms the problem of learning a conditional distribution
to learning a sequence of function approximation problems (following the work by Friedman[2001]).
Thus a conditional distribution is represented as a weighted sum of regression models learned se-
quentially via a stage-wise optimization. For a particular example, say yi, its conditional distribution
given its parents xi can be learned by fitting a model P (y|x) ∝ eψ(y,x). The key insight is that
instead of learning in the parameter space (P ), gradient is obtained in the functional-space ψ. Now,
FGB successively approximate ψ as a sum of weak learners, which are typically regression trees.
Staring from an initial ψ0 functional gradient ascent iteratively adds gradients ∆i. For every iter-
ation i a new weak model hi is fitted to the gradient. After m iterations, the potential is given by
ψm = ψ0 + ∆1 + ...+ ∆m. Here, ∆m is the functional gradient at step m,

∆m = ηm · Ex,y

[
∂

∂ψm−1
log P (y | x; ψm−1)

]
where ηm is the learning rate. Dietterich et al.[2004] was the first to train a probabilistic model, a
CRF by evaluating the gradient at each step for every training example and fitting a regression tree
hm to these derived examples. [(xi, yi),∆m(yi;xi)] is a close and reasonable approximation of the
desired ∆m and essentially, points in the same direction serving as a good approximation of the true
functional gradient. This has been effectively adapted for several probabilistic models [Khot et al.
(2011); Ramanan et al. (2018)].
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3. Learning Discriminative ACs

Given Data set D(X ,Y), where Y is a set of query variables, & X is a set of evidence
variables, find the structure and parameters of a discriminative arithmetic circuit (DAC), i.e.,
the distribution P (Y|X )).

Figure 3: Learning of Discriminative Arithmetic Circuits via boosting.
At each iteration a small weak DAC is learned for each query variable.
Once a DAC is learned at each iteration, the weights of examples are
computed and a new AC is learned. These are then added to the model
and the process continues until convergence.

Unlike generative ACs, DACs allow
conditioning the query variables over
evidence, allowing them to be trained
similar to CRFs [Rooshenas and Lowd
(2016)]. DACs offer similar benefits
as CRFs in modeling complex depen-
dencies between evidence and query
while retaining tractability for learn-
ing and inference. Given that gradient-
boosting is state-of-the-art in learning
CRFs [Dietterich et al. (2008); Chen
et al. (2015)], we derive a learning
algorithm based on gradient-boosting
for full model learning (structure + pa-
rameter learning) of DACs.

Gradient Boosting for Conditional
ACs: We adopt the following conven-
tion for notation - subscript i denotes the ith example, superscript j denotes the jth feature of the
evidence set and superscript (p) denotes the pth query variable. Given this notation, following
DACLEARN (Lowd et al. 2016) that optimizes conditional log-likelihood of train data set D by
finding the best set of features f , where, y = Y(p) ⊆ Y and x ⊆ X , we define CLL(D) :=∑

(y,x)∈D

logP (y|x) =
∑

(y,x)∈D

∑
j

wjf j − logZ(x)

where Z is the normalization constant (partition function). Recall that FGB obtains point-wise
gradient for each example separately. So now, the CLL for example i with query variable y (we drop
the superscript for brevity) is,

logP (yi = 1|xi) =
∑
j

wjf j(yi = 1|xi)− logZ(xi)

=
∑
j

wjf j(yi = 1|xi)− log
∑
y′

exp
(∑

j

wjf j(yi = y′|xi)
)

Like CRFs, the definition of DACs naturally allow for the functional representation. ψ(yi|xi), the
potential of yi given xi for ith example can be defined as, ψ(yi|xi) =

∑
j w

jf j . Note that while we
explain the process assuming binary query variables, they can be easily extended to the multivalued
case. While learning a binary discriminative model for yi = 1,

logP (yi = 1|xi) = ψ(yi = 1|xi)− log
∑
y′

exp(ψ(yi = y′|xi)))

Now computing the point-wise derivative of CLL w.r.t ψ ∀i;
∂P (yi|xi)
∂ψ(yi|xi)

= I(yi|xi)− P (yi = 1|xi)
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Note that the above expression is similar to the gradients for well-known probabilistic models [Diet-
terich et al. (2008); Natarajan et al. (2012)]. The weight of each example is simply the difference
between whether the example is true according to the data (denoted by I) and the predicted proba-
bility of the query being true according to the current model. These gradients are then used in the
next iteration of boosting where a weak learner (DAC in our case) is learned to fit these point-wise
gradients. The score of the structure using the set of candidate features F can be rewritten as:
Score(F) = ∆cll(F), where ∆cll denotes the change in CLL. The goal is to identify the features
that maximize this change in CLL.

A key aspect of our learning approach is that, unlike in the approach due to Rooshenas and
Lowd[2016], there is no necessity to introduce an explicit model complexity penalty. Learning
weak models automatically takes care of regularization by controlling depth of the learned ACs.
Specifically, given functional-gradients for each example, we learn a small, tree-structured AC by
searching through the space of potential features to add next by minimizing the weighted variance of
conditional distribution according to current model. Once AC is constructed, next step is to estimate
weights wj at leaves of the DAC. To estimate them, we maximize increment in CLL function:

∆cll(F) =
∑

(y,x)∈D

∑
j

wjP̂ (f j |x)−∆ logZ(x)

where P̂ is the new empirical probability distribution after introducing the new candidate features.
The gradient is:

∂∆cll(F )

∂wj
=

∑
(y,x)∈D

exp (wj)P (f j |x)

exp (∆ logZ(x))

Learning Joint Models: When learning with multiple queries, following prior work on pseudo-
likelihood training of MRFs [Besag (1975); Richardson and Domingos (2006); Khot et al. (2011)],
we factorize the joint over the queries as product of conditionals, given an ordering. More precisely,
given a set of queries y1:k, an ordering k < k − 1 < ...1 and the evidence x, the joint becomes,

P (y1:k | x) = Πk
i=2P (yi|y1, ..., yi−1,x) · P (y1|x)

We boost each conditional separately (& in parallel) while training. During testing, we perform
Gibbs sampling over unobserved variables [Khot et al. (2011)] and report joint likelihood of test set.

The DACBOOST Algorithm: Alg. 1 summarizes our boosting approach. Here DACBOOST() is
the primary procedure that learns an ensemble of gradient boosted Arithmetic Circuits for a given
query variable Y(p) and training dataD. As explained earlier, X and Y are sets of evidence and query
variables respectively, and so, a training example Di = 〈Xi,Yi〉. The argument p is the index to the
particular query variable in Y for which the discriminative model will be learned. For a collective
classification task the function is called successively for each query variable. Since there could
potentially be multiple query variables, we denote the current query variable as Y(p).

In the mth iteration of functional-gradient boosting, we compute the functional gradients for
these examples using the current model Fm and the evidences of y as per this model (line 5). The
gradients S(p)

m = {〈yi,∆i〉} (where ∆i is the gradient value for the example yi) are then used to learn
a new weak AC ψm and added to the model [lines 6,8]. Note, however, that SUBSAMPLENEG()
[line 6] sub-samples from the negative examples and the corresponding gradients and evidences
(Y ′ ⊂ Y(p) = {y : ∀y, y ∈ Y(p), y ∈ Y ′, y = 0, y consistent with sampler}, S′ = {si : ∀i, si ∈
S
(p)
m , yi ∈ Y ′} and X ′ = {xi : ∀i,xi ∈ X , yi ∈ Y ′} ). LEARNWDAC() learns a new weak AC

based on the current sub-sampled gradients as summarized in Alg. 2.
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Algorithm 1 DACBOOST: Boosted Arithmetic Circuits
Require: X ,Y , D, P
1: Initialize to uniform prior: Model F0 ← γ
2: Learn upto M gradient steps: m = 1
3: repeat
4: Fm ← Fm−1

5: repeat
6: S

(p)
m ← ComputeGradientsY(p),X , Fm

7: Gradients {∆i}|D|i=1, ∀ examples yi ∈ Y(p)

8: S′,X ′,Y ′ ← SubSampleNegS(p)
m ,X ,Y(p)

9: ψm ← LearnWDACS′,X ′,Y ′
10: F pm ← F p( m− 1) + ψm(p)
11: until p ∈ P Iterate through Query predicates
12: until m = M
13: Return Fm

Alg. 2 outlines the procedure LEARNWDAC, that takes the gradients and the corresponding
evidence and labels (for the query variable Y) as input. The model and the supporting data structures
are initialized [lines 2-5]. Note that w refers to all the parameter nodes in a DAC. fs is a min-heap
data structure used later to search for the best set of features to be considered in constructing the DAC.
To learn a valid conditional weak AC to fit the gradients at the current step we have to determine the
best (most informative) feature set and it is done in a step-wise fashion. First, a set of regression trees
(rooted at every feature/variable in X ) are learned using weighted variance as the scoring function
[lines 6-9]. The feature set F is then computed by first constructing a min-heap fs with the features
from the learned regression trees, using their weighted-variance scores. We search and retrieve from
min-heap, the edges with weights lower than Ω times the highest weighted variance as seen from the
current feature set given by threshold = Ω ·max

T∈T
Score(T ) [lines 10,11]. F is used to construct

a DAC Cw, by iteratively scanning each feature fk in the feature set and including it in the AC
if the change in conditional log-likelihood ∆cll(fk) is above a positive threshold τ (τ > 0) [lines
12-17]. Whenever a feature fk is included in the DAC, we jointly optimize the parameters w after
updating the initial structure. We use L-BFGS to optimize the weights in our model. Note that,
for constructing/updating the AC Cw [line 14] we utilize the ‘Split AC’ approach proposed in the
ACMN algorithm [Lowd and Rooshenas (2013)].

Discussion — DACBOOST closes loops by inducing wide-and-deep DACs: Before moving on
to our empirical evaluation, let us discuss some key insights about DACBOOST. DACBOOST differs
from the currently best discriminative learning algorithm DACLEARN [Rooshenas and Lowd (2016)].
While DACLEARN induces tree structured ACs, ours is capable of learning DAGs. Intuitively, their
approach can be viewed as breaking some loops in the true generative model. Since we boost
the learning, we “overlay” several trees and hence could potentially repair some loops, that may
otherwise have been broken if a single tree-structured AC was learned. Exploring the connection to
tree-reweighted bounds and/or stacking learning to deeply understand the properties of our learning
algorithm is an interesting future direction. Also, we are strongly motivated by the observation that
complete and valid SPNs (correspondingly ACs) can be induced by a mixture of trees [Zhao et al.
(2016)]. Thus, our work can be seen as extending tree SPN and AC learners with boosting to learn
valid DACs with the observation that valid SPNs (and ACs) are additive tree models. That is, we
widen the deep DACs by boosting in features and feature combinations as needed. We verify this
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Algorithm 2 LEARNWDAC: Fit Weak Conditional AC

Require: S,X ,Y(p)

1: The gradient set S = {〈yi,∆i〉}
2: Conditional Arithmetic Circuit Cw ← ∅
3: Initialize empty AC; w: set of parameters
4: Initialize min-heap fs← ∅
5: Feature set F ← ∅
6: Regression Tree set T← ∅
7: repeat
8: Tj ← Regression Tree rooted at fj
9: Scored using Weighted-Variance

10: T← T ∪ Tj
11: until ∀ features fj ∈ X
12: fs← Min-Heapfj : ∀ Tj ∈ T, Scores
13: F ← F ∪ {f}: select best set {f} ≡ {T} ⊂ T
14: min-heap search on fs w/ threshold Ω ∗max
15: repeat
16: if ∆cll(fk) > τ then
17: Update Cw with fk
18: Update parameters w
19: end if
20: until each fk in F
21: Return Cθ

empirically by demonstrating that our DACBOOST algorithm learns effective DACs by achieving
equal or better performance in nearly all the domains as the state-of-the-art DACLEARN algorithm.
By virtue of learning shallower models, our approach is significantly faster.

4. Empirical Evaluation

We aim to answer the following questions explicitly in our experimental evaluations:

(Q1) Is DACBOOST effective against the state-of-the-art?

(Q2) Is DACBOOST more efficient than a single DAC?

(Q3) Can DACBOOST handle joint learning effectively?

We implemented DACBOOST as an extension to the DACLEARN code-base available as a part of
the open-source Libra toolkit1 [Lowd and Rooshenas (2015)]; consequently, DACBOOST inherits all
the system requirements and the library dependencies as the original DACLEARN. We evaluated
DACBOOST against the state-of-the-art discriminative structure learning algorithm for ACs, DA-
CLEARN, on both real and standard data sets. All experiments were conducted on Intel(R) Xeon(R)
CPU E5-2630 v3 server machines, clocking @ 2.40GHz and usable memory of 235GB.

Data Sets Description: We investigated (Q1), (Q2) on both standard domains and some novel
domains for probabilistic modeling. To answer (Q3), we demonstrate the performace of DACBOOST

on a few standard domains with 10% − 20% of the features as query variables. Specifically, we

1. http://libra.cs.uoregon.edu/
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chose four clinical/medical data sets, a network traffic for DDoS attack detection data set and some
standard data sets. We now describe the data sets briefly focusing on the novel ones:
1. Alzheimer’s: The Alzheimer’s Disease NeuroIntiative (ADNI2) is designed to verify whether MRI
and PET images, genetics, cognitive tests and blood biomarkers can be used for early prediction
Alzheimer’s disease. We learn DAC for modeling Alzheimer’s vs cognitively normal, conditioned on
demographics features and MMScore (cognitive test score) (#numV ars = 29,#numEx = 350).
2. Drug-Drug interactions (DDI): This data set consists of 78 drugs obtained from (DrugBank3).
The goal is to learn a distribution of drug-drug interactions conditioned on the chemical path-
ways [Dhami et al. (2018)]#numV ars = 25,#numEx = 16k).
3. DDoS attack detection (DDoS): Employed in the work of Ricks et al.[2018], benign and large-
scale botnet network traffic is captured for use in DDoS attack detection. A key aspect is the
automation of client-side human behavior for generation of benign network traffic in a manner
scalable to network size. Our goal is to learn a model for attack modeling given benign and botnet
network traffic #numV ars = 20,#numEx = 33650).
4. Post-Partum Depression (PPD): Inspired by the work of Natarajan et al[2017], the goal is
to model post-partum depression diagnosis based on online questionnaire data including demo-
graphics, family history (relationship), social support, economic status, infant behavior and CDC
questions#numV ars = 66,#numEx = 130).
5. Parkinson’s: Parkinson’s Progression Markers Initiative (PPMI4) is a study designed to identify
biomarkers that impact Parkinson’s progression in a subject. Features include imaging data, clinical
data, demographics and Montreal Cognitive Assessment Score (MoCA) and the goal is to learn
conditional distribution of occurrence of PPMI#numV ars = 119,#numEx = 1680).

We also employed the benchmark data sets that were extensively used in prior work on learning
SPNs and ACs [Gens and Domingos (2013); Rooshenas and Lowd (2014, 2016)]. The goal is to
evaluate on benchmarks where DACLEARN is the state-of-the-art as well as on novel, real domains.

Experimental Protocol: Following the experimental protocol of the previous work [Rooshenas
and Lowd (2016)], we created train and test sets (with 80− 20 split). For DACLEARN, we used the
parameterization as suggested in the paper with L1 prior of 0.1, 0.5, 1, and 2, and feature penalties
of 2, 5, and 10, and an edge penalty of 0.1, a maximum circuit size of 1M edges, and a feature batch
size of 2. For DACBOOST, based on the training conditional log-likelihood, we chose the number of
weak DACs to be between 3 and 12.

Results: The performance metrics and running times on the 5 novel data sets are summarized
in Table 1. It can be observed that DACBOOST is at least as good as or better than DACLEARN

in several of these data sets (4/5). More importantly, it is faster in the majority of the data sets
and in ADNI 2x faster. This answers both (Q1) and (Q2) affirmatively making it an attractive
modeling choice for real data. To understand the differences, let us focus on specific data sets.
Consider the lower performance in DDI data set which is a 3-D image that is sparse. Several feature
values are 0 across all the examples. Our hypothesis is that such features are not specifically useful
for constructing weak ACs and hence boosting does not perform as well (even though it is not
significantly worse). In DDoS data set where the performance is comparable, many of the examples
are repeated and the amount of these repetitions is high. In DACBOOST, in Alg. 2, it can be observed

2. www.loni.ucla.edu/ADNI
3. https://www.drugbank.ca/
4. www.loni.ucla.edu/PPMI
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Data sets
DACBOOST DACLearn

Speedup
CLL Time

Avg
Edges

Avg
Depth

CLL Time Edges Depth

ADNI -0.178 0.950 180 5 -0.180 1.90 329 10 2.000
DDI -0.264 133.87 490 8 -0.245 158.86 1981 18 1.186
DDoS -0.018 133.52 273 10 -0.019 121.11 483 14 0.907
PPD -0.411 12.19 476 6 -0.785 13.83 819 8 1.134
PPMI -0.163 353.74 980 7 -0.188 522.99 2429 20 1.478

Table 1: Evaluation results of DACBOOST on real domains (data sets). Conditional log-likelihood, CLL, illustrates the
effectiveness (higher⇒ better), while the running time, Time(Sec.) shows the efficiency (lower⇒ better). Speedup is the
ratio of the running time of DACLEARN to that of DACBOOST. To demonstrate the structure complexity of the learned
models across all the data sets, we present the average number of edges and the average depth of each small DAC, for
DACBOOST. For DACLearn, we present the model size.

Data sets
DACBOOST DACLearn

Speedup
CLL Time

Avg
Edges

Avg
Depth

CLL Time Edges Depth

NLTCS -0.148 19.68 252 8 -0.152 40.35 861 20 2.050
MSNBC -0.108 144.400 399 10 -0.110 12153.90 10010 24 84.167
KDDCup -0.010 2612.565 728 8 -0.073 1248.77 1904 22 0.478
Plants -0.069 560.368 763 8 -0.255 13077.74 7497 24 23.337
Audio -0.459 3619.24 980 8 -0.483 18383.51 5957 16 5.07
Jester -0.493 715.53 980 8 -0.665 9851.41 6244 14 13.768
Netflix -0.554 3150.70 980 8 -0.642 21588.92 6895 16 6.85
Accident -0.174 1646.87 1057 8 -0.2776 22734.73 6923 26 13.81
Retail -0.087 3246.29 1225 8 -0.090 2958.99 2191 24 0.911
Pumsbstar 0.00 1017.60 932 6 0.00 720.98 1218 8 0.708
DNA -0.346 350.56 1540 8 -0.801 1030.03 3129 18 2.938

Kosarek -0.016 3300.885 1610 8 -0.021 3778.92 2114 18 1.144
MSWeb -0.118 1132.09 2065 6 -0.109 13996.87 4921 30 12.363
Movie -0.358 3720.31 3780 8 -0.444 20526.80 7665 24 5.517
WebKB -0.178 6154.40 6013 7 -0.293 17840.81 10630 18 2.900
R-52 -0.126 26606.96 6503 8 -0.138 30147.31 7392 10 1.12
20 NG -0.267 21680.70 6650 8 -0.274 20487.39 7035 8 0.944
BBC -0.084 11744.93 7686 8 -0.127 5596.90 7742 10 0.476
Ad 0.0 3876.07 10955 6 0.0 8087.36 10955 6 2.086

Table 2: Results of DACBOOST on benchmark data sets that have been used and reported in DACLEARN. Conditional
log-likelihood, CLL, shows the effectiveness (higher⇒ better), while the running time, Time(Sec.) shows the efficiency
(lower⇒ better). We present the average number of edges and the average depth of each small DAC, for DACBOOSTand
the model size of the resulting model for DACLearn. It can be seen that the total number of edges in many of the domains
are comparable but DACBOOST is significantly faster to learn.

that we sub-sample the negatives. This subsampling process, with large number of repetitions, can
potentially be ineffective, thus explaining the slower convergence rate. Exploring intelligent sampling
of negatives is an interesting direction. In data sets with no missing or repeated algorithms, both
algorithms perform similarly but Boosting is clearly faster. Over all, DACBOOST performs equally
or better than the strong baseline in majority of the data sets.

To further evaluate, we considered benchmark data sets (Table 2). The first key observation
across all data sets is that, DACBOOST is significantly faster than state-of-the-art in most cases. In
domains where it is worse, the efficiency is significantly higher (about 12 times faster) for a small
loss in CLL. This allows us to answer (Q2) strongly affirmatively. To further understand benefits
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of boosting, we analyze size of models learned in Tab. 2. We present number of edges and depth
of the baseline DACLEARN and average no. of edges and depth per DAC for the DACBOOST.

CLL
NLTCS MSNBC KDDCup

DACBOOST -0.709 -0.886 -0.519
DACLEARN -0.788 -0.861 -0.563

Figure 4: Conditional log-likelihood (CLL) comparison
for joint learning on benchmark domains.

Since our model explicitly learns weak DACs in
an additive fashion, it is not surprising that both
the depth and the number of edges of the induced
DACs are significantly smaller on average. How-
ever, even the total number of edges for the entire
boosted model is in many cases still smaller than
the full DAC induced by DACLEARN. It must
be mentioned that DACBOOST does not have many parameters and they are introduced as needed.
Hence, we do not explicitly use any regularization techniques except to control the number of ACs
learned. Finally, even in the cases where the model sizes are comparable, DACBOOST appears to be
significantly faster demonstrating the efficiency of the proposed approach. To further answer (Q1),
when observing the CLL values in the table, it can be easily observed that the boosting approach is
equal or better in nearly all the domains. It can be stated that DACBOOST is indeed more efficient
(with speedups ranging b/w 1.12 to 84) & equally effective when compared to learning single
ACs. For joint learning evaluation, we ran on 3 standard data sets, with 20% percentage of variables
being chosen as query. We assumed that all the query variables are unobserved and hence ran an
approximate gibbs sampler to perform inference. More principled inference algorithm for joint
learning is another interesting future direction. As with the single variable case, we evaluated on
a test set and present the CLL. Note that, since we learn each conditional in parallel, our learning
time is the worst-case of all conditionals, as opposed to the baseline which learns them sequentially.
Thus in all data sets, DACBOOST is significantly (orders of magnitude) faster. It can be observed
that test set CLL is also better in 2 of the 3 domains, thus answering (Q3) affirmatively. A similar
behavior has been observed in case of dependency networks and its relational extension [Natarajan
et al. (2012)] when compared to learning a single MRF.

In summary, our evaluations on novel and established benchmark data sets clearly demonstrate
the potential for boosting DACs. Even in domains where there is a marginal loss in performance,
the learning time is significantly smaller and most importantly, boosting can be parallelized during
joint learning. Another advantage of ensemble learning is that, since the learned ACs are typically
weak, regularization is simple and effective and is handled implicitly.

5. Conclusions

ACs emphasize the important role of depth in learning tractable probabilistic models. We argue that
width is equally important. Unfortunately, wide and deep probabilistic models are more difficult to
train. We presented the first boosting framework to ease the training of tractable discriminative prob-
abilistic models, specifically conditional ACs. We derived the functional gradients of the examples,
outlined the method for learning weak ACs and presented the algorithm, called DACBOOST, for
learning them given the data. Our empirical evidence shows that boosted conditional ACs can gain
predictive performance, sometimes in an fraction of time.

There are several avenues for future work: Analysis of the theoretical properties including
bounds and convergence is an immediate future direction. Using domain-specific human input as an
inductive bias could make the algorithm converge even faster. Here, carrying over ideas of residuals
networks [He et al. (2016)] to ACs appears to be promising. Finally, how to make a broader class
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of tractable probabilistic models including generative models wider and deeper remains an open
question from both a theoretical as well as an algorithmic perspective.
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