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Abstract

We consider causal discovery in a very general setting involving non-linearities, cycles and several
experimental datasets in which only a subset of variables are recorded. Recent approaches combin-
ing constraint-based causal discovery, weighted independence constraints and exact optimization
have shown improved accuracy. However, they have mainly focused on the d-separation criterion,
which is theoretically correct only under strong assumptions such as linearity or acyclicity. The
more recently introduced sigma-separation criterion for statistical independence enables constraint-
based causal discovery for non-linear relations over cyclic structures. In this work we make several
contributions in this setting. (i) We generalize bcause, a recent exact branch-and-bound causal dis-
covery approach, to this setting, integrating support for the sigma-separation criterion and several
interventional datasets. (ii) We empirically analyze different schemes for weighting independence
constraints in terms of accuracy and runtimes of bcause. (iii) We provide improvements to a previ-
ous declarative answer set programming (ASP) based approach for causal discovery employing the
sigma-separation criterion, and empirically evaluate bcause and the refined ASP-approach.

Keywords: Graphical models; structure learning; causal discovery; exact search; optimization

1. Introduction

Discovering causal relations from sample data in general model spaces is a very challenging task.
Approaches combining constraint-based causal discovery, weighted independence constraints and
exact optimization developed within the last 5-10 years, based on harnessing both problem-specific
and declarative techniques, have shown improved accuracy in the presence of latent variables and
cycles over previous constraint-based approaches (Claassen and Heskes, 2012; Triantafillou and
Tsamardinos, 2015; Hyttinen et al., 2014; Magliacane et al., 2016). However, most of these ap-
proaches are focused on the d-separation criterion, which is theoretically correct only under strong
assumptions such as linearity or acyclicity.

In this work, we consider causal discovery, i.e., the task of learning optimal causal graphs, in
a very general setting involving non-linearities, cycles (Richardson and Spirtes, 1999; Dash and
Druzdzel, 2001; Hyttinen et al., 2012; Mooij and Heskes, 2013) and several experimental datasets
in which (possibly) only a subset of variables are recorded (Tillman et al., 2009; Triantafillou et al.,
2010; Tillman and Spirtes, 2011; Hyttinen et al., 2013; Triantafillou and Tsamardinos, 2015; Huang
et al., 2020). The recently introduced σ-separation criterion for statistical independence enables
constraint-based causal discovery for both non-linear relations and cyclic structures (Forré and
Mooij, 2017). This allows for extending exact approaches to constraint-based causal discovery
to non-linear settings. As a first concrete instantiation, Forré and Mooij (2018) recently extended
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an earlier exact declarative approach based on answer set programming (ASP) to causal discovery
in the presence of cycles and experimental datasets to accommodate the σ-separation criterion1.

In this work we take further the adaptation of both the ASP approach (Forré and Mooij, 2018)
and a recent problem-specific branch-and-bound approach, bcause (Rantanen et al., 2020, 2018), to
causal discovery under σ-separation over cyclic causal graphs from several interventional datasets.
In addition to providing performance improvements to both approaches, we also aim to shed further
light on their relative efficiency. Concretely, our contributions are the following. (i) We general-
ize bcause to this setting, in particular extending the approach with support for the σ-separation
criterion and several interventional datasets. For the latter, we provide search-space pruning lin-
ear constraints between datasets which allow for obtaining tighter bounds via the linear relaxation
based hitting-set approach implemented in bcause. (ii) We empirically analyze different schemes for
weighting independence constraints in terms of accuracy and runtimes of bcause, revealing that the
choice of the weighting scheme appears to have a noticeable impact on both accuracy and efficiency
of causal discovery, with a trade-off between accuracy and efficiency. (iii) We refine the ASP-based
approach for causal discovery under σ-separation, and show that the modifications improve on the
runtime efficiency of the approach. (iv) Finally, we empirically evaluate the runtime performance
of the bcause and ASP approaches, showing that the relative efficiency of the approaches depends
even significantly on the data considered.

2. Constraint-Based Causal Discovery

Directed Mixed Graphs We represent causal structure by a directed mixed graph G = (V,E)
over the set of nodes V , where the edge relation E = E→ ∪ E↔ is composed of directed edges
E→ ⊆ V ×V and (symmetric) bi-directed edges E↔ ⊆ {{X,Y } : X,Y ∈ V }. A bi-directed edge
X ↔ Z represents a latent confounder, i.e., a structure X ← L → Z, where L is an unmeasured
common cause of two observed variablesX and Z. A walk in a DMGG is any sequence of adjacent
edges, with repetitions allowed. A triple of adjacent nodes (Vi−1, Vi, Vi+1) on a walk of the form

Vi−1 → Vi ← Vi+1, or Vi−1 ↔ Vi ← Vi+1 or Vi−1 → Vi ↔ Vi+1 or Vi−1 ↔ Vi ↔ Vi+1

is called a collider (both edges pointing into Vi). Other triples of adjacent nodes on a walk are called
non-colliders (at least one edge out of Vi). The class of directed mixed graphs is denoted by G.

Separation Criteria In order to perform constraint-based causal discovery we need a graphical
criterion for independence. If the underlying causal model is a linear structural equation model and
the data is observed at a unique equilibrium, then the following d-separation criterion is sufficient for
independence (Spirtes, 1995) (see Studený (1998) for equivalence to the version of Pearl (2000)).

Definition 1 (d-separation) Let G be a DMG over nodes V . Given a conditioning set C ⊆ V , a
walk π between V1, Vn /∈ C is d-connecting, if every triple of adjacent nodes in π is:

(a) a collider satisfying Vi ∈ C; or (b) a non-collider satisfying Vi /∈ C.

Nodes are d-connected given C if and only if there is a d-connecting walk given C between them.

1. Recently, Mooij and Claassen (2020) develop in-exact methods employing σ-separation.
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However, when we have non-linear relations and cycles, d-separated variables may be dependent
(Spirtes, 1995; Neal, 2000). To this end, Mooij et al. proposed the notion of σ-separation which is
sound for non-linear relations under global compatibility of the local causal mechanisms (see (Forré
and Mooij, 2018)). Given a DMG G, we use ScG(Vi) to denote the set of nodes that are strongly
connected to Vi, that is, each node in ScG(Vi) is both a descendant and an ancestor of Vi.

Definition 2 (σ-connection, Forré and Mooij (2019) Definition 4.2) Let G be a DMG over a set
of nodes V . Given a conditioning set C ⊆ V , a walk π between V1, Vn /∈ C is σ-connecting, if
every triple of adjacent nodes (Vi−1, Vi, Vi+1) in π is:

(a) a collider satisfying Vi ∈ C; or
(b) Vi−1 ← Vi ← Vi+1 or Vi−1 ← Vi ↔ Vi+1, satisfying Vi /∈ C or Vi ∈ C ∩ ScG(Vi−1); or
(c) Vi−1 → Vi → Vi+1 or Vi−1 ↔ Vi → Vi+1, satisfying Vi /∈ C or Vi ∈ C ∩ ScG(Vi+1); or
(d) Vi−1 ← Vi → Vi+1 satisfying Vi /∈ C or Vi ∈ C ∩ ScG(Vi−1) ∩ ScG(Vi+1).

Nodes are σ-connected given C if and only if there is a σ-connecting walk given C between them.

For example, in Figure 1 the nodesX,Y are σ-connected givenQ,W as e.g. the walkX → Q→ Y
satisfies condition (c) of Definition 2. Nodes X,Y are d-separated given Q,W . By assuming σ-
faithfulness (faithfulness) statistical independence and σ-separation (d-separation) become equiva-
lent (Forré and Mooij, 2018).

Problem Definition In constraint-based causal discovery the aim is to find an equivalence class of
graphs whose separation and connection properties respectively match the statistical independence
and dependence relations in the data. The (in)dependence constraintsK are obtained from statistical
independence tests on the data. Since the tests produce some errors on finite sample data, constraint-
based causal discovery corresponds to the following optimization problem (Hyttinen et al., 2014).

INPUT: A set K of conditional (in)dependence constraints over given set of variables V , and
a non-negative weight w(k) for each k ∈ K.

TASK: Find a causal graph G∗ = (V,E∗) such that

G∗ ∈ argminG∈G
∑

k∈K : G 6|=k

w(k). (1)

In words, our goal is to find a single graph G∗ that minimizes the sum of the weights of the
(in)dependence constraints not implied ( 6|=) by G∗. The weight function w(·) describes the reli-
ability of each constraint (obtained by independently run tests): conflicts among the constraints are
well-resolved when the sum of the weights of the constraints not satisfied is minimized. Since the
score function trivially satisfies score equivalence (Heckerman et al., 1995), an optimal causal graph
G∗ is a representative of the (Markov) equivalence class closest to the input constraints.

There are a number of different ways to obtain reliability weights for the independence con-
straints (see Section 5). Apart from a constraint satisfaction perspective, the objective function is
equivalent to maximizing the posterior probability P (G|D) under the simplifying modelling as-
sumptions: a) constraints are distributed independently given D, and b) (in)dependence constraints
exhaust all information on the causal graph in D (Jabbari et al., 2017; Hyttinen et al., 2014).
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Figure 1: (a) A directed mixed graph (DMG). (b) The σ-extension of the DMG in (a).

3. Extending the bcause Approach to Causal Discovery

The recent bcause approach (Rantanen et al., 2020), based on branch and bound (van Beek and
Hoffmann, 2015; Suzuki, 1996) with problem-specific techniques for speeding up search, offers a
competitive way of exactly solving the causal discovery problem under d-separation. In the follow-
ing, we extend the approach to support σ-separation and interventional datasets.

The branch-and-bound search in bcause is performed over the edge relation of DMGs with
cycles. Each node in the search tree corresponds to some partial solution (a DMG with some edges
possibly undecided). Starting from an empty partial solution with every edge undecided, edges are
decided recursively in depth-first manner as either present or absent. That is, two new branches are
opened at each point in the tree (excluding leaf nodes), which correspond to new edge decisions.
The leaves of the search tree have no undecided edges remaining and thus they represent all the
possible solutions (DMGs) for the given problem instance. As the search keeps track of the lowest-
weight solution G∗ encountered so far in the search, G∗ will be optimal solution once the search
has finished. Instead of having to construct the entire search tree, bcause employs strong core-based
lower bounding, as discussed later on, for identifying provably suboptimal partial solutions and
pruning the corresponding branches out from the search tree.

3.1 Implementing the σ-separation Criterion

We continue by explaining how σ-separation can be integrated into bcause. We will use the fol-
lowing equivalent definition of σ-separation as it corresponds more closely to that of d-separation.
Compared to Definition 2, all cases where Vi /∈ C are now in item (b), and cases where Vi ∈ C are
gathered in item (c).

Definition 3 (σ-connection) LetG be a DMG over a set of nodes V . Given a conditioning set C ⊆
V , a walk π between V1, Vn /∈ C is σ-connecting, if every triple of adjacent nodes (Vi−1, Vi, Vi+1)
in π is:

(a) a collider satisfying Vi ∈ C; or (b) a non-collider satisfying Vi /∈ C; or
(c) a non-collider satisfying Vi ∈ C, and if Vi → Vi+1 in the triple, then Vi ∈ ScG(Vi+1),

and if Vi → Vi−1 in the triple, then Vi ∈ ScG(Vi−1).

Nodes are σ-connected given C if and only if there is σ-connecting walk given C between them.

The first two conditions of Definition 3, (a) and (b), together form the definition for d-connection
(Definition 1), and only the condition (c) is σ-connection-specific. This motivates us to consider
the following σ-extension, which allows to check σ-separation through d-separation. This is similar
transformation as acyclification (Forré and Mooij, 2017; Forré and Mooij, 2018).
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Definition 4 (σ-extension) Let G = (V,E) be a DMG. The σ-extension of G, G′ contains all the
edges in G and for any edge Vi → Vj ∈ G such that Vi ∈ ScG(Vj), G′ includes also Vi ↔ Vj .

Note that the the bi-directed edges added at the last step of the σ-extension definition, corresponds
directly to condition (c) of Definition 3. The connection between d-separation and σ-separation can
be now confirmed as the following theorem.

Theorem 5 Nodes X,Y are σ-separated (connected) given C in G if and only if they are d-separated
(connected) given C in the σ-extension of G.

Proof Suppose walk π is σ-connecting given C in G by Definition 3. Based on this let us produce
a d-connecting path π′ in the σ-extension of G. We need to replace the parts where there is a triple
(Vi−1, Vi, Vi+1) satisfying the requirements of (c). This means that Vi is not a collider and Vi ∈ C.
If Vi → Vi+1 we have Vi ∈ ScG(Vi+1), in the σ-extension there would be Vi ↔ Vi+1. If Vi → Vi−1
we have Vi ∈ ScG(Vi−1), in the σ-extension there would be Vi ↔ Vi−1. Replacing the directed
edge(s) with the added bi-directed edge(s) ensures d-connection since Vi is conditioned on. This
change is local: it does not affect d-connectivity through other nodes.

Then suppose there is a walk π′ that is d-connecting in the σ-extension and let us produce a
walk π that is σ-connecting. The walk π′ may go through edges Vi ↔ Vi+1 that are in the extension
but not present in G. Edge Vi ↔ Vi+1 can only be added to the extension if there Vi → Vi+1 or
Vi+1 → Vi. Without loss of generality assume G has Vi → Vi+1 and thus Vi ∈ ScG(Vi+1) by
Definition 4. Then, Vi ↔ Vi+1 can be replaced by Vi → Vi+1 on the path. If Vi is not conditioned
on, walk comes to Vi with a tail and σ-connection is ensured by Definition 3(b). If Vi is conditioned
on, the requirements of Definition 3(c) are fulfilled and the walk is σ-connecting.

For example, X,Y can be confirmed to be σ-connected given Q,W in Figure 1 (a) since in the
extension shown in Figure 1 (b), X ↔ Q↔ Y is a d-connecting walk given Q,W .

When considering d-separation, bcause checks whether a d-connecting walk exists in a graph
between given two nodes X and Y and a conditioning set C by starting from X and moving from
node to node through the edges of the graph until we reach Y , excluding all non-active walks along
the way. Concretely, let Z and Q be nodes in the graph. If Q ∈ C, we are not allowed to move
through an edge Z ← Q. Additionally, if Z /∈ C and we had moved into Z through an inward
edge (→ Z or ↔ Z), we are not allowed to move through an edge Z ← Q or Z ↔ Q unless
there is a directed path Z → V1 → . . . → Vn where V1, . . . , Vn−1 /∈ C and Vn ∈ C. When using
σ-separation, the previous rules can be extended with the following exception: if Q ∈ C, we can
move through an edge Z ← Q if there exists a directed path from Z to Q.

3.2 σ-separation and Core-based Lower Bounds

As detailed in (Rantanen et al., 2020), bcause uses so-called core-based lower bounding during
search via linear relaxations. We now establish the correctness of this approach for σ-separation.

An unsatisfiable core is a set of (in)dependence constraints that cannot be simultaneously satis-
fied by any graph in G. One example is {X 6⊥⊥ Y,X 6⊥⊥ Z, Y ⊥⊥ Z|X,Y ⊥⊥ Z}: the dependencies
of X on Y and Z imply a dependence between Y and Z either marginally or conditional on X . To
find cores for the input dataset in the beginning of the search, bcause uses the seven core patterns
from (Hyttinen et al., 2017). Using these, lower bounds are obtained during search by formulat-
ing a minimum-cost hitting set problem where the unsatisfiability cores represent the sets and the
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(in)dependence constraints represent the elements. The objective is then to find a minimum-cost
subset of constraints that contains something from each core. To obtain the bounds in practice, the
linear relaxation of a standard integer programming formulation of these hitting set problems using
a linear programming (LP) solver.

The following theorem validates the use of cores (Hyttinen et al., 2017) obtained with d-separation
inside each experimental datasets also when using σ-sepration.

Proposition 6 Unsatisfiable cores of Hyttinen et al. (2017) are correct when using the σ-separation
interpretation.

Proof Since for a given core of constraints there is no DMG with d-separation interpretation, there
cannot be a DMG with σ-separation interpretation (Theorem 5).

3.3 Extension to Interventional Data

In addition to integrating σ-separation, we extend bcause to support interventional data. Further-
more, extending the cores of Hyttinen et al. (2017), we describe further LP constraints which capture
relationships between different experimental datasets.

To integrate support for interventional data into bcause, we modify the d-connection/σ-connection
checking within bcause. In particular, as explained at the end of Section 3.1, bcause checks for the
existence of a relevant d-connecting (or σ-connecting) walk when determining whether a constraint
is satisfied in a graph. This allows for taking interventions into account by assuming the absence of
incoming edges to nodes that are in the intervention set when searching for the walk.

The cores of Hyttinen et al. (2017) applied originally in bcause are semantically restricted to
a single data set. However, when there are several experimental datasets one can find additional
cores across datasets. One example of such a core is {X ⊥⊥ Y,X 6⊥⊥ Y ||Z} where the notation ||
means that the second constraint is obtained when intervening on Z. The core is due to the fact that
intervening on Z removes edges, and thus separation cannot turn to a connection. In general, for any
variables X,Y and a conditional set C, we have the following logical implications on constraints
across different experimental datasets:

X ⊥⊥ Y |C||J ⇒ X ⊥⊥ Y |C||J ′, (2)

X 6⊥⊥ Y |C||J ′ ⇒ X 6⊥⊥ Y |C||J, (3)

where the intervention sets satisfy J ′ ⊃ J . For example, consider the graph (a) in Figure 2. Clearly,
a constraint X 6⊥⊥ Y |Z,W ||∅ is violated in the graph. By the rule stated above, a constraint X 6⊥⊥
Y |Z,W ||Q has to be violated as well, since removing the incoming edge to Q would not increase
the connectivity between X and Y . In the LP used for core-based lower bounding the above rules
can be expressed as the LP constraints

(X ⊥⊥ Y |C||J) ≤ (X ⊥⊥ Y |C||J ′),
(X ⊥⊥ Y |C||J) ≤ 1− (X 6⊥⊥ Y |C||J ′),

1− (X 6⊥⊥ Y |C||J) ≤ (X ⊥⊥ Y |C||J ′),
1− (X 6⊥⊥ Y |C||J) ≤ 1− (X 6⊥⊥ Y |C||J ′),

where each (·) denotes a variable in the LP such that it is 1 if the constraint is satisfied and 0 if it is
not. (Due to the LP relaxation the variables may take values from [0, 1].)

6



LEARNING OPTIMAL CYCLIC CAUSAL GRAPHS FROM INTERVENTIONAL DATA

Y

!!
Q
��

//

W

}}
(a) Z

aa

X//oo

Y

��
W

}}
(b) Z

EE

X//oo

Y

(c) Z

DD

X//oo

Y

(d) X
��

CC Y

(e) X

Figure 2: (a) Original DMG. Rest are σ-connection graphs: (b) when Q conditioned on (c) when
also W is conditioned on. Graph (d) shows the result of the original code when also Z is
conditioned on. Graph (e) is the corrected version when Z is conditioned on.

4. Improving the ASP-based Approach of Forré and Mooij (2018)

We turn to the ASP-based discovery approach of Forré and Mooij (2018) for non-linear cyclic
models that is a modification the original ASP-based approach of Hyttinen et al. (2014) using the
d-separation criterion. The approach declaratively encodes the σ-separation criterion in the ASP
language, and applies the Clingo ASP solver for exact optimization. We suggest changes to the
ASP encoding to improve the overall efficiency of the approach, and fix an issue in their encoding
which in cases results in non-optimal/wrong solutions. We will only detail our technical changes to
the encoding of Forré and Mooij (2018); please refer to their paper for full details on the encoding.

The encoding of Forré and Mooij (2018) builds the connections of (in)dependence constraints
and the causal graph structure using operations of marginalization, conditioning and intervention of
a single node at a time, following the encoding for d-separation by Hyttinen et al. (2014). The idea
is that from the causal graph one can apply these operations node at a time, maintaining connection
properties on the way, and arrive at a graph over just two nodes mentioned in the relations: if there
is an arc, then the nodes are dependent, otherwise they are independent. Such an approach shares
information among the constraints and for d-separation achieves considerable speedups compared
to a path-specific encoding of Hyttinen et al. (2013) (Hyttinen et al., 2014). Forré and Mooij (2018)
encodes as ASP rules the formation of the tree (see Hyttinen et al. (2014) Figure 3) of operations at
grounding phase. However, we found that their tree is overly complex and the following simplified
version achieves marked running time improvements.

node(0..nrnodes-1). set(0..2**nrnodes-1).
ismember(M,Z) :- set(M),node(Z),M & (2**Z) != 0.

%mark the cjm combinations present at input
cjm(C,J,M) :- indep(X,Y,C,J,M,W).
cjm(C,J,M) :- dep(X,Y,C,J,M,W).

%first take out marginalization
% condition 2**Z > M-2**Z means Z is the largest variable in M
marginalize(C,J,M-2**Z,Z,M) :- cjm(C,J,M),ismember(M,Z),2**Z > M-2**Z,node(Z).
cjm(C,J,Msub) :- marginalize(C,J,Msub,Z,M).

%then take out conditioning
condition(C-2**Z,Z,C,J,0) :- cjm(C,J,0),ismember(C,Z), 2**Z > C-2**Z,node(Z).
cjm(Csub,J,0) :- condition(Csub,Z,C,J,0).

%finally take out intervention
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intervene(0,J-2**Z,Z,J,0) :- cjm(0,J,0),ismember(J,Z),2**Z > J-2**Z,node(Z).
cjm(0,Jsub,0) :- intervene(0,Jsub,Z,J,0).

Furthermore, through extensive experimentation we found inconsistencies the implementation
of Forré and Mooij (2018)2. With the use of Theorem 5, we were able to narrow down the problem-
atic cases. Consider the left most graph3 in Figure 2 and whether X is σ-separated from Y given
Q,W,Z. We can confirm that the corresponding σ-separation holds using Definition 2 (or since the
graph is acyclic, using the d-separation in Definition 1). The encoding of Forré and Mooij (2018)
checks the state of this constraints by applying conditioning operations to Q, W, and Z respec-
tively, as shown in Figure 2 (b-d). When conditioning on Z in Figure 2 (c) and arc X ↔ Y is drawn
(Figure 2 (d)) due the rule marked with %% X<->Z-->Y (anc of Z) => X<->Y (sigma)
(lines 125–133 of the ASP code) suggesting that X and Y are σ-connected given Z,Q,W . This
is because the rule only requires ancestor(Y,Z,J), which is satisfied as Y is an ancestor of Z
in the original graph. Contrary to this, Definition 2 (or Definition 2.19 in Forré and Mooij (2018))
requires that Y and Z should be in the same strongly connected component (which means Y and Z
should be ancestors of each other). Here, in Figure 2 (a), Z is not an ancestor Y (even though there is
a tail-head path in Figure 2 (c)). Thus adding ancestor(Z,Y,J) to the body (right-hand side) of
the rule and several other rules similarly prevents this behaviour. This corrected encoding produces
Figure 2 (e) when conditioning on Z in Figure 2 (c), and correctly implies that X 6⊥⊥ Y |Z,Q,W .
We have tested the corrected encoding against bcause+, i.e., our extension of bcause to σ-separation
and interventional data, and have found no deviations in the costs of optimal solutions reported.

5. EXPERIMENTS

We provide empirical results from three perspectives: (i) the impact of weighting schemes on accu-
racy and runtime efficiency; (ii) the impact of the novel constraints (as described in Section 3.3) on
the runtimes of bcause+; and (iii) the relative runtime efficiency of bcause+, the ASP approach of
(Forré and Mooij, 2018), and our modification ASP+ of the approach of Forré and Mooij (2018).

Impact of Weighting Schemes We consider three weighting schemes: a Bayesian model selection
based scheme, where weights are the difference of local scores w = |s(Y, {X} ∪ C) − s(Y,C)|,
where s(·, ·) denotes the local score familiar from Bayesian network structure learning (’BDeu’ with
different ESS, or BGe’) (Hyttinen et al., 2014); frequentist independence test based weights, where
w = | log(p)− log(pthreshold)| and p denotes the p-value obtained in a particular test and pthreshold is
the threshold used (’Freq’) (Magliacane et al., 2016); and posterior probabilities of d-separation by
averaging over DAGs for the variables involved in the test (’Pdsep’) (Claassen and Heskes, 2012).4

We used 100 causal graphs over 6 nodes. Edges were sampled randomly with average node-
degree 3. We generated data from three partially overlapping experimental datasets: one passive
observational and two where one variable was intervened on and one was unobserved, with 300
samples each. For simplicity, we assumed here acyclicity and joint causal sufficiency. Joint causal
sufficiency allows for latent confounding inside each data set but prohibits it wrt the full set of nodes
V , thus translating to the absence of bidirected edges. As suggested by Magliacane et al. (2016), we

2. We refer here to version 1.1 of the implementation. The corrections pointed out here have subsequently been
implemented in version 1.2.

3. Figure 5 in the supplementary material of Forré and Mooij (2018) shows a similar example.
4. We note that further proposed approaches are variations of these (Cooper, 1997; Margaritis and Bromberg, 2009;

Triantafillou and Tsamardinos, 2015; Jabbari et al., 2017).
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Figure 3: ROC-curves and total running time on discrete and continuous data.

scored the presence of each edge in the graphs by the difference of score of the optimal graph with
the edge present and the optimal graph with the edge absent. One benefit of this is that edge scores
are deterministically determined by the data; there is no bias due to solvers favouring particular type
of graphs over others.

Figure 3 (top left) shows the ROC curve for the different weights. Note that that the straight
parts on any curve are due to several edges receiving zero score, meaning that the data does not
provide any support in either existence or absence of them. The frequentist based weights exhibit
best performance when the p-value threshold is at 0.1, suggesting that care should be taken when
selecting this threshold for the sample sizes used in each data set. Bayesian model selection based
scores exhibit weaker performance here. This is partially due to high complexity penalities over-
weighing moderate dependencies in tests with larger conditioning sets. Figure 3 (top right) gives
the total running times of bcause for obtaining all edge scores for each of the 100 instances. Lim-
iting the conditioning set size for the test does not have a great effect; including more may actually
make solving faster (due to better bounds). BDEU 1 is the fastest to solve, but also results in worst
accuracy. Figure 3 (bottom row) shows similar results for continuous linear Gaussian data. Overall,
for higher accuracy longer solving times are needed. Frequentist tests offer best accuracy, although
this hinges on choosing the right p-value threshold for the particular sample size.
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Figure 4: bcause+, ASP (by Forré and Mooij (2018)) and ASP+ (our modification of ASP) on
instances with 1 (“P +1 exp”), 3 (“P +3 exp”) and 5 (“P +5 exp”) experimental datasets.
Left: 6-node graphs. Right: 7-node graphs under joint causal sufficiency assumption.

Runtime Efficiency We evaluate the runtime performance of bcause+ and ASP+ against the ASP
approach of Forré and Mooij (2018) on simulated data from non-linear cyclic causal models gener-
ated following Forré and Mooij (2018). With 300 samples per dataset, the data was simulated with
6-7 observed nodes and 2 latent nodes, the nonlinear relationships were neural network based. The
average node-degrees were 2.2 (6 observed nodes) and 2.3 (7 observed nodes). Constraint weights
were obtained from an independence test based on rank transformations with threshold 0.01 and
with conditioning set size limited to three. 6-node instances with 1, 3 and 5 experimental datasets
resulted in 450, 900 and 1350 constraints, respectively, and 7-node instances with 1, 3 and 5 exper-
imental data sets in 1092, 2184 and 3276 constraints, respectively.

Figure 4 shows the number of instances solved to optimum (x-axis) under different per-instance
time limits (y-axis). Our enhanced ASP+ is consistently the fastest of the three approaches on 6-
variable instances (left). Here both ASP encodings performed better than bcause+, although the
performance gap narrows as the number of experimental datasets is increased. On 7-variable in-
stances under joint causal sufficiency (right), the enhanced ASP+ outperforms the rest on instances
with one experimental dataset. However, bcause+ significantly outperforms both of the ASP ap-
proaches as the number of experimental datasets is increased; we expect this to be due to the fact
that the number of constraints increases significantly as the number of datasets is increased, which
results in larger declarative encodings hindering the ASP solver. Furthermore, our enhanced ASP+
consistently outperforms the original ASP approach by Forré and Mooij (2018). Finally, as seen
in Figure 5, we observe that the additional cores between datasets (recall Section 3.3) give a non-
negligible boost to the runtime performance of bcause+ for each experimental setting.

6. CONCLUSION

We generalized and improved recent exact approaches to causal discovery in a very general set-
ting, involving non-linearities, cycles and several experimental datasets in which only a subset of
variables are recorded. In particular, we generalized a recent branch-and-bound approach to causal
discovery by integrating support for σ-separation and interventional data, and provided improve-
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Figure 5: Comparison of bcause (bcause+ without dataset linking LP constraints) and bcause+.

ments to an ASP-based declarative approach to causal discovery in this setting. Empirically, we
observed a tradeoff in accuracy vs runtimes of exact causal discovery brought on by the choice of
weighting schemes for independence constraints, and further showed that, depending on the data at
hand, both the generalized branch-and-bound approach and the improved ASP approach can even
significantly outperform a recent ASP approach to causal discovery under σ-separation.
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