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Abstract
There are domains, such as in biology, medicine, and neuroscience, where the causal relations vary
across members of a population, and where it may be difficult to collect data for some specific
members. For these domains, it is convenient to develop algorithms that, from small sample sizes,
can discover the specific causal relations of a subject. Learning these subject-specific models with
the existing causal discovery algorithms could be difficult. Most of them were designed to find the
common causal relations of a population in the large sample limit. Although transfer learning tech-
niques have shown to be useful for improving predictive associative models learned with limited
data sets, their application in the field of causal discovery has not been sufficiently explored. In this
paper, we propose a knowledge transfer algorithm for discovering Markov equivalence classes for
subject-specific causal models. We explore transferring weighted instances of auxiliary data sets,
according to their relevance, for improving models learned with limited sample sizes. Experimental
results on data sets generated from simulated and benchmark causal Bayesian networks show that
our method outperforms in adjacency and arrowhead recovery the base and a similar knowledge
transfer discovery methods.
Keywords: Bayesian networks, Causal discovery, Transfer learning, Subject-specific model.

1. Introduction

Probabilistic graphical models (PGMs) are useful tools for encoding causal relations between varia-
bles of closed systems and provide information to make predictions under manipulations. In their
learning, either from observations, through interventions or both, discovering their causal structure
is an important aspect. From observational data, it is possible to discover Markov Equivalence
Classes (MECs) that represent the structure of a set of equivalent causal PGMs with the same joint
probability distribution (Chickering, 2002).

Most algorithms have been designed to learn population-wide causal PGMs including the com-
mon causal relations of a population (Glymour et al., 2019; Malinsky and Danks, 2018; Mooij
et al., 2019; Spirtes and Zhang, 2016; Tillman and Eberhardt, 2014). In some domains, there could
be variations in causal relations across the members of a population. For example, in neuroscience,
because of differences in the degree of disease affectation and the recovery process, it has been
observed that causal relations between brain regions might vary across patients (Grefkes and Fink,
2014). Findings in genetics also have revealed that there are somatic genome alterations causing
expression changes in specific tumors (Cooper et al., 2018). For these domains, it is convenient to
develop algorithms to learn subject-specific causal models that help to capture the specific causal
relations of a particular subject at some stage of interest, such as disease or recovery stage.

Learning subject-specific MECs from a limited sample size that include the specific causal struc-
ture of a particular member of a population could be challenging. Many existing algorithms find
MECs that include the common causal relations of a population in the large sample limit (Zhang

1



et al., 2018; Glymour et al., 2019). However, because of the physical condition of the subjects, the
difficulty or cost to carry out experiments, it can be complicated collecting enough data for some
subjects. Transfer learning has shown to be useful for improving models learned with limited data
sets, allowing the use of auxiliary data that comes from different models with different probability
distributions (Pan and Yang, 2010).

In this paper, we propose a knowledge transfer algorithm for learning subject-specific MECs
from limited data sets. It is an extension of the score-based algorithm Greedy Equivalence Search
(GES) (Chickering, 2002) that transfers locally weighted instances of the auxiliary data sets to ob-
tain a subject-specific MEC. We provide a strategy for transferring weighted auxiliary instances
considering the probability distributions’ differences between the target and the auxiliary sources.
We evaluate and compare our algorithm with GES, PC (Spirtes et al., 2000), and a similar trans-
fer learning algorithm (Jia et al., 2018) using data sets generated from simulated and benchmark
Bayesian networks. Experimental results show that our algorithm recovers MECs with a higher
number of correct adjacencies and v-structures than the ones recovered by the compared methods.

The paper is organized as follows. Related work to our proposal is described in Section 2.
Section 3 provides an introduction to the main relevant concepts and includes a description of the
Greedy Equivalence Search algorithm. The proposed transfer algorithm is presented in Section 4.
The experimental evaluation and results are described in Section 5. Finally, the conclusions of this
paper are presented in Section 6.

2. Related work

Several works have explored knowledge transfer for learning PGMs. However, most of these studies
have relied on the learning of associative PGMs (Luis et al., 2010; Niculescu-Mizil and Caruana,
2007; Oyen and Lane, 2013). Limited work (Jia et al., 2018) has been done on knowledge transfer
for learning causal PGMs from observational data. Although other algorithms have been proposed
for learning MECs from multiple data sets, their aim is different of that for knowledge transfer
algorithms. These algorithms aim to discover MECs that include the common causal relations in
all data sets, assuming that all data sets include a representative number of samples (Claassen and
Heskes, 2010; Ramsey et al., 2010; Tillman and Spirtes, 2011). On the other hand, even though
some studies have explored the learning of subject-specific causal models (Cooper et al., 2018;
Jabbari et al., 2018), which encoding the specific causal relations of a subject of population, they
assume that there are enough data for the learning and use only data of the target subject.

The most related work to our proposal is the knowledge transfer algorithm of Jia et al. (2018). It
is a modification of the PC algorithm that assumes all auxiliary data sets have the same relevance for
learning a target MEC, ignoring their differences in probability distributions. Moreover, like other
PC-based algorithms, it requires large sample sizes for the conditional independence tests (Glymour
et al., 2019). Score-based algorithms have shown to be more accurate for learning MECs with small
samples than constraint-based algorithms such as PC (Malinsky and Danks, 2018).

3. Preliminaries

3.1 Basic definitions

In this section, we present some basic definitions related to graphs and probabilistic graphical mo-
dels. Throughout the paper, we will use capital letters (e.g., X,Y, Z) to denote variables and their
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values with lower letters (e.g., x, y, z). We denote a set (of variables, parameters, or samples) by
bold capital letters (e.g X,Pa,Z). The assignment of value of each variable in a given set of
variables, are denoted with bold lower letters (e.g., x,pa, z).

The undirected graph resulting from ignoring the direction of edges in a directed acyclic graph
(DAG) is the skeleton of the DAG. A v-structure in a DAG is an ordered triple of nodes (X,Y, Z),
such that, the edges X → Y and Y ← Z are in the DAG, and there is no edge between the nodes
X,Z (Chickering, 2002). Two DAGs are equivalent if and only if they have the same skeletons and
the same v-structures (Verma and Pearl, 1991).

A set of equivalent DAGs forms a Markov equivalence class (MEC) and can be described by
a partial directed acyclic graph (PDAG) G, called completed PDAG (CPDAG), where there is a
directed edge for each edge contained in a v-structure, and a undirected edge for every other edge
(Chickering, 2002).

A Bayesian network (BN) for a set of variables X = {X1, X2, ..., Xp} is a pair (G,Θ), where
G = (V,E) is a DAG with nodes that coincide with the variables in X that defines the structure of
a BN, and θ is the set of parameters Θ = {θ1, θ2, ..., θp} defining the conditional probability θi =
P (xi|pa(xi)), of each node Xi given its parents Pa(Xi) in G (Sucar, 2015). A causal Bayesian
network (causal BN) is a BN in which directed edges represent direct causes (Spirtes et al., 2000).

3.2 Greedy Equivalence Search

Greedy Equivalence Search (GES) (Chickering, 2002) is a score-based algorithm for learning the
structure of Bayesian networks. In the GES algorithm, the problem of learning the structure of
Bayesian networks is stated as follows (Alonso-Barba et al., 2013):

Definition 1 Given a set D = {d1, ..., dI} containing I instances, where each di represent an a-
ssignment of value to each variable in X = {X1, X2, X3, ..., Xp}, the structure of a BN contained
in a MEC represented by the CPDAG G∗ = (X,E) is found by maximizing a function such that:

G∗ = arg max
G∈GC

S(G,D) (1)

where S(G,D) is a scoring function that measures the goodness of fit of D with a candidate MEC
G, and GC is the set of all candidate MECs defined over X.

GES heuristically searches the structure, under causal sufficient and faithfulness conditions, in
the space of Markov equivalence classes in two stages. In each step of the algorithm, every candidate
MEC is evaluated, and it is selected the MEC with the highest score that improves the score function.
In the first stage, starting with an empty graph, GES adds edges to candidate MECs until a local
maximum is reached. Removing edges of the MEC found in the first stage, is performed in the
second stage. In each stage of the algorithm, candidate MECs are generated, adding or deleting all
possible single edges that yield valid CPDAGs (Alonso-Barba et al., 2013). The algorithm stops
when a local maximum is reached and returns the CPDAG that represents the found MEC.

Decomposable and score-equivalent functions are used for evaluating candidate MECs. A
scoring function S(·) is decomposable if it can be expressed as the product of local functions
S(Xi,Pa(Xi),D), that only depend of a node Xi ∈ X and its parents Pa(Xi). If for any pair
of equivalent DAGs G and G′, a scoring functions S(·) assigns the same score, S(G) = S(G′), it
is score equivalent. Decomposable functions allow to evaluate locally candidate MECs, in each
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subgraph composed by a node Xi with its parents Pa(Xi), where the parents of each node are ob-
tained from a DAG included in the candidate MEC. Since the scoring function is score equivalent,
any DAG contained in the candidate MEC could be used for evaluating that MEC.

The Bayesian Dirichlet equivalent and Uniform (BDeU) is a decomposable and score equivalent
function that evaluate MECs defined over discrete variables with complete data sets D (without
missing values). It is defined as follows (Heckerman et al., 1995):

BDeU(G,D) =

p∏
i=1

{S(Xi,Pa(Xi),D)} (2)

S(Xi,Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(αij + Cij)

ri∏
k=1

Γ(αijk + Cijk)

Γ(αijk)
(3)

Where p is the number of nodes in G, qi is the number of values of Pa(Xi), ri is the number of
values of Xi, Cijk is the number of cases in which Xi = k and its parents pa(Xi = k) = j,
Cij =

∑
k Cijk, and αijk = 1

riqi
is a Dirichlet prior parameter with αij =

∑
k αijk.

4. Knowledge Transfer Learning with Weighted Instances

This section describes an algorithm for learning subject-specific Markov equivalence classes called
Knowledge Transfer Learning with Weighted instances GES (KTL-WeGES). It is an extension of
the GES algorithm, that using instances of auxiliary data sets tries to improve the identification of
Markov equivalence classes learned with limited sample sizes. This problem of knowledge transfer
for learning MECs is formally stated as follows:

Definition 2 Giving a target data set DT and a set of M auxiliary data sets {Ds}, s = 1, ..,M ,
how to improve a target MEC GT = (X,E) learned using only DT, transferring instances from the
auxiliary data sets.

Where improve means that the obtained target MEC will have a higher number of correct ad-
jacencies and v-structures than those obtained by an algorithm that only uses all the available data
for the target subject. In this definition, we assume that DT and {Ds} contain instances of X that
were sampled from different probability distributions, with size |DT| = NT , and each |Ds| = NS ;
where NT << NS , and NT is small such that the instances in DT are insufficient to get a good
estimation for a target MEC.

KTL-WeGES extends GES for using auxiliary data sets in the evaluation of candidate MECs.
Particularly, KTL-WeGES uses knowledge transfer for evaluating locally candidate MECs. In each
step of the algorithm, the local score is calculated from a combination of instances of the target
data set with weighted instances of auxiliary data sets. This procedure is described in Algorithm 1.
KTL-WeGES considers the local evaluation of candidate MECs in two important steps. The first
step is the estimation of the weight of each auxiliary data set, and the second is scoring the local
structure of a candidate MEC using the weighted instances. We propose using the relevance of
each auxiliary data set for defining its weight. Specifically, the weight of each auxiliary data set
s is a factor Ws expressing how relevant is the auxiliary dataset for finding the local structure of
a target MEC, with greater relevance for values nearly to one. This weight is estimated from the

4



differences in the conditional probability distribution P (Xi|Pa(Xi)), between the target and the
auxiliary sources as follows,

Ws = 2−|DKLD(PT (Xi|PaT (Xi)),Ps(Xi|PaT (Xi)))| (4)

whereDKLD is the Kullback-Leibler divergence (Campos Ibáñez, 2006) that estimate the difference
between PT and Ps,

DKLD(PT (·), Ps(·))) =
1

riqi

∑
xi,paT (xi)

PT (xi|paT (xi))log

(
PT (xi|paT (xi))

Ps(xi|paT (xi))

)
(5)

and 1
riqi

is a normalization factor, over the number of possible configurations for Xi and Pa(Xi),
which avoids increases in DKLD when the number of parents for Xi is increased.

In the second step of the local scoring of candidate MECs, KTL-WeGES uses the following
modification of the local BDeU score (defined in Equation 3) for evaluating the goodness of fit of
the combination of the auxiliary and target instances with a candidate local structure:

SKTL(Xi,Pa(Xi),DT, {Ds}, {Ws}) =

qi∏
j=1

Γ(αij)

Γ(αij + C ′ij)

ri∏
k=1

Γ(αijk + C ′ijk)

Γ(αijk)
(6)

where C ′ijk counts the combination of auxiliary and target instances,

C ′ijk = K

(
(CT )ijk +

∑
s

Ws(Cs)ijk

)
(7)

with (CT )ijk and (Cs)ijk represent the number of cases, in DT and Ds respectively, in which
Xi = k and its parents paT (Xi = k) = j; Ws encodes the relevance of the auxiliary data set s; and
K is a factor that normalizes the total number of cases to be N = NT +MNS . This normalization
avoids giving a higher score to configurations with greater weight.

It is important to note that the computational complexity in the estimation of the local score from
the target and auxiliary data sets depends on the total sample size N , the number of possible values
of Xi and Pa(Xi), and |Pa(Xi)|, the number of parents of Xi. Considering that Xi and its parents
could take at most d values, the computational complexity of this estimation isO(N(1+|Pa(Xi|)+
d1+|Pa(Xi)|) (Scutari et al., 2019). This expression indicates that KTL-WeGES is limited to work
with small MECs which have few nodes (less than twenty).

5. Experimental Results

In this section, we evaluate and compare the performance of the KTL-WeGES with GES, PC and
KTL-PC (Knowledge Transfer Learning PC), the knowledge transfer algorithm proposed by Jia
et al. (2018). We evaluated the models obtained by GES and PC using only the target data, and
these results are compared with those obtained by KTL-WeGES and KTL-PC using the auxiliary
and target data sets. In the PC and KTL-PC algorithms, following the proposal of Jia et al. (2018),
we use conditional mutual information as the conditional independence test.
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Algorithm 1: KTL WEGES

Algorithm KTL WeGES
Input: the target data set DT, the set of auxiliary data sets {Ds}
Output: CPDAG GMAX

GMAX ← ∅
bestEdgeModif ← ∅
δMAX ← −∞
scoreNew ←

∑
Xi in GMAX

localScoreKTL(Xi, ∅,DT, {Ds})
(GMAX , scoreMax)← searchG(dir = adding,DT, {Ds},GMAX , scoreNew)
(GMAX , scoreMax)← searchG(dir = deleting,DT, {Ds},GMAX , scoreMax)
return GMAX

Function searchG(dir,DT, {Ds},GMAX , scoreNew)
edgeModification← dir
repeat

scoreMax← scoreNew
foreach possible edge modification in GMAX do

NewPa(Xi)← modify the parents of Xi with the edge modification
δS ← localScoreKTL(Xi,NewPa(Xi),DT, {Ds})
δS ← δS − localScoreKTL(Xi,Pa(Xi),DT, {Ds})

if δS > δMAX then
δMAX ← δS
save edge modification in bestEdgeModif

end
end
scoreNew ← δMAX + scoreMax
if scoreNew > scoreMax then

Update GMAX with bestEdgeModif
end

until (scoreNew <= scoreMax)
return GMAX , scoreMax

Function localScoreKTL(X,Pa(X),DT, {Ds})
foreach Ds do

Ws ← localRelevance(X,Pa(X),DT, {Ds}) Equation (4)
end
scoreX ← SKTL(X,Pa(X),DT, {Ds}, {Ws})
return scoreX

5.1 Generation of synthetic data sets

Target and auxiliary data sets are generated from ground truth causal Bayesian networks in the
following form (Luis et al., 2010). Target data set is sampled from the ground truth causal BN,
and auxiliary data sets, from auxiliary causal BNs. Auxiliary causal BNs are generated modifying
in certain percent (pMod) the edges of the ground truth models, adding pMod edges, followed by
deleting edges in the same pMod percent. Increasing pMod, we generate auxiliary BNs less related
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to the ground truth model. Parameters of each auxiliary BN are estimated using a data set sampled
from the ground truth BN. Each data set (target or auxiliary) is sampled from its corresponding
BN with forward sampling, in which the values of each variable Xi are sampled in ancestral order
(parents before their children), in such form that its values xi are drawn from P (xi|pa(xi)).

5.2 Evaluation metrics

We evaluated our algorithm in its ability for finding the skeleton and v-structures of the ground truth
causal BNs. The CPDAGs estimated by our algorithm were compared with those of the ground
truth causal BNs. Normalized Hamming distance (NSHD), F-measure, adjacency precision (AP)
and recall (AR), arrowhead precision (AHP) and recall (AHR), were used as evaluation metrics.
Normalized structural Hamming distance is the minimum number of edge insertions, deletions, and
changes needed to transform a model into another. Precision (P) is the ratio TP/(TP + FP ),
the ratio TP/(TP + FN) is the recall (R), and 2PR/(P + R) is the F-measure. For adja-
cency precision and recall, TP is the number of adjacencies that are in common in the estimated
model and ground truth model without considering the edge orientation; FP is the number of
adjacencies that are present in the estimated model but not in the ground truth model; and FN
is the number of adjacencies that are present in the ground truth model but not in the estimated
model (Tillman and Spirtes, 2011). In arrowhead precision and recall, TP represents the number of
common edges in the estimated and the ground truth models that share the same orientation; false
orientation (FP or FN ) is when an oriented edge X → Y is present in one model, but in the other
one there is X ← Y , X − Y , or no edge between X and Y (Jabbari et al., 2018).

5.3 Experiments with Synthetic Causal Bayesian Networks

In this section, we present the experiments performed with synthetic data sets generated from simu-
lated binary discrete causal Bayesian networks. A simulated causal BN is randomly generated with
p nodes and with at most k = p/2 parents, following the procedure described in (Ide and Cozman,
2002). Parameters of each variable are sampled from uniform distributions.

For our experiments, we randomly simulated six binary causal BNs with {5, 6, 7, 8, 9, 10} nodes
as ground truth causal BNs. Three auxiliary causal BNs were generated from each simulated causal
BN, two of them modifying its edges in 10%, and in 40% the other one. Parameters of auxiliary
causal BNs were estimated from a data set with 100(2k+2 ∗ (p − 1)) samples, with k = p/2.
From each auxiliary causal BN, an auxiliary data set with NS = 100(2k+1 ∗ (p− 1)) samples was
obtained. Twenty target data sets, from each synthetic causal BN, with different size were generated,
starting in the number of nodes p in the causal BN, and increasing by the same factor of p, that is
NT = {p, 2p, ..., 20p}. These steps were repeated ten times, yielding sixty random causal BNs in
total as ground truth models (with twenty target data sets each one) for our experiments.

The CPDAGs obtained by the GES, PC, KTL-We and KTL-PC algorithms were compared with
the CPDAGs of ground truth models, and evaluated using the metrics described in Section 5.2. The
averages for each metric over all random causal BNs and over all target data sets of each random
causal BN, for each algorithm, are summarized in Table 1. From these results, we note first that
comparing the base algorithms, PC and GES, GES shows a better performance in adjacency and
arrowhead recovery. It seems to indicate that GES has a better performance with small sample
sizes, although the results in recall show that in these conditions, GES tends to recover fewer edges.
Comparing KTL-PC against its base algorithm, PC, it performs better in adjacency precision, but it
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Method AP ↑ AR ↑ AHP ↑ AHR ↑ NSHD ↓
PC 0.67(0.05) 0.33(0.12) 0.37(0.11) 0.16(0.05) 0.96(0.08)

KTL-PC 0.81(0.03) 0.21(0.05) 0.18(0.08) 0.07(0.02) 0.76(0.09)
GES 0.83(0.03) 0.34(0.03) 0.36(0.16) 0.12(0.02) 0.74(0.09)

KTL-WeGES 0.93(0.03) 0.94(0.04) 0.88(0.12) 0.75(0.10) 0.35(0.13)

Table 1: Averages in adjacency precision (AP) and recall (AR), arrowhead precision (AHP) and
recall (AHR); and normalized structural Hamming distance (NSHD) for synthetic causal Bayesian
networks. In parenthesis are shown the corresponding standard deviation, and in bold, the best
performances. With ↑ are marked, metrics that are better with high values near one, and with ↓,
those ones that are better with low values near zero.

has poorer performance in the other evaluation metrics. The results suggest that KTL-PC recovers
fewer edges of the ground truth models, hence this knowledge transfer method does not seem to
improve the MECs recovering. On the other hand, our proposal KTL-WeGES outperforms all
methods. We found, using the Wilcoxon paired signed-rank test, that these observed differences
between the methods are statistically significant with a level of significance of 5%. KTL-WeGES,
compared to GES, improves adjacency and arrowhead recovery, showing better performance in
adjacency precision and recall. In general, the results indicate that KTL-WeGES tends to recover
CPDAGs with more true oriented edges than GES. Although, it also tends to include false edges in
the CPDAGs that affects its performance in arrowhead recovery.

The performance of KTL-WeGES when varying the number of nodes in the target MEC and
the sample size is depicted in Figures 1 and 2, respectively. In Figure 1, the x-axis represents the
number of nodes, and the y-axis, the averages of the evaluation metrics over all synthetic causal BNs
with p nodes. These plots show good performance in the F-measure, superior and almost similar
in all cases for adjacency, slightly decreasing and with higher standard deviation for the arrowhead.
The low F-measure, in adjacency and arrowhead, when p = 6 indicates that in this case, KTL-
WeGES is adding more false edges, increasing the number of false v-structures. The NSHD plot
indicates an increase in the difference between the estimated CPDAGs and those corresponding to
ground truth causal BNs as the number of nodes increases. Because, in this case, the performance
of KTL-WeGES decreases in arrowhead recovery. The x-axis in Figure 2 represents the index of
the corresponding sample size NT in the test set {p, 2p, ..., 20p} for target data. The y-axis is the
average of the evaluation metric over all synthetic causal BNs in the test set. It can be observed in
these plots that all metrics for KTL-WeGES are almost constant across the sample size, increasing
the standard deviation when the sample size increases in arrowhead F-measure. These plots suggest
that the sample size of the target data set does not appear to influence the performance of KTL-
WeGES, because the method gives more importance to auxiliary data sets with a significantly larger
sample size than the target data sets.

5.4 Experiments with Benchmark Causal Bayesian Networks

In this section we present the experiments performed with the benchmark discrete causal Bayesian
networks: COMA, ASIA and SACHS; available in the Bayesian Network Repository (Scutari,
2012). COMA with five nodes and five edges, ASIA with eight nodes and eight edges, and SACHS
with eleven nodes and seventeen edges.
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(a) (b)

(c)

Figure 1: Plot of the averages in (a) F-measure for adjacencies, (b) F-measure for arrowhead, and (c)
normalized structural Hamming distance (NSHD) across the number of nodes p. The bars represent
the standard deviation of each metric.

(a) (b)

(c)

Figure 2: Plot of the averages in (a) F-measure for adjacencies, (b) F-measure for arrowhead, and
(c) normalized structural Hamming distance (NSHD) across the target sample size NT . The bars
represent the standard deviation of each metric.

Four auxiliary causal BNs were generated from each benchmark causal BN, modifying them
in {10%, 20%, 30%, 40%}. Following the same criteria in the generation of synthetic causal BNs,
parameters of auxiliary causal BNs were estimated from a data set with N = 100(

∏
i=1,...,k+2 ri)

samples. This sample size was estimated from the first k + 2 variables of the causal BN, with
the highest number of values ri. Each auxiliary data set with size NS = 100(

∏
i=1,...,k+1 ri) was

sampled from each auxiliary causal BN. From each benchmark causal BN, twenty target data sets
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NT = {p, 2p, ..., 20p} were generated. These steps were repeated ten times, yielding in total, for
each benchmark causal BN, 200 target data sets for our experiments.

The averages over all target data sets of the evaluations metrics for each benchmark causal
BN are summarized in Table 2. The results indicate a similar performance for all methods than
those obtained with synthetic causal BNs. Poor performance is observed for PC and KTL-PC, and
KTL-PC does not improve the models obtained by PC. Our proposal KTL-WeGES outperforms all
methods showing superior performance than with synthetic causal BNs. Considering that there is
less variability in the complexity of the structure of the ground truth models, KTL-WeGES shows
better performance with benchmark causal BNs than with synthetic ones. The results for SACHS
indicate that KTL-WeGES is discovering CPDAGs with false edges, which increases the differences
with the ground truth models.

BN Method AP ↑ AR ↑ AHP ↑ AHR ↑ NSHD ↓

Coma

PC 0.75(0.11) 0.64(0.22) 0.00(0.00) 0.00(0.00) 0.90(0.17)
KTL-PC 0.82(0.23) 0.28(0.12) 0.00(0.00) 0.00(0.00) 0.63(0.15)

GES 0.78(0.21) 0.37(0.18) 0.05(0.22) 0.03(0.11) 0.61(0.13)
KTL-WeGES 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00)

Asia

PC 0.87(0.15) 0.39(0.19) 0.21(0.36) 0.07(0.11) 1.21(0.23)
KTL-PC 0.76(0.12) 0.37(0.01) 0.08(0.20 0.04(0.10) 0.79(0.08)

GES 0.75(0.11) 0.54(0.15) 0.43(0.31) 0.41(0.33) 0.82(0.34)
KTL-WeGES 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00)

Sachs

PC 0.47(0.14) 0.09(0.03) - - 0.55(0.06)
KTL-PC 0.76(0.05) 0.29(0.05) - - 0.45(0.03)

GES 0.87(0.05) 0.47(0.11) - - 0.45(0.11)
KTL-WeGES 0.94(0.00) 1.00(0.00) - - 0.18(0.00)

Table 2: Averages in adjacency precision (AP) and recall (AR), arrowhead precision (AHP) and
recall (AHR); and normalized structural Hamming distance (NSHD) for benchmark causal Bayesian
networks. In parenthesis are shown the corresponding standard deviation, and in bold the best
performances. AHP and AHR are not reported for SACHS because it does not have v-structures.
With ↑ are marked metrics that are better with high values near one, and with ↓ those ones that are
better with low values near zero.

6. Conclusions

In this paper, we propose a knowledge transfer algorithm for learning subject-specific MECs with
a limited sample size. Our proposal, an extension of the GES algorithm, considers transferring
weighted instances of the auxiliary data sets to alleviate the lack of enough data on the target and to
find the local structure of the target MECs. To estimate the weights, we introduced a strategy based
on the local difference between the probability distributions of the target and the auxiliary sources.

Our experimental results, over synthetic and benchmarks causal BNs, suggest that our strategy
of leveraging weighted instances of the auxiliary data sets seems to work for recovering MECs with
higher quality than those discovered by the baseline methods, and an alternative knowledge transfer
approach. Our proposal outperforms in adjacency and arrowhead recovery all the compared me-
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thods: GES, PC, and KTL-PC (Jia et al., 2018), in all tested BNs and regardless of the sample size
of target data sets.

This paper shows the results obtained from our first experiments using auxiliary data sets of
the same size. However, our proposal, with minimal changes, could work with auxiliary data sets
of different sizes. In the future, we plan to extend our proposal for discovering MECs of high
dimensionality and with continuous nodes. We also contemplate including strategies for improving
the arrowhead recovery.
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