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Abstract
For classification problems, Bayesian networks are often used to infer a class variable when
given feature variables. Earlier reports have described that the classification accuracy of
Bayesian network structures achieved by maximizing the marginal likelihood (ML) is lower
than that achieved by maximizing the conditional log likelihood (CLL) of a class variable
given the feature variables. However, the performance of Bayesian network structures
achieved by maximizing ML is not necessarily worse than that achieved by maximizing CLL
for large data because ML has asymptotic consistency. As the sample size becomes small,
however, the error of learning structures by maximizing the ML becomes rapidly large; it
then degrades the classification accuracy. As a method to resolve this shortcoming, model
averaging, which marginalizes the class variable posterior over all structures, has been
proposed. However, the posterior standard error of the structures in the model averaging
becomes large as the sample size becomes small; it subsequently degrades the classification
accuracy. The main idea of this study is to improve the classification accuracy using the
subbagging to reduce the posterior standard error of the structures in the model averaging.
Moreover, to guarantee asymptotic consistency, we use the K-best method with the ML
score. The experimentally obtained results demonstrate that our proposed method provides
more accurate classification for small data than earlier methods do.
Keywords: Bayesian networks; classification; model averaging; structure learning.

1. Introduction

Bayesian network classifiers (BNC), which are special cases of Bayesian networks designed
for classification problems, have yielded successful results in real-world applications. The
most common score for learning Bayesian network structures is the marginal likelihood
(ML) of a structure. The structure which maximizes ML is called a generative model,
which represents the joint probability distribution of all variables. However, the most
common score for BNC structures is conditional log likelihood (CLL) of the class vari-
able given all the feature variables (Friedman et al., 1997; Grossman and Domingos, 2004;
Carvalho et al., 2013). Friedman et al. (1997) claimed that the structure maximizing CLL,
called a discriminative model, provides more accurate classification than that maximizing
the ML. The reason is that the CLL only reflects the class variable posterior, whereas the
ML reflects the posteriors of all the variables.
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Nevertheless, ML is known to have asymptotic consistency, which guarantees that the
structure which maximizes the ML converges to the true structure when the sample size
is sufficiently large. Therefore, Sugahara et al. (2018) demonstrated experimentally that
the BNC performance achieved by maximizing the ML is not necessarily worse than that
achieved by maximizing CLL for large data. However, their experiments also demonstrated
that the classification accuracy of the structure maximizing the ML becomes rapidly worse as
the sample size becomes small. They explained the reason as that the class variable tends to
have numerous parents when the sample size is small. Therefore, the conditional probability
parameter estimation of the class variable becomes unstable because the number of parent
configurations becomes large. Then the sample size for learning a parameter becomes sparse.
This analysis suggests that exact learning BNC by maximizing the ML to have no parents
of the class variable might improve the classification accuracy. Consequently, they proposed
exact learning augmented naive Bayes (ANB) classifier, in which the class variable has no
parent and in which all feature variables have the class variable as a parent. Additionally,
they empirically demonstrated the effectiveness of their method.

However, the fundamentally important reason for the problem is that the error of learn-
ing structures becomes large when the sample size becomes small. Model averaging, which
marginalizes the class variable posterior over all structures, has been known as a method to
alleviate this shortcoming (Madigan and Raftery, 1994; Chickering and Heckerman, 2000).
However, the number of structures increases super-exponentially for the network size.
Therefore, averaging all structures with numerous variables is computationally infeasible.
The most common approach to this difficulty is the K-best method (Tian et al., 2010;
Chen and Tian, 2014; He et al., 2016; Chen et al., 2015, 2016, 2018; Liao et al., 2018), which
considers only the K-best scoring structures.

However, the posterior standard error of the structures in model averaging becomes
large for a small sample size. It then decreases the classification accuracy. To reduce the
posterior standard error, the resampling methods, such as the adaboost (adaptive boost-
ing) (Freund and Schapire, 1997), the bagging (bootstrap aggregating) (Breiman, 1996),
and subbagging (subsampling aggregating) (Bühlmann and Yu, 2002) are known. Also,
Jing et al. (2008) proposed ensemble class variable prediction using adaboost. That study
empirically demonstrated its effectiveness. Nevertheless, this method tends to cause over-
fitting difficulties for small amounts of data because adaboost tends to be sensitive to noisy
data (Dietterich, 2000). Later, Rohekar et al. (2018) proposed B-RAI, a model averaging
method with the bagging, based on the RAI algorithm (Yehezkel and Lerner, 2009), which
learns a structure by recursively conducting conditional independence (CI) tests, edge di-
rection and structure decomposition into smaller substructures. The B-RAI increases the
number of models for the model averaging using multiple bootstrapped datasets. However,
the B-RAI is inapplicable for the bagging to the posterior of the structures. Therefore,
the posterior standard error of the structures is not expected to decrease. In addition, the
CI tests of the B-RAI are not guaranteed to have asymptotic consistency. This engenders
reduction of the computational costs but might degrade the classification accuracy for large
data.

The main idea of this study is to improve the classification accuracy using the subbag-
ging to reduce the posterior standard error of structures in model averaging. Moreover,
to guarantee asymptotic consistency, we employ the K-best method with the ML score.
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The proposed method is expected to present the following benefits. (1) The class variable
posterior converges to the true value when the sample size is sufficiently large because it has
asymptotic consistency. Also, (2) even for small data, the subbagging reduces the poste-
rior standard error of the structures for the K-best method and improves the classification
accuracy. To compare the respective classification performances of our method and earlier
methods, we conduct experiments. Results of those experiments demonstrate that, for small
data, our proposed method provides more accurate classification than the earlier methods
do.

2. Bayesian Network Classifier

2.1 Bayesian network

Letting {X0, X1, · · · , Xn} be a set of n + 1 discrete variables, then Xi, (i = 0, · · · , n) can
take values in the set of states {1, · · · , ri}. One can write Xi = k when observing that
an Xi is state k. According to the Bayesian network structure G, the joint probabilities
distribution is P (X0, X1, · · · , Xn) =

∏n
i=0 P (Xi | Πi, G), where Πi is the parent variable

set of Xi. Letting θijk be a conditional probability parameter of Xi = k when the j-th
instance of the parents of Xi is observed (We write Πi = j), we define Θ = {θijk} (i =
0, · · · , n; j = 1, · · · , qi; k = 1, · · · , ri). A Bayesian network is a pair B = (G, Θ). In an
earlier study, Buntine (1991) assumed the Dirichlet prior and used an expected a posteriori
(EAP) estimator θ̂ijk = (αijk + Nijk)/(αij + Nij). In that equation, Nijk represents the
number of samples of Xi = k when Πi = j, Nij =

∑ri
k=1 Nijk. Additionally, αijk denotes the

hyperparameters of the Dirichlet prior distributions (αijk is a pseudo-sample corresponding
to Nijk); αij =

∑ri
k=1 αijk.

The first learning task of the Bayesian network is to seek a structure G optimizing a
given score. Let D = {u1, · · · , ud, · · · , uN } be training dataset. Also, let each ud be a tuple
of the form ⟨xd

0, xd
1, · · · , xd

n⟩. The most popular marginal likelihood (ML) score, P (D | G),
of the Bayesian network finds the maximum a posteriori (MAP) structure G∗ when we
assume a uniform prior P (G) over structures, as presented below.

G∗ = arg max
G

P (G | D) = arg max
G

P (D | G)P (G)
P (D)

= arg max
G

P (D | G).

The ML has an asymptotic consistency (Haughton, 1988), i.e., the structure which maxi-
mizes ML converges to the true structure when the sample is large. In addition, the Dirichlet
prior is known as a distribution that ensures likelihood equivalence. This score is known as
Bayesian Dirichlet equivalence (BDe) (Heckerman et al., 1995). Given no prior knowledge,
the Bayesian Dirichlet equivalence uniform (BDeu), as proposed earlier by Buntine (1991),
is often used. The BDeu score is represented as

P (D | G) =
n∏

i=0

qi∏
j=1

Γ( α
qi

)
Γ( α

qi
+ Nij)

ri∏
k=1

Γ( α
riqi

+ Nijk)
Γ( α

riqi
)

,

where α is a hyperparameter. Ueno (2008, 2010, 2011); Ueno and Uto (2012) demonstrated
that learning structures is highly sensitive to α. As the best method to mitigate the influence
of α for parameter estimation, he reported α = 1.0.
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2.2 Bayesian network classifiers

A Bayesian network classifier (BNC) can be interpreted as a Bayesian network for which
X0 is the class variable and for which X1, · · · , Xn are feature variables. Given an instance
x = ⟨x1, · · · , xn⟩ for feature variables X1, . . . , Xn, the BNC B predicts the class variable’s
value by maximizing the posterior as ĉ = argmaxc∈{1,··· ,r0}P (c | x, B).

However, Friedman et al.(1997) reported that the BNC maximizing ML can not optimize
the classification performance. They proposed the sole use of the conditional log likelihood
(CLL) of the class variable given the feature variables instead of the log likelihood for
learning BNC structures.

Unfortunately, no closed-form formula exists for optimal parameter estimates to maxi-
mize CLL. Therefore, for each structure candidate, learning the network structure maximiz-
ing CLL requires some search methods such as gradient descent over the space of parameters.
For that reason, exact learning network structures by maximizing CLL is computationally
infeasible.

As a simple means of resolving this difficulty, Friedman et al. (1997) proposed the
augmented naive Bayes (ANB) classifier, for which the class variable has no parent and in
which all feature variables have the class variable as a parent. Furthermore, they proposed
the tree-augmented naive Bayes (TAN) classifier, for which the class variable has no parents
and for which each feature variable has a class variable and at most one other feature variable
as a parent variable.

In addition, Carvalho et al. (2011, 2013) proposed an approximate conditional log like-
lihood (aCLL) score, which is decomposable and computationally efficient. Letting GANB

be an ANB structure, then we define Π∗
i = Πi \ {X0} based on GANB. In addition, we let

Nijck be the number of samples of Xi = k when X0 = c and Π∗
i = j (i = 1, · · · , n; j =

1, · · · , q∗
i ; c = 1, · · · , r0; k = 1, · · · , ri), and let N ′ > 0 represent the number of pseudo-

counts. Under several assumptions, aCLL can be represented as

aCLL(GANB | D) ∝
n∑

i=1

q∗
i∑

j=1

ri∑
k=1

r0∑
c=1

(
Nijck + β

r0∑
c′=1

Nijc′k

)
log Nij+ck

Nij+c
,

where

Nij+ck =
{

Nijck + β
∑r0

c′=1 Nijc′k if Nijck + β
∑r0

c′=1 Nijc′k ≥ N ′

N ′ otherwise
, Nij+c =

ri∑
k=1

Nij+ck.

The value of β is found using a Monte-Carlo method to approximate CLL. When the value
of β is optimal, then aCLL is a minimum-variance unbiased approximation of CLL. They
described that the classifier maximizing the approximated CLL provides better performance
than that maximizing the approximated ML.

However, they stated no reason for why CLL outperformed ML. Differences of perfor-
mance between ML and CLL in earlier studies might depend on the learning algorithms
which were employed because they used not exact but approximate learning algorithms.
Therefore, Sugahara et al. (2018) experimentally demonstrated that the BNC performance
achieved by maximizing the ML is not necessarily worse than that achieved by maximizing
CLL for small data. However, the classification accuracy of the structure maximizing the
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ML becomes rapidly worse as the sample size becomes small. They explained the reason
thusly: the class variable tends to have numerous parents for a small sample. Therefore,
estimation of the conditional probability parameters of the class variable becomes unsta-
ble because the number of parent configurations becomes large. Then the sample size for
learning a parameter becomes sparse. This analysis suggests that exact learning BNC by
maximizing the ML to have no parents of the class variable might improve the classification
accuracy. Consequently, they proposed exact learning ANB because the class variable has
no parent in ANB structures. Additionally, they empirically demonstrated the effectiveness
of their method.

3. Model Averaging of Bayesian Network Classifiers
The less accurate classification of BNCs for small data results from learning structures
errors. As a method to alleviate this shortcoming, model averaging, which marginalizes the
class variable posterior over all structures, is reportedly effective (Madigan and Raftery,
1994; Chickering and Heckerman, 2000). Using model averaging, the class variable’s value
c is estimated as

ĉ = arg max
c∈{1,··· ,r0}

P (c | x, D) = arg max
c∈{1,··· ,r0}

∑
G∈G

P (G | D)P (c | x, G) = arg max
c∈{1,··· ,r0}

∑
G∈G

P (D | G)P (c | x, G),

where G is a set of all structures. However, the number of structures increases super-
exponentially for the network size. Therefore, averaging all the structures with numerous
variables is computationally infeasible. The most common approach to resolving this prob-
lem is a K-best structures method (Tian et al., 2010; He et al., 2016; Chen et al., 2015,
2016, 2018; Liao et al., 2018), which considers only the K-best scoring structures. How-
ever, the K-best structures method finds the best K individual structures included in
Markov equivalence classes, where the structures within each class represent the same set of
conditional independence assertions and determine the same statistical model. To address
the difficulty, Chen and Tian (2014) proposed the K-best EC method, which finds the K
best equivalence classes directly. These methods have asymptotic consistency if they use an
exact learning algorithm. Using the K-best scoring structures, {Gk}K

k=1, the class variable
posterior can be approximated as P (c | x, D) ≈

∑K
k=1 P (D | Gk)P (c | x, Gk).

The posterior standard error of the structures in the model averaging becomes large
as the sample size becomes small; it then decreases the classification accuracy. However,
the resampling methods, such as the adaboost (Freund and Schapire, 1997) and the bag-
ging (Breiman, 1996) are known to reduce the standard error of estimation. Actually,
Jing et al. (2008) proposed the bANmix boosting method, which predicts the class variable
using adaboost. Nevertheless, this method is not a model averaging method. It tends to
cause overfitting for small data because the adaboost tends to be sensitive to noisy data
(Dietterich, 2000).

Rohekar et al. (2018) proposed a model averaging method named B-RAI, based on the
RAI algorithm (Yehezkel and Lerner, 2009), which learns the structure by sequential appli-
cation of conditional independence (CI) tests, edge direction and structure decomposition
into smaller substructures. This sequence of operations is performed recursively for each
substructure, along with increasing order of the CI tests. In each level of recursion, the cur-
rent structure is first refined by removing edges between variables that are independently
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conditioned on a set of size nz and directing the edges. Then, the structure is decomposed
into ancestors and descendant groups. Each group is autonomous in that it includes the
parents of its members (Yehezkel and Lerner, 2009). Furthermore, each autonomous group
from the nz-th recursion level is independently partitioned, resulting in a new level of nz +1.
Each such structure (a substructure over the autonomous set) is partitioned progressively
(in a recursive manner) until a termination condition is satisfied (independence tests with
condition set size nz cannot be performed), at which point the resulting structure (a sub-
structure) at that level is returned to its parent (the previous recursive call). Similarly,
each group in its turn, at each recursion level, gathers back the structures (substructures)
from the recursion level that followed it; it then returns itself to the recursion level that
precedes it until the highest recursion level nz = 0 is reached and the final structure is
fully constructed. Consequently, the RAI constructs a tree in which each node represents a
substructure and for which the level of the node corresponds to the maximal order of condi-
tional independence that is encoded in the structure. Based on the RAI algorithm, B-RAI
constructs a structure tree from which structures can be sampled. In essence, it replaces
each node in the execution tree of the RAI with a bootstrap node. In the bootstrap node,
for each autonomous group, s datasets are sampled with replacement from training data D.
They calculate log[P (D | G)] for each leaf node in the tree (G is the structure in the leaf)
using the BDeu score. For each autonomous group, given s sampled structures and their
scores returned from s recursive calls, the B-RAI samples one of the s results proportionally
to their (log) score. Finally, the sampled structures are merged. The sum of scores of all
autonomous sets is the score of the merged structure.

However, B-RAI does not apply the bagging to the posterior of the structures. Therefore,
the posterior standard error of the structures is not expected to decrease. In addition, the
B-RAI is not guaranteed to have asymptotic consistency. This engenders reduction of the
computational costs, but degradation of the classification accuracy.

4. Proposed Method

This section presents the proposed method, which improves the classification accuracy using
resampling methods to reduce the posterior standard error of structures in model averaging.
As described in section 3, exact model averaging over all structures is computationally
infeasible. A well known solution for this problem is the K-best structures model averaging
method with the BDeu score (Tian et al., 2010). However, this method finds the best K
individual structures which include equivalent structures. To find the K best equivalence
classes directly, we employ the K-best EC method with BDeu score (Chen and Tian, 2014).

The posterior standard error of the structures learned by the K-best EC method be-
comes large as the sample size becomes small. Then the classification accuracy decreases.
As described previously, Jing et al. (2008) proposed a boosting method using adaboost.
However, it tends to cause overfitting for small data because it is known to be sensitive to
noise data (Dietterich, 2000). An alternative technique for the problem is bagging using ran-
dom sampling with replacement. However, it is noteworthy that sampling with replacement
might increase the standard error of estimation as the sample size becomes small because
of the duplicated sampling (Rao, 1966). To avoid this difficulty, we use the subbagging
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(Bühlmann and Yu, 2002), which is a modified bagging using random sampling without
replacement.

The proposed method is expected to provide the following benefits. (1) Because the
class variable posterior has asymptotic consistency, it converges to the true value when
the sample size is sufficiently large. (2) Even for small data, the subbagging reduces the
posterior standard error of the structures learned using the K-best EC method and improves
the classification accuracy. The next section explains experiments conducted to compare
the classification performances of the proposed method and earlier methods.

5. Experiments

This section presents experiments comparing the classification accuracy of the following 11
methods. (1) NB: Naive Bayes (2) TAN (Friedman et al., 1997): Tree augmented naive
Bayes (3) aCLL-TAN (Carvalho et al., 2013): Exact learning TAN method by maximizing
aCLL (4) EBN: Exact learning Bayesian network method by maximizing BDeu (5) EANB:
Exact learning ANB method by maximizing BDeu (6) bANmix (Jing et al., 2008): Ensemble
method using adaboost, which starts with the naive Bayes and greedily augments the current
structure at iteration j with the j-th edge having the highest conditional mutual information
(7) Adaboost(EBN) : Ensemble method of 10 structures learned using adaboost to EBN (8)
B-RAI (Rohekar et al., 2018): Model averaging method over 100 structures sampled by
the B-RAI with s = 3 (9) KBestEC100 (Chen and Tian, 2014): K-best EC method using
BDeu score with K = 100 (10) Bagging(EBN) : Ensemble method of 10 structures learned
using the bagging to EBN (11) The proposed method with K = 10 and T = 10. Here, the
classification accuracy represents the average percentage correct among all classifications
from ten-fold cross validation. Although determination of hyperparameter α of BDeu is
difficult, we used α = 1.0, which allows the data to reflect the estimated parameters to
the greatest degree possible (Ueno, 2008, 2010, 2011; Ueno and Uto, 2012). We used EAP
estimators with αijk = 1/(riqi) as conditional probability parameters of the respective
classifiers. Using the proposed method and Bagging(EBN), the size of the sampled data
is 90% of the training data. We used 26 classification benchmark datasets from the UCI
repository. Continuous variables were discretized into two bins using the median value as
cut-off. Furthermore, data with missing values were removed from the datasets. Through
this section, we define“ small datasets”as the datasets with less than 1000 sample size,
and define“ large datasets”as the datasets with 1000 or more sample size.

To confirm the significant differences of the proposed method from other methods, we
applied multiple Hommel tests (Hommel, 1988), which are used as a standard in machine
learning studies (Demšar, 2006). Table 1 presents the classification accuracy and p-values
obtained using Hommel tests. The results show that, among the methods explained above,
the proposed method yields the best average accuracy. Moreover, the proposed method out-
performs almost all model selection methods, except for EANB, at the p < 0.10 significance
level. Particularly NB, TAN, and aCLL-TAN provide lower classification accuracy than the
proposed method does for the No.1, No.20, and No.24 datasets. The reason is that those
methods have the small upper bound of maximum number of parents. Such a small upper
bound is known to cause poor representational power of the structure (Ling and Zhang,
2003). The classification accuracy of EBN is the same or almost identical to that of the
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(1) Classification accuracy (2) Parents (3) APSES
Sample aCLL- Adaboost Bagging KBest The proposed The proposed KBest The proposed

No. Datasets size Variables NB TAN TAN EBN EANB bANmix (EBN) B-RAI (EBN) EC100 method EBN method EC100 method

1 lenses 24 5 0.6250 0.7083 0.7083 0.8125 0.8750 0.6667 0.8125 0.8500 0.8333 0.8333 0.8333 0.9000 1.3700 0.0631 0.0425
2 mux6 64 7 0.5469 0.6094 0.5938 0.4531 0.5469 0.5938 0.4531 0.3238 0.6094 0.4219 0.6250 5.7000 4.6790 0.0625 0.0600
3 post 87 9 0.6552 0.6322 0.5977 0.7126 0.7126 0.6552 0.7126 0.7139 0.7126 0.7126 0.7126 0.0000 0.0240 0.0817 0.0547
4 zoo 101 17 0.9901 0.9406 0.9505 0.9426 0.9604 0.9901 0.9406 0.9435 0.9604 0.9505 0.9505 3.7000 4.3050 0.0599 0.0600
5 HayesRoth 132 5 0.8106 0.6439 0.6742 0.6136 0.8333 0.6970 0.6136 0.6143 0.6136 0.7803 0.7727 3.0000 2.4550 0.0600 0.0600
6 iris 150 5 0.7133 0.8267 0.8200 0.8267 0.8067 0.8267 0.8200 0.8133 0.8267 0.8200 0.8267 1.8000 1.8920 0.0686 0.0564
7 wine 178 14 0.9270 0.9213 0.9157 0.9438 0.9270 0.9326 0.9213 0.8941 0.9551 0.9438 0.9438 1.7000 1.4000 0.0702 0.0545
8 glass 214 10 0.5421 0.5467 0.6215 0.5607 0.5280 0.5981 0.5701 0.5470 0.5701 0.5748 0.5748 0.4000 0.6800 0.0691 0.0600
9 CVR 232 17 0.9095 0.9526 0.9224 0.9612 0.9526 0.9310 0.9655 0.9697 0.9698 0.9655 0.9698 0.9000 1.4170 0.0789 0.0504

10 heart 270 14 0.8296 0.8333 0.8148 0.8296 0.8444 0.8333 0.8074 0.7611 0.8407 0.8333 0.8370 1.7000 1.5400 0.0722 0.0600
11 BreastCancer 277 10 0.7365 0.7220 0.6968 0.7076 0.6751 0.7148 0.7509 0.6888 0.7004 0.7329 0.7220 0.7000 0.8230 0.0677 0.0600
12 cleve 296 14 0.8311 0.8243 0.8446 0.8074 0.8142 0.8176 0.7939 0.7771 0.8108 0.8176 0.8176 1.9000 1.6870 0.0722 0.0547
13 liver 345 7 0.6464 0.6609 0.6522 0.5768 0.6058 0.6638 0.5971 0.5995 0.6174 0.6261 0.6232 0.0000 0.1910 0.0697 0.0600
14 threeOf9 512 10 0.8008 0.8691 0.8906 0.8691 0.8672 0.8789 0.9063 0.7598 0.8906 0.9434 0.9023 5.0000 3.8540 0.0600 0.0600
15 crx 653 16 0.8392 0.8515 0.8453 0.8392 0.8622 0.8331 0.8591 0.8590 0.8499 0.8484 0.8499 1.2000 1.0810 0.0600 0.0600
16 Australian 690 15 0.8348 0.8290 0.8478 0.8565 0.8580 0.8333 0.8638 0.8493 0.8464 0.8478 0.8464 1.0000 1.1360 0.0685 0.0600
17 pima 768 9 0.7057 0.7188 0.7031 0.7253 0.7188 0.7083 0.7240 0.7123 0.7227 0.7331 0.7266 1.6000 1.0900 0.0649 0.0600
18 TicTacToe 958 10 0.6889 0.7599 0.7192 0.8549 0.8445 0.7505 0.9123 0.6994 0.8466 0.8486 0.8518 1.6000 0.3960 0.0674 0.0600
19 banknote 1372 5 0.8433 0.8819 0.8761 0.8812 0.8812 0.8754 0.8776 0.8812 0.8812 0.8812 0.8812 0.0000 0.6890 0.0600 0.0600
20 Solar Flare 1389 11 0.7804 0.7970 0.8200 0.8431 0.8431 0.8143 0.8431 0.8409 0.8431 0.8431 0.8431 0.8000 0.9120 0.0693 0.0600
21 CMC 1473 10 0.4644 0.4725 0.4650 0.4549 0.4270 0.4779 0.4399 0.4100 0.4521 0.4616 0.4487 0.9000 0.8230 0.0600 0.0600
22 led7 3200 8 0.7288 0.7309 0.7347 0.7288 0.7288 0.7300 0.7288 0.7228 0.7284 0.7303 0.7309 0.6000 0.9540 0.0651 0.0600
23 shuttle-small 5800 10 0.9383 0.9567 0.9538 0.9693 0.9716 0.9681 0.9662 0.9659 0.9693 0.9693 0.9693 2.0000 2.1150 0.0600 0.0600
24 EEG 14980 15 0.5774 0.6298 0.6138 0.6844 0.6895 0.6031 0.6906 0.6450 0.6881 0.6885 0.6899 0.5000 0.4710 0.0600 0.0600
25 HTRU2 17898 9 0.8966 0.9141 0.9141 0.9141 0.9141 0.9102 0.9073 0.9066 0.9141 0.9141 0.9141 1.5000 1.6230 0.0600 0.0550
26 MAGICGT 19020 11 0.7447 0.7769 0.7656 0.7859 0.7879 0.7734 0.7849 0.7827 0.7859 0.7871 0.7860 0.0000 0.4710 0.0600 0.0600
Average accuracy 0.7541 0.7696 0.7678 0.7752 0.7875 0.7722 0.7793 0.7512 0.7861 0.7888 0.7942 1.5038 1.4645 0.0660 0.0581

p-values 0.0019 0.0033 0.0093 0.0025 > 0.1000 0.0139 0.0394 0.0002 0.0629 > 0.1000 - - - 0.0001 -

Table 1: (1) Classification accuracies of each BNC, (2) average numbers of the class vari-
able’s parents in the structures of the EBN and those of the proposed method, and
(3) average posterior standard errors of structures (APSES) of the KBestEC100
and those of the proposed method.

proposed method for large datasets such as No.20, No.23, No.25, and No.26 datasets be-
cause both methods have asymptotic consistency. However, the classification accuracy of
the proposed method is equal to or greater than that of EBN for small datasets from No.1
to No.15. As described previously, the classification accuracy of EBN is worse than that
of the model averaging methods because the error of learning structure by EBN becomes
large as the sample size becomes small.

Although EANB has lower computational costs than EBN and although all the com-
pared model averaging methods do, no significant difference was found between the EANB
and the proposed method. In fact, EANB can represent any joint probability distribution
when the sample size is sufficiently large (Ling and Zhang, 2003). Therefore, the classifi-
cation accuracy of EANB is the same or almost identical as that of the proposed method
for large datasets, such as No.20, No.24 and No.25 datasets. For almost small datasets
such as the datasets from No.6 to No.9 and from No.11 to No.13, the proposed method
provides higher classification accuracy than EANB does because the error of learning ANB
structures becomes large. However, for the No.4 and No.5 datasets, the classification accu-
racy of EANB is much higher than that obtained using the proposed method. To analyze
this phenomenon, we investigate the average number of the class variable’s parents in the
structures learned by EBN and that by the proposed method. The results displayed in
"Parents" of Table 1 illustrate that the average number of the class variable’s parents in
the structures learned by EBN and that by the proposed method tends to be large in the
No.4 and No.5 datasets. Consequently, the estimation of conditional probability param-
eters of the class variable becomes unstable because the number of parent configurations
becomes large. Then the sample size for learning a parameter becomes sparse. Actually,
the ANB constraint prevents numerous parents of the class variable. Moreover, it improves
the classification accuracy.
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The proposed method outperforms almost all model averaging methods, except for
KBestEC100, at the p < 0.10 significance level. The bANmix provides much lower ac-
curacy than the proposed method does in No.1, No.20, and No.24 datasets because it has
the small upper bound of a maximum number of parents, similar to NB, TAN, and aCLL-
TAN. For almost all large datasets, the classification accuracy of the proposed method is
higher than that of B-RAI because the proposed method has an asymptotic consistency,
whereas B-RAI does not. The proposed method provides higher classification accuracy
than Adaboost(EBN) does for small datasets, such as No.5 and No.10 datasets, because
Adaboost(EBN) tends to cause overfitting, as described in section 3. The classification
accuracy of Bagging(EBN) is much worse than that of the proposed method in the No.5
dataset because the error of learning structures using each sampled data becomes large as
the sample size becomes small. The proposed method alleviates this difficulty somewhat
using model averaging for sampled data.

Although the proposed method does not significantly outperform KBestEC100, it pro-
vides higher average accuracy than KBestEC100 does. To demonstrate the advantage of
the proposed method for small data, we compare the posterior standard error of the struc-
tures learned using the proposed method with that learned by KBestEC100. We estimate
the posterior standard error of structures learned by the KBestEC100 as explained below.

1. Generate 10 random structures {Gm}10
m=1.

2. Sample 10 datasets, {D̃i}10
i=1, with replacement from the training dataset D, where |D̃i| = |D|.

3. Compute the posteriors P (Gm | D̃i) ≈ P (D̃i | Gm)/
∑10

m′=1 P (D̃i | Gm′), (m = 1, · · · , 10; i =
1, · · · , 10).

4. Estimate the standard error of the posteriors P (Gm | D), (m = 1, · · · , 10) as√√√√√ 1
10(10 − 1)

10∑
i=1

P (Gm | D̃i) − 1
10

10∑
j=1

P (Gm | D̃j)


2

. (1)

We estimate the posterior standard error of structures learned using the proposed method
as listed below.

1. Generate 10 random structures {Gm}10
m=1.

2. Sample 10 datasets, {D̃ti}10
i=1, with replacement from each bootstrapped dataset Dt, where

|D̃ti| = |Dt|.

3. Compute the posteriors P (Gm | D̃i) ≈ 1
T

∑T
t=1[P (D̃it | Gm)/

∑10
m′=1 P (D̃it | Gm′)], (m =

1, · · · , 10; i = 1, · · · , 10).

4. Estimate the standard error of the posteriors P (Gm | D), (m = 1, · · · , 10) using formula (1).

Average posterior standard errors over 10 structures {Gm}10
m=1 of the proposed meth-

ods and those of the KBestEC100 are presented in "APSES" of Table 1. We obtain the
significance values for these results obtained using the Wilcoxon signed-rank test. The p-
values of the test are presented at the bottom of Table 1. The results demonstrate that
the APSES of the proposed method is significantly lower than that of the KBestEC100.
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Figure 1: Average posterior standard errors
of structures (APSES) of the
KBestEC100 and those of the pro-
posed method.

Moreover, we investigate the relation between
the APSES and the training data sample
size. As presented in Figure 1, the APSES
of KBestEC100 tends to become large as
the sample size becomes small, although the
APSES of the proposed method does not
become large as the sample size becomes
small. Particularly the proposed method
provides higher classification accuracy than
KBestEC100 does when the APSES of the
proposed method are lower than those of the
KBestEC100, such as those of No.3, No.6, and
No.9 datasets. Consequently, the proposed
method reduces the posterior standard error
of the structures. It therefore improves the
classification accuracy.

6. Conclusions

As described herein, we improve the K-best method classification accuracy using the sub-
bagging to reduce the posterior standard error of the structures. Our experiments demon-
strate that the proposed method provides more accurate classification than the K-best EC
method does for small data. Even for large data, the proposed method provides highly
accurate classification because it has asymptotic consistency. However, results show that
the classification accuracy of the EANB is comparable to that of the proposed method,
although the EANB has lower computational costs than the proposed method does. In
practice, EANB might be more useful than the proposed method for learning large classi-
fiers.

Isozaki et al. (2008, 2009) proposed an effective learning Bayesian network method by
adjusting the hyperparameter for small data. As a future work, we will employ their method
instead of the BDeu to improve the classification accuracy for small data.
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