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Abstract
Real-world phenomena are often not fully measured or completely observable, raising the so-called
missing data problem. As a consequence, the need of developing ad-hoc techniques that cope
with such issue arises in many inference contexts. In this paper, we focus on the inference of
Gaussian Graphical Models (GGMs) from multiple input datasets having complex relationships
(e.g. multi-class or temporal). We propose a method that generalises state-of-the-art approaches
to the inference of both multi-class and temporal GGMs while naturally dealing with two types
of missing data: partial and latent. Synthetic experiments show that our performance is better
than state-of-the-art. In particular, we compared results with single network inference methods
that suitably deal with missing data, and multiple joint network inference methods coupled with
standard pre-processing techniques (e.g. imputing). When dealing with fully observed datasets
our method analytically reduces to state-of-the-art approaches providing a good alternative as our
implementation reaches convergence in shorter or comparable time. Finally, we show that properly
addressing the missing data problem in a multi-class real-world example, allows us to discover
interesting varying patterns.
Keywords: Missing data; Multiple joint network inference; Multi-class; Time-series

1. Introduction

Consider the two following scenarios: (i) during a medical trial we submit a survey to patients
to assess their status, for privacy concerns they refuse to answer to some questions; (ii) during a
weather monitoring experiment, we consistently do not measure the humidity in the air. These two
types of situations lead to two different concepts: in the first case, questionnaires present missing
values randomly positioned depending on the concerns of the patient, we call the final data partial.
Differently, in the second scenario, we do not have any observation of humidity, thus we say that
the related data are latent (Little and Rubin, 2019). We will generically refer to these types of data
as missing data, to indicate one of the two or a combination of both.
Missing data require careful consideration in all machine learning and statistical settings. In this
paper, we restrict to the problem of inferring multiple joint Gaussian Graphical Models (GGMs)
when the input data may contain missing values. A multiple joint GGM is represented by a set of
undirected graph G = (Gk)

K
k=1 = (V,Ek)

K
k=1, where V = {X1, . . . , Xd} is a finite set of nodes

that represent random variables, and eachEk ⊆ V ×V is a set of edges, whereEk is not necessarily

∗. Work partially done while at Università di Genova.

1



equal to Ej for k 6= j. Each k = 1, . . . ,K defines a specific connectivity pattern and its meaning
depends on the context. Either it could be associated with K different classes when dealing with
multi-class network inference (Danaher et al., 2014; Guo et al., 2011) , or it could index a sorted
sequence of discrete time-points when facing a problem of temporal network inference (Monti et al.,
2014; Hallac et al., 2017; Tomasi et al., 2018). EachEk univocally determines a multivariate normal
distribution N (µk,Σk). Indeed, the precision matrix, Θk = Σ−1

k encodes the conditional indepen-
dence between pairs of variables, i.e., the structure of the graph Gk, since Θk(i, j) is 0 if and only
if (xi, xj) /∈ Ek (Lauritzen, 1996) Therefore, one can interpret the precision matrix as the weighted
adjacency matrix of Gk.
Typically the graph structure Gk is not known as we can only observe the behaviour of the single
variables in the system. We indicate the nk observations of the d variables asXk = (xi1, . . . , xid)

nk
i=1 ∈

Rnk×d which is a dataset that may contain missing values. Joint multiple network inference aims
at learning a series of precision matrices Θ = (Θk)1≤k≤K that are both sparse and consistent with
each other from these observations. The sparsity assumption is due to the combinatorial nature of
the problem that requires to be constraint to have identifiability guarantees (Friedman et al., 2008).
The consistency assumption fulfills the need of a similar structure among classes/time points that
belong to the same underlying system (Guo et al., 2011; Danaher et al., 2014; Monti et al., 2014;
Hallac et al., 2017; Foti et al., 2016; Tomasi et al., 2018).
In literature, the problem of inferring graphs from observations that contain missing data has been
tackled in the single graph inference case. A non-convex method based on Expectation Maximiza-
tion (EM)(Dempster et al., 1977) has been used to cope with the problem of partial data (Städler
and Bühlmann, 2012; Little and Rubin, 2019) and latent data (Yuan, 2012). Differently, in (Chan-
drasekaran et al., 2010, 2011; Choi et al., 2011) they considered a convex sparse plus low-rank
decomposition method to marginalise out the effect of latent data. The inference of multiple joint
GGMs in presence of latent data was tackled in (Foti et al., 2016; Tomasi et al., 2018; Chang et al.,
2019) using the sparse plus low-rank approach only in the case of temporal networks. To the best of
our knowledge, a unified way of dealing with all types of missing data and types of joint inference
does not exist.
Here, we provide a method that is able to deal with both partial and latent data in the case of mul-
tiple GGMs. The novelty of the approach consists in providing a unique way of handling different
types of multiple joint inference methods as well as two types of missing data. Moreover, in the
case of latent data, the method can provide more insights on the actual latent connections compared
to previously published work. The method leverages on the EM algorithm to deal with missing data
(Städler and Bühlmann, 2012; Yuan, 2012) and kernels to deal with different types of joint inference
problems. Indeed, in Tomasi et al. (2020) they proposed a kernel method that, by suitable choices
of the kernel, allows to consider simultaneously different types of complex temporal relationships
and multi-class data.
Synthetic experiments show that our method provides good results in terms of estimate of the true
underlying network as well as good estimate of the true values of the edges. We thoroughly evalu-
ated the proposed method under several levels of complexity both in the multi-class and the temporal
case. We also show that our method is able to retrieve possibly better results than the state-of-the-art
in case of complete data. We also provide a real-world case study in which we compare the perfor-
mances of the newly proposed method in a multi-class setting. We show that, differently from the
state-of-the-art method coupled with imputing techniques we are indeed able to capture variability
patterns within the classes that are consistent with the data.
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Outline The rest of this paper is organised as follows. Section 2 introduces the reader to the
definition of partial and latent variables and the related induced problems. Section 4 presents the
method that allows for the inference of multiple GGMs from missing data. Section 5 presents
the synthetic experiments on the proposed methods. Section 5.2 presents a real-world case study.
Finally, Section 6 concludes with a discussion and future research directions.

2. Missing data

Missing data are values of a dataset that are un-observed and may possibly be meaningful for a
specific analysis task. In this paper, we consider two possible patterns of data missing at random,
i.e. the missing values does not depend on the value itself. Each of these two types of data introduces
different problems during the inference of networks (Little and Rubin, 2019). Given k data matrices
Xk ∈ Rnk×d which samples are assumed to be drawn from a multivariate Gaussian distribution, we
formally define the two types of missing data as follows.

Partial data can be described as the absence of measurements randomly positioned in each
observation. More formally, partial data consist in a set of matricesXk where for each k = 1, . . . ,K
and for each i = 1, . . . , nk there are some un-observed values indexed by the set Mk

i ⊆ {1, . . . , d}.
These “holes” in the matrix make impossible direct computation and thus require pre-processing
or ad-hoc inference mechanisms. The pre-processing approaches are typically: complete cases and
imputing. In the complete cases we discard the samples that do not have complete measurements
on the variables, while imputing filles the holes with a suitable value, e.g. the empirical mean.
The issues deriving from complete cases and imputing pre-processing are the following: the former
reduces the sample size drastically which may impede the correct inference of the underlying graph
especially when n � d; the latter introduces substantial bias in the estimated solution even if it
induces to believe that we can reason in terms of complete data (Little and Rubin, 2019; Madow
et al., 1983). Hence, pre-processing techniques distort the empirical distribution of the variables
which consequently leads to biased estimates of the underlying graph.

Latent data describe the consistent absence of some variable measurements across all samples.
More formally, we observe d variables but there are lmore, indexed by the setMk

i = {d+1, . . . , d+
l} that are always unobserved across all data matrices k = 1, . . . ,K and samples i = 1, . . . , nk.
Therefore, on these variables, we do not have any information, not their number nor the relationship
they have with the observed variables. Their presence in the system though, if not taken into account,
leads to spurious edges, i.e., links that would be conditioned away if the latent variables could have
been observed (Chandrasekaran et al., 2010).

3. Joint multiple network inference

We consider a multiple joint Gaussian Graphical Model defined as a set of multivariate normal
distributionsNG that factorises according to a set of graphsG = (V,Ek)

K
k=1. The inference of such

graphs corresponds to the learning of the precision matrices Θ = (Θ1, . . . ,Θk) that completely
define the underlying distributions assuming that the means µk is zero for every k. The index k can
have different meanings depending on the context. In this paper, we deal with the inference from:
multi-class data, or Joint Graphical Lasso (JGL) (Guo et al., 2011; Danaher et al., 2014) where k
indexes different classes of observations; temporal data, or Time-varying Graphical Lasso (TGL)
(Hallac et al., 2017; Tomasi et al., 2018). where k corresponds to discrete time points obtained

3



by dividing a time-series of length T in K chunks of equal size. In each chunk the samples are
assumed to be i.i.d. The concept of joint inference lies in the fact that we guide the inference
method with the prior that there is structural consistency among the k precision matrices Θ =
(Θ1, . . . ,Θk). In order to deal with both JGL and TGL with a unique inference method we recur to
the methodology proposed in (Tomasi et al., 2020) where the authors exploit a kernel formulation
to model the dependencies allowing to consider in a single way different joint inference problems.
A kernel κ ∈ ST+ is a positive semi-definite matrix that encodes, at each entry κ(k, k′), the strength
of how much two different networks, Θk and Θk′ , should be similar in such a way that, samples
belonging to different (but related) input matrices, can drive the inference toward a more reliable
estimation of the structure especially when the number of samples is low.

Consider two networks indexed by k and k′, the kernel models similarities dependency strength
in such a way that a strength equal to zero (κ[k, k′] = 0) implies that graphs Gk and Gk′ are
independent from each other and, therefore, no consistency is forced on them during the inference.
In particular we will use for

• multi-class data, a kernel which enforces the same similarity on all classes

κ(k, k′) =

{
1, if k = k′

β, if k 6= k′
(1)

• temporal data, a kernel which enforces similarity only on consecutive time points

κ(ti, tj) =


1, if ti = tj

β, if ti = tj+1 or ti = tj−1

0, otherwise

(2)

Here, β > 0 is a constant value that measures the strength of how similar the graphs k and k′ are.

In order to impose structure similarity that derives from joint inference, we adopt a penalised
Maximum Likelihood Estimation (MLE) method where the penalisation is given by (Tomasi et al.,
2020)

PΨ,κ(Θ) =

K∑
s, k = 1
s > k

κskΨ(Θs −Θk) =

K−1∑
k=1

K−k∑
k′=1

κkk′Ψ(Θk+k′ −Θk′).
(3)

Such penalty depends on the kernel κ that encodes the type of multiple joint network inference and
the consistency function Ψ that defines the type of similarity to enforce on graphs that are dependent
to each other according to the specified kernel.

In Hallac et al. (2017) the authors proposed different consistency functions. In this paper we
make explicit use of the following two, but all the ones proposed in the original paper can be easily
substituted. In particular, we will consider Ψ(·) = `1(·) =

∑
ij | · |, which is the lasso penalty

that encourages few edges to change between subsequent time points while the rest of the structure
remains the same Danaher et al. (2014) and Ψ(·) = `22(·) =

∑
ij ·2j , which is the Laplacian penalty

that causes smooth transitions (Hallac et al., 2015; Gibberd and Roy, 2017).
Note that substituting the explicit formulation of the kernels in Equations (1) and (2) in the

penalty in Equation (3), leads to the original inference problems JGL (Danaher et al., 2014) and
TGL (Hallac et al., 2017), respectively.
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4. Joint network inference with missing data

For each k, consider a set of nk observations Xk ∈ Rnk×d where each sample is a d-dimensional
vector drawn from a multivariate Gaussian distribution N (µk,Θk) that may be not complete, i.e.,
some values may be missing. We want to define a general network inference method that, from
such observations, learns a set of precision matrices Θ = (Θ1, . . . ,ΘK) ∈ R(d×d)×K and means
µ = (µ1, . . . , µK) ∈ Rd×K . Differently from literature, we need to estimate the means instead of
assuming data to be centered in zero. Indeed, in presence of partial data we cannot compute the
empirical mean and re-centre the data without introducing bias as we would distort the empirical
distribution in the same way as imputation does (Little and Rubin, 2019).

The modelling and the inference of GGMs from these type of data is aid by the factorisation
properties that hold for the multivariate normal distribution. Consider, for each k and i = 1, . . . , nk
the sets Oki and Mk

i of indices of observed and missing variables, respectively. Such sets allows
us to divide the sample i as Xk[i, :] =

(
Xk[i, O

k
i ], Xk[i,M

k
i ]
)
. Accordingly, for each sample i it

is possible to define block precision matrices that group the set of observed and missing variables
together. This grouping procedure allows to obtain a conditional distribution that is still a multivari-
ate normal distribution with parameters analytically related to the original ones (Little and Rubin,
2019). Thus, the resulting precision matrix Θk, for k = 1, . . . ,K is

Θk = Σ−1
k =


Θk[Mk

i ] Θk[Mk
i O

k
i ]

Θk[OkiM
k
i ] Θk[Oki ]

 , (4)

and mean vectors are µk = (µk[M
k
i ], µk[O

k
i ]).

The inference problem can then be defined as MLE. Note that, the likelihood has the same
form for each k, and it is defined exploiting information on the observed data only (Städler and
Bühlmann, 2012; Yuan, 2012). Nonetheless, the inference aims at learning all parts of the precision
matrices Θk. The log-likelihood writes out as follows:

`(Xk[Ok]|Θk) =
1

2

nk∑
i=1

(
log det

(
Θ−1

kOk
i

)
+
(
XkOk

i
− µ>kOk

i

)(
Θ−1

kOk
i

)−1(
XkOk

i
− µkOk

i

))
. (5)

Finally, given the likelihood, the kernel κ and a behaviour Ψ the functional to optimise to perform
inference takes the form

minimize
Θ∈Sd+

K∑
k=1

[
− `(Xk[O

k]|Θk) + α‖Θk‖od,1

]
+ PΨ,κ(Θ) (6)

where ‖ · ‖od,1 is the off-diagonal `1-norm, which promotes sparsity in the precision matrices and
whose strength is regulated by α and the constraint Θk ∈ Sd+ restricts the search space to the cone
of positive definite matrices.

4.1 Latent data specialization

The optimisation problem presented in Equation (6) requires further considerations when in pres-
ence of latent data. Indeed, when introducing latent variables while the model remains the same
we naturally introduce a further hyper-parameter. Consider the set M of missing values, in the case
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Algorithm 1 EM algorithm
1: Inputs: Ψ consistency function, κ temporal dependencies, X samples,
2: α sparsity hyper-parameters
3: for ι = 1, . . . , do
4: for k = 1, . . .K do
5: cki = µk[Mk

i ] +Kk[Mk
i ]−1Θk[Mk

i O
k
i ](Xk[:, Oki ]− µt[Oi])

6: E[Xk[iv]|Xk[Oki ], µι−1
t Θι−1

k ] =

{
Xk[iv] if v ∈ Oki
ck[iv] if v ∈Mk

i

7: E[Xk[iv]Xk[iv′]|Xk[Oki ], µι−1
t Θι−1

k ] =


Xk[iv]Xk[iv′] if v, v′ ∈ Oki
Xk[iv]ck[iv′] if v ∈ Oki
(Θk[Mk

i ]−1)vv′ + ck[iv]ck[iv′] otherwise
8: Cιk[vv′] =

∑nk
i=1 E[Xk[iv]Xk[iv′]|Xk[Oki ], µι−1

k Θι−1
k ]

9: for k = 1, . . .K do
10: µιk = 1

nk
(
∑nk
i=1 Xk[i1], . . . ,

∑nk
i=1 Xk[id])

11: Θι = argmin
Θ�0

∑K
k=1[−nk`GGM (Θk|Cιk) + α‖Θk‖] + PΨ,κ(Θ)

of latent variables such set is assumed to be the same across all k multiple graphs and across all
nk samples. Nonetheless, no prior information on the number of latent variables is naturally pro-
vided with the data. The number of latent variables is exactly the cardinality of the set|M | = r,
and thus, by imposing a certain set M we are imposing a certain number of latent variables. Such
hyper-parameter can be selected via model selection strategies, but it can be shown that results are
not particularly subsceptible to this choice, i.e., we reach similar performances even if the value r
is not precisely the same of the true underlying system (Yuan, 2012).

The proposed model allows us to infer the relationships among latent variables and between
latent and observed variables, thus obtaining an explicit information of them differently from what
was done in Tomasi et al. (2018).

4.2 Optimisation

Problem (6) is non-convex because of the unknown values of the input data matricesX . In the ideal
case of complete input data, the estimation of the two sets of parameters µ, Θ would be straight-
forward using optimisation methods as the Alternating Direction Methods of Multiplier (ADMM)
(Boyd et al., 2011). Nonetheless, the lack of knowledge on input data requires a specific optimiza-
tion method. We recur to the Expectation Maximization (EM) algorithm, an alternating procedure
that has guarantees of reaching a local minimum of functional (6). The procedure consists of two
steps the E-step and the M-step, both repeated at each iteration. In the former we compute the ex-
pectation on the missing values (thus estimating the complete X) while in the latter we substitute
the estimated complete data in the functional and we maximise it to retrieve distribution parameters
µ and Θ. The EM algorithm for the complete data case is described in Algorithm 1. Such algo-
rithm may get stuck in local optima, for this reason we may require multiple initialisations in order
to detect the final best reliable network.

The E-step can be performed separately for each k because of the linearity of the expectation
operator. In order to easily compute the expectation we express the likelihood in Equation (5) in
terms of sufficient statistics of the Normal distribution. For each k we have two sufficient statistics:
the sample mean µCk and the sample covariance matrix Ck = 1

nk
X>k Xk. The E-steps consists of

the estimation of the expectation of the two sufficient statistics µCk and Ck, this can be done by
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observing that, thanks to the factorization property of the normal distribution, for each sample i the
missing values indexed by Mk

i are again distributed according to a multivariate normal distribution.
Thus, the expectation of the missing values can be computed as the mean of such distribution. By
substituting the previous estimates for Θk and µk at iteration t we can compute the expectation as
in line 6 of Algorithm 1 Given the estimates of the E-step we can now reason in terms of complete
data, and the maximisation problem corresponds to the model proposed in Tomasi et al. (2020) and
has the form in line 13 of Algorithm 1.

We call the implementation of this EM algorithm Missing Multiple Graphical Lasso (MMGLκ),
we typically omit the subscript κ if it is clear from the context. In general, it can either model the
temporal graphical lasso or the joint graphical lasso by substituting kernels in Equations (1) and (2).
Note that in Tomasi et al. (2020) they proposed different kernels also for the modelling of complex
temporal patterns. In this paper, we do not mention them as it is not the aim of our work but we can
substitute also these kernels to obtain more complex temporal patterns (e.g. seasonality).

5. Experimental validation

We assessed the performance of the proposed method in different scenarios compared with the
state-of-the-art methods. Due to space restrictions, we refer the reader to the publicly available
open source Python library regain1 for complete details on the experiments. We designed three
synthetic experiments:

• Exp-PT: we considered a temporal evolving graphical model (kernel of Equation (2)) in
presence of partial data. We compared the performance with the time-varying graphical lasso
(TGL) (Hallac et al., 2017) coupled with pre-processing techniques (imputing and complete
data strategies) and the missing graphical lasso (MGL) (Städler and Bühlmann, 2012) that
copes with partial data, but does not consider time (i.e., we fit a model for each time point).

• Exp-PC: we considered a multi-class graphical model (kernel in Equation (1)) and we as-
sessed performances of the state-of-the art method the Joint Graphical Lasso (JGL) (Danaher
et al., 2014) coupled with imputing and complete data.

• Exp-LT we consider a latent temporal evolving graphical model (kernel specified in Equa-
tion (2)) and we compared the performance with the state-of-the-art method for latent time-
varying graphical inference (LTGL) (Tomasi et al., 2018) and a static version of an EM ap-
proach, LVGLASSO, that deals with latent variables (Yuan, 2012).

For all these experiments we performed the analysis at five increasing values for the of observed
variables |O| in the interval [10, 100]. For each of these values we performed the experiments at
three different percentages of missing data 5, 10, 20% for both partial and latent cases. We fixed
the number of samples Nk = 100 in order to consider an increasing ill-posedness as the number
of observed variables increases. We fixed the number of classes/times K = 10, so that the total
number of unknowns is given by the formula K ∗ |O|∗(|O|−1)

2 . For each of these possibilities we
repeated the experiments 10 times to have mean results.
Given the great number of total experiments and hyper-parameters for each considered method

1. https://github.com/veronicatozzo/regain
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Figure 1: MCC of the results obtained for MMGL, TGL(complete), TGL(inputing) and MGL. Left panel all results,
right panel mean results per percentage of partial data.
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Figure 2: MCC of the results obtained for MMGL, JGL(complete), JGL(inputing). Left panel all results, right panel
mean results per percentage of partial data.

performing ad-hoc cross-validation, even bayesian optimization method (Pelikan et al., 1999) would
have required too much computational time (Tozzo and Barla, 2019). Thus, we fixed some of
them to the value provided by theoretical bounds, while we fixed the others to reasonable arbitrary
values. The hyper-parameters are as follows. All the models have the sparsity enforcing parameter
α, MMGL has κ which, if we use either Equation (2) or (1), it coincides with the choice of a
parameter β similarly to TGL (Hallac et al., 2017), JGL (Danaher et al., 2014) and LTGL (Tomasi
et al., 2018). In the specific case of latent variables we also need to fix the number of latent variables
r, similarly to LVGLASSO (Yuan, 2012). Lastly, LTGL has two further hyper-parameters τ and η
that guide the latent variables behaviour in time. We fixed α = log |O|

Nk
(Raskutti et al., 2009) and

τ = 2
√
|O|/Nk (Chandrasekaran et al., 2011) according to theoretical results, while we fixed β = 1

and r to the real number of latent variables in synthetic data. While one may object that fixing r is
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Figure 3: MCC of the results obtained for MMGL, LVGLASSO and LTGL. Left panel all results, right panel mean
results per percentage of partial data.

not fair w.r.t. the choice of τ = 1 for LTGL it can be shown that the choice of r does not impact
heavily the performance of our algorithm and thus we opted to fix it to the true value. Such behaviour
is similarly reported in (Yuan, 2012). Simulation results can be found in the github repository. All
hyper-parameters were fixed to the same values for all the models under consideration.
We present the results in terms of Matthews Correlation Coefficient (MCC) (Matthews, 1975) where
we considered as true positive the number of edges correctly identified, true negative the number of
edges that were correctly inferred as absent, false positive is the number of edges that the algorithm
identifies as existing but are not and false negative are those edges that are not inferred by the
algorithm but exist.

5.1 Results

Results are presented in Figure 1, 2 and 3 for Exp-PT, Exp-PC and Exp-LT respectively. It can be
seen that MMGL is the one with the highest MCC across all types of experiments while being stable
as the percentage of partial or latent data increases (right panel of all three figures). The only state-
of-the-art method that provides closely related performance is TGL with imputing as pre-processing
strategy. When using complete data as pre-processing strategies, as well as when exploiting static
method, the percentage of missing data matters on the final result. Indeed, regularization for mul-
tiple join inference allows us to exploit information on other classes/time to improve the inference
as it can be seen also for TGL and JGL with imputing. In Figure 1 and 3, we observed that 20%
missing data result in better performances, while not having a theoretical explanation for this be-
haviour we argue that it might simply be due to the data generation process. We performed also a
scalability assessment in terms of convergence time. Results are presented in Figure 4, where we
can observed that MMGL is the one that requires the highest time to converge in the Exp-PT and
Exp-LT, this is expected as MMGL solves a non-convex problems that also estimates the means
and precision matrices in time. Instead, in Exp-PT we can observe that it is faster than the available
state-of-the-art implementation of JGL.
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Figure 4: Scalability results for the experiments Exp-PT (left panel), Exp-PC (central panel) and Exp-LT (right
panel).

5.2 Case study: automobile safety

We performed a last experiment on a real-world dataset that consists of a multi-class dataset of au-
tomobile characteristics2 where class 0 corresponds to set of safest cars and class 5 to the most risky
sett. The dataset contains ≈ 26% of missing values across all classes, which are also unbalances as
we have 3 samples for class 0, 22 for class 1, 67 for class 2, 54 for class 3, 32 for class 4, and 27 for
class 5. The hyper-parameters were selected through likelihood-based cross-validation in the fol-
lowing ranges α = [10−2, 102] and β = [10−5, 101] and the resulting hyper-parameters are α = 10
and β = 10−4. We analysed the dataset with MMGL and JGL coupled with imputing, results are
presented in Figure 5. The first thing that we can notice is that there are difference in the edges
inferred in class 0 or 5 with the two methods as well as there are differences in the graph inferred
with MMGL from the two classes but JGL tends to infer the same graph throughout all the classes.
We do not discuss the possible insights obtained by this analysis as they are not the scope of this
paper, but we want to remark that by exploiting MMGL we can obtain insights on the dataset that
were impossible to obtain using JGL as it infers a network that is consistent across all five classes.

6. Conclusions

We presented a method that allows in a unique way to handle the inference of networks from data
that may have different patterns of missing data as well as different complex inter-relationships as
multi-class or temporal evolution. We showed on synthetic data that our method performs better
than a variety of state-of-the-art methods thus providing a valuable alternative to both joint network
inference method (Danaher et al., 2014; Hallac et al., 2017; Tomasi et al., 2018) as well as static
inference methods that deal with missing data (Yuan, 2012; Städler and Bühlmann, 2012). MMGL
optimization could be improved. Indeed, we could reduce time to converge by parallelising the K
expectations computations. We do not provide such results but we expect the time to convergence
to be reduced drastically. Moreover, in the case of latent variables we can reason in terms of blocks
when computing the expectation step and we can remove the estimate of the means as re-centering

2. https://sci2s.ugr.es/keel/dataset.php?cod=90
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Figure 5: Comparison of the networks obtained with MMGL and JGL on the automobile dataset. A blue edge means
that the edge was present in the first named set and not in the second. Red edge the opposite. The labels
correspond to Normalized-losses (NL), Wheel-base (WB), Length (L), Width (W), Height (H), Curb-weight
(CW), Engine-size (ES), Bore (B), Stroke (S), Compression-ratio (CR), Horsepower (HP), Peak-rpm (PR),
City-mpg (CM), Highway-mpg (HM), Price (P).

the data does not induce any bias. This approach is equivalent but would further reduce convergence
time. Our derivations show that indeed handling latent data or partial data can be done in a unique
way, and this show that the two different methods presented in (Yuan, 2012) for latent data and
(Städler and Bühlmann, 2012) for partial data are, indeed, the same. As proposed in (Städler and
Bühlmann, 2012), this method could be exploit as a pre-processing step to perform imputing and
thus preparatory to supervised machine learning tasks. We leave the validation of this approach to
further work due to lack of space. Also, our method different from methods that marginalise out the
latent variables effect as (Chandrasekaran et al., 2010; Tomasi et al., 2018) and, by allowing a direct
estimate of the latent variables graph may be used for complex inference and data mining.
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