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Abstract
Causal interaction models, such as the well-known noisy-or and leaky noisy-or models, have be-
come quite popular as a means to parameterize conditional probability tables for Bayesian net-
works. In this paper we focus on the engineering of subnetworks to represent such models and
present a novel technique called recursive unfolding for this purpose. This technique allows in-
serting, removing and merging cause variables in an interaction model at will, without affecting the
underlying represented information. We detail the technique, with the recursion invariants involved,
and illustrate its practical use for Bayesian-network engineering by means of a small example.
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1. Introduction

Causal interaction models have become quite popular as a means to simplify the construction of
conditional probability tables when building Bayesian networks for real-world applications. These
models in essence describe the joint influence of a set of cause variables on a common effect variable
by means of a parameterized conditional probability table for the latter variable, such that this table
is fully defined by a small number of parameter probabilities. Various models specifying different
types of causal interaction have been designed, with the noisy-or and leaky noisy-or models as the
best known among them (Dı́ez and Druzdzel, 2007; Henrion, 1989; Pearl, 1988).

When employing a causal interaction model to describe the joint influence of multiple cause
variables on an effect variable, a Bayesian-network engineer typically is faced with a range of mod-
elling decisions. While researchers have addressed the graphical representation of a noisy-or model
(see for example Pearl (1988); Heckerman and Breese (1996); Renooij and van der Gaag (2019)) as
well as the representation of the conditional probability table involved (see for example del Sagrado
and Salmeron (2003)), little attention has focused thus far on the flexibility of causal interaction
models from an engineering perspective. If all possible causes for an effect to arise have been fully
identified and described in the state-of-art knowledge of a domain at hand for example, these may
all be modelled individually through separate cause variables. As from a modelling perspective it
may not be desirable to define a separate variable for each possible cause, the network engineer may
decide to merge several causes into a single (binary) compound cause variable with a well-defined
meaning. Alternatively, they may transform the noisy-or model into a leaky noisy-or model and
define a leak to capture some causes that will not be modelled explicitly. Any such modelling de-
cisions taken during the construction of a network at hand may later need to be reconsidered upon
maintenance. Network engineers are offered very little support for such engineering tasks.
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Figure 1: A conditional subnetwork M(n) with n cause variables Ci and the effect variable E
(left); the conditional probability tables imposed by the basic noisy-OR and leaky noisy-
OR models respectively, for n = 3 (right).

In this paper, we detail recursive unfolding as a technique for building and maintaining subnet-
work representations of causal interaction models. Recursive unfolding is a practical engineering
technique by which explicit causes can be inserted, removed or merged in an interaction model
by means of simple transforms. In presenting our technique, we will consider interaction models
that have an underlying decomposable deterministic function, and exploit the property that such
models allow a cascading subnetwork representation (Renooij and van der Gaag, 2019). We will
further focus on the leaky noisy-or model and develop an unfold transform for recursively extract-
ing causes from the leak involved. Our transform has the prior distribution over the effect variable
for its invariant, which guarantees that its application leaves all underlying represented informa-
tion unchanged. The transform further has a range of convenient properties which render recursive
unfolding a practical engineering technique.

The paper is organised as follows. In Sections 2 and 3 we review causal interaction models and
extend upon their subnetwork representations, focusing specifically on the leaky noisy-or model.
Section 4 introduces our technique of recursive unfolding and specifies the invariant of its main
transform; properties of the transform are discussed in Section 5. The paper concludes in Section 6.

2. Preliminaries

We consider binary random variables, denoted by (possibly indexed) capital letters X; we will write
x and x to denote absence and presence respectively, of the concept modelled by a variable X . Sets
of variables are indicated by bold-face capital letters X, with bold-face small letters x for their joint
value combinations. We further consider joint probability distributions Pr over sets of variables,
represented by Bayesian networks. Within such networks, a real-world mechanism of causes and
their effects1 is captured by a conditional subnetwork that represents the conditional distributions
Pr(E | C) over the effect variables E involved, conditioned on the cause variables C (Koller and
Friedman, 2009). In this paper, we will address mechanisms with a single effect variable E and one
or more cause variables Ci, i = 1, . . . , n, n ≥ 1. Such a mechanism is typically represented as a
conditional subnetwork with the cause variables as parents of the effect variable, as illustrated in
Figure 1 (left); we useM(n) to indicate this type of representation, with the argument n referring to
the number of explicitly modelled causes. A causal interaction model for a conditional subnetwork

1. Although we do not make any claim with respect to causal interpretation, we adopt the terminology commonly used.
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M(n) now takes the form of a parameterized conditional probability table Pr(E | C) over the effect
variable E given the joint value combinations c for its parents C. The noisy-or model (Pearl, 1988)
for example, defines the conditional probability table for the effect variable E inM(n) through

• the conditional probability Pr(e | c̄1, . . . , c̄n) = 0;

• the noisy-effect parameters pi = Pr(e | c̄1, . . . , c̄i−1, ci, c̄i+1, . . . , c̄n), for all i = 1, . . . , n;

• the definitional rule Pr(e | c) = 1 −
∏

i∈Ic(1− pi) for the value combinations c stating the
presence of two or more causes, where Ic is the set of indices of the causes ci present in c.

Figure 1 (right) illustrates the parameterized conditional probability table defined by the noisy-or
model, for absence of the effect, in a conditional subnetwork with three cause variables.

The noisy-or model assumes that all possible causes for the effect to arise, are modelled ex-
plicitly. This assumption is weakened by the leaky noisy-or model, which allows for the existence
of one or more unmodelled causes. These unmodelled causes are jointly referred to as the leak
cause. With this leak cause, the leaky noisy-or model includes a leak parameter pL to capture the
probability of the effect e occurring in the absence of all explicitly modelled causes. In view of the
semantics of this leak parameter, different interpretations of the noisy-effect parameters per cause
have given rise to different definitional rules for the entries in the probability table for the effect vari-
able (Dı́ez and Druzdzel, 2007; Henrion, 1989). In this paper we adopt the interpretation proposed
by Dı́ez and Druzdzel (2007), which takes a noisy-effect parameter pi to reflect the probability
Pr(e | c1, . . . , ci−1, ci, ci+1, . . . , cn, l), with l indicating absence of the leak cause. The parameter
pi thus is taken to capture the probability of the effect occurring as a result of just the cause ci, in
the absence of all other modelled and unmodelled causes. For the conditional probability table for
the effect variable E inM(n), the leaky noisy-or model further specifies

• the leak parameter pL = Pr(e | c̄1, . . . , c̄n);

• the definitional rule Pr(e | c) = 1 − (1− pL) ·
∏

i∈Ic(1− pi) for the value combinations c
stating the presence of one or more explicitly modelled causes, with Ic as above.

Figure 1 (right) illustrates that each entry in the probability table for the absence of the effect in a
noisy-or model is multiplied by the factor (1− pL) to obtain the entry for its leaky variant. We note
that the alternative interpretation by Henrion (1989) assumes a noisy-effect parameter to include the
leak probability as such, thereby giving rise to a different definitional rule. As this rule describes an
equally simple relation between the noisy-effect parameters, the technique presented in the sequel
is readily adapted to this interpretation, although the details involved would be less elegant.

3. Causal Interaction Models as Cascading Subnetworks

Causal interaction models are often viewed as partitioned into a deterministic function f and in-
dependent noise variables Zi per cause variable (see for example Heckerman and Breese (1996);
Koller and Friedman (2009); Pearl (1988)). The basic idea is illustrated for the leaky noisy-or model
by the subnetwork from Figure 2 (left). Although commonly left implicit, we have made the leak
variable L explicit for explanatory purposes; as the leak cause is assumed to be present always, its
prior probability is set to Pr(l) = 1. In this partition view, the variables Zi capture the noise of
the influences by which the causes ci give the effect e. These Zi have associated the probabilities
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Figure 2: The partition view of a causal interaction model as a subnetwork composed of a proba-
bilistic noise part and a deterministic functional part (left); the subnetwork in cascading
representationW(n), derived from self-decomposability of the function f (right).

Pr(zi | ci) = pi, Pr(zi | ci) = 0, and Pr(zL | l ) = pL, Pr(zL | l ) = 0, where pi, pL are the
parameters of the leaky noisy-or model. The deterministic function f in the partition view further
equals the logical OR and is encoded in the conditional probability table Pr(E | Z) for the effect
variable E by means of degenerate distributions, which in essence render E a deterministic variable.

Causal interaction models are typically represented by conditional subnetworksM(n) that are
obtained by summing out the noise variables from the partition view (and absorbing the leak vari-
able). If its underlying deterministic function f is self-decomposable2 however, an interaction
model can also be captured by a subnetwork in cascading representation (Renooij and van der
Gaag, 2019). Figure 2 (right) shows this type of representation for the leaky noisy-or model, again
with the leak variable made explicit; in the sequel, we will useW(n) to refer to a cascading subnet-
work, with the argument n once more indicating the number of explicitly modelled causes. For the
leaky noisy-or model, the conditional subnetworkW(n) includes n auxiliary effect variables Ei for
the explicitly modelled cause variables Ci, and another such variable EL for the leak variable. The
conditional probability tables for the effect variables Ei, i = 1, . . . , n, are defined as:

Pr(ei | ci, ei+1) = 0 Pr(ei | ci, ei+1) = 1
Pr(ei | ci, ei+1) = pi Pr(ei | ci, ei+1) = 1

with En+1 ≡ EL and with pi the noisy-effect parameter for the cause ci as before. For the leak’s
effect variable EL, the probability table has Pr(eL | l ) = 0,Pr(eL | l ) = pL, with pL the model’s
leak parameter; we note that, as the leak is assumed to be present always, we have that Pr(eL) = pL.
The conditional probability tables for the effect variables in the cascading representation of the leaky
noisy-or model are such that for all joint value combinations c for the cause variables, it holds that

PrM(e | c) = PrW(e1 | c)

where PrM is the distribution defined over the variables E,C1, . . . , Cn, L by the subnetworkM(n),
and PrW is the distribution over the variables E1, . . . , En, EL, C1, . . . , Cn, L in the cascading sub-
networkW(n). Through this property, the two subnetwork representations are equivalent in terms
of the conditional distributions over the variables E and E1 respectively, given any value combina-
tion c; we refer to Renooij and van der Gaag (2019) for a proof of this equivalence.

2. A function f(·) on a set of entities is called self-decomposable if, for any two disjoint subsets X,Y, the property
f(X ∪Y) = f(X) � f(Y) holds, for some commutative and associative merge operator � (cf. Jesus et al. (2011)).
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Figure 3: Recursive unfolding: the initial leak constructW(0) (left), and the recursive step from a
representationW(i) to a representationW(i + 1) of the leaky noisy-OR model (right).

4. Recursive Unfolding

In this section, we detail our novel technique of recursive unfolding for building cascading repre-
sentations of causal interaction models. As will be argued in Section 5, recursive unfolding is a
practical engineering technique by which explicit causes can be inserted, removed or merged in
an interaction model by means of simple transforms. Focusing once again on the leaky noisy-or
model, we present the technique itself in Section 4.1; in Section 4.2, we will discuss the invariant
underlying the recursive scheme and thereby prove the technique’s correctness.

4.1 The Recursive Scheme

Our technique of recursive unfolding of leaky noisy-or models builds on the idea of maintaining
all yet unmodelled causes and their joint effect in an auxiliary leak construct, from which separate
causes are extracted and modelled explicitly. The technique is initialised with a subnetworkW(0)
composed of just this leak construct, as shown in Figure 3 (left). The probability tables associated
with the variables in this subnetwork are defined by Pr(cU ) = 1 for the leak variable CU and by

Pr(eU | cU ) = 0 Pr(eU | cU ) = pU

for the leak’s effect variable EU , where pU is an overall leak parameter to be specified by the
network engineer; we will elaborate on this choice of parameter probabilities in Section 4.2. Starting
with the auxiliary leak construct, recursive unfolding amounts to recursively extracting separate
causes from the leak variable CU and including these explicitly into the cascading representation
under construction. With its underlying idea depicted in Figure 3 (right), the recursive step of taking
a representation W(i) to a representation W(i + 1) for any i ≥ 0, now amounts to replacing the
leak construct fromW(i) by the cascading combination of the following two constructs:

• the construct composed of the newly extracted cause variable Ci+1 with an arc to its associ-
ated new effect variable Ei+1, where

– the probability Pr(ci+1) of the cause ci+1 being present is set by the network engineer;

– the conditional probability table Pr(Ei+1 | Ci+1, E
′
U ), with E′U the effect variable of

the new leak construct detailed below, is defined by

Pr(ei+1 | ci+1, e
′
U ) = 0 Pr(ei+1 | ci+1, e

′
U ) = 1

Pr(ei+1 | ci+1, e
′
U ) = pi+1 Pr(ei+1 | ci+1, e

′
U ) = 1

where pi+1 is the noisy-effect parameter associated with cause ci+1, to be set by the
network engineer;
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Figure 4: Building a cascading representation of an example noisy-OR model through unfolding.

– the new probability table Pr(Ei | Ci, Ei+1) for the variable Ei is derived from Pr(Ei |
Ci, EU ) by replacing each occurrence of eU and eU by ei+1 and ei+1, respectively.

• the leak construct composed of the new leak variable C ′U with an arc to its associated new
effect variable E′U , where

– the prior probability Pr(c′U ) again is set to 1;

– the conditional probability table Pr(E′U | C ′U ) is defined by Pr(e′U | c′U ) = 0, Pr(e′U |
c′U ) = p′U , with the new leak parameter p′U computed through the leak updating rule:

p′U =
pU − pi+1 · Pr(ci+1)

1− pi+1 · Pr(ci+1)

where pU is the leak probability taken fromW(i).

The recursive step detailed above will be called the unfold transform. We note that the transform
involves two parameters to be set by the network engineer, which are the prior probability Pr(ci+1)
and the noisy-effect parameter pi+1. While pi+1 is a parameter of the interaction model being
represented, the prior probability Pr(ci+1) of the newly inserted cause ci+1 is not. The latter is
necessary information however, for computing the noisy effect of the remaining leak. If the resulting
subnetwork is to be embedded in a larger Bayesian network moreover, this prior probability acts as
a constraint on the conditional probability table to be included for the new cause variable. We
further note that recursive unfolding has a natural fixed point. With each step, the leak parameter is
decreased yet cannot become smaller than zero. It will reach zero when, from the remaining leak
variable CU , a new cause variable Cn is extracted with pn · Pr(cn) = pU . The fixed point signifies
that all possible causes for the effect to arise have been made explicit. The constructed subnetwork
then in fact represents a non-leaky noisy-or model, and its leak construct can be removed.

We illustrate our recursive-unfolding scheme by means of a fictitious medical example.

Example 1 We consider four possible causes of a fever and construct, through recursive unfolding,
a cascading representation of a noisy-or model to capture their joint effect. The transform steps in-
volved are shown in Figure 4. Unfolding is initialised with an auxiliary leak construct, as described
above. As, from our medical context, we find the prior probability of a fever to be 0.25, we take this
probability as the overall leak parameter pU in the initial construct. The first cause to be modelled
explicitly is a virus infection of type A. Our initial representation is transformed to include the new
cause variable A describing the infection and its associated effect variable FA. For the variable
A, we acquire the prior probability Pr(a) = 0.10 and the noisy-effect parameter pA = 0.80. This
information results in a remaining leak parameter of (0.25− 0.80 · 0.10)/(1− 0.80 · 0.10) ≈ 0.18.
We then identify a bacterial infection B as another possible cause of a fever and extract it from
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the prevailing leak variable. With the estimated prior probability Pr(b) = 0.05 and noisy-effect
parameter pB = 0.70 for this type of infection, the leak parameter is further decreased, to roughly
0.16. Similarly extracting a heat stroke H as a possible cause of a fever, leaves a leak parameter
of approximately 0.15. We now establish a virus infection of type C as the only remaining possible
cause: its prior probability Pr(c) = 0.30 and noisy-effect parameter pC = 0.5 reduce the leak pa-
rameter to zero. The auxiliary leak construct can thus be removed from the representation without
changing the joint distribution over the four cause variables and associated effect variables. �

4.2 The Invariant of Recursive Unfolding

Our recursive scheme of unfolding was designed such that the unfold transform does not change
the semantics of the represented information. More specifically, it was designed such that the prior
probability of the overall effect to occur is not affected by the process of extracting cause variables
from the leak variable and making them explicit. To show that this property is an invariant of
the transform, we first detail in Section 4.2.1 the semantics of the leak construct and then show in
Section 4.2.2 that the prior probability of the overall effect indeed remains the same upon unfolding.

4.2.1 SEMANTICS OF THE LEAK CONSTRUCT

After each step of recursive unfolding, the resulting subnetworkW(i) represents a leaky noisy-or
model with the i explicitly modelled cause variables C1, . . . , Ci and the leak variable CU , along
with their associated effect variables. The leak variable CU captures all possible causes of the
common effect to arise, other than c1, . . . , ci. Some of these causes may simply be unmodelled
and some may actually be unknown in a domain’s state-of-the-art knowledge. More formally, the
variable CU is logically equivalent to Ci+1 ∨ . . .∨Cn ∨ . . .∨Cm, where Ci+1, . . . , Cn capture the
unmodelled, yet established causes and Cn+1, . . . , Cm, for some suitably chosen m > n, describe
unknown causes of the effect to arise. From this equivalence, we thus have that

cU = ci+1 ∨ . . . ∨ cn ∨ . . . ∨ cm
c̄U = c̄i+1 ∧ . . . ∧ c̄n ∧ . . . ∧ c̄m

We now observe that extraction of the cause variable Ci+1 from the leak variable CU in essence
changes the meaning of the latter variable to C ′U ≡ Ci+2 ∨ . . . ∨ Cm. In view of this changed
meaning, the leak parameter pU associated with CU has to be adapted, to a parameter p′U , to properly
reflect the noisy effect of the logical combination ci+2 ∨ . . . ∨ cm of the remaining implicit causes.

Before detailing the changes in representation that are induced by the unfold transform, we con-
sider the leak constructW(0), composed of the leak variable CU and its associated effect variable
EU , and address the choice of initial values for the prior probability Pr(cU ) and the leak parameter
Pr(eU | cU ). Since by the semantics of the leaky noisy-or model we have that Pr(eU | cU ) = 0, we
find for the prior probability Pr(eU ) of the effect to arise that

Pr(eU ) = Pr(eU | cU ) · Pr(cU )

From the three probabilities involved, Pr(eU ) is the easiest to acquire in practice, either from obser-
vational data or from experts; the other two probabilities would be quite difficult to obtain as they
are associated with multiple implicit and, in part, unknown causes. The true values of Pr(cU ) and
Pr(eU | cU ) however, must be such that their product equals the acquired probability Pr(eU ) = pL.
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Figure 5: The prior probability Pr(eU ) = pL as a function of the parameters Pr(cU ) and Pr(eU |
cU ) (left); Pr(eU | cU ) as a function of Pr(cU ) for different values of pL (right).

To illustrate the relation between the three probabilities, Figure 5 (left) shows the probability pL as
a function of Pr(cU ) and Pr(eU | cU ); Figure 5 (right) shows the relation between the latter two
probabilities, for different values of pL. For inclusion in the auxiliary leak construct, convenient ini-
tial values must be chosen for Pr(cU ) and Pr(eU | cU ). For this purpose, we turn once more to the
effect of extracting the cause variable C1 from the leak variable CU inW(0). After the extraction,
the variable CU has been substituted by the new leak variable C ′U in W(1). The prior probability
Pr(c′U ) to be associated with this new variable is dependent of the probability Pr(cU ) and the prior
probability Pr(c1) of the extracted cause being present. Assuming that all cause variables captured
by the leak variable are mutually independent, we find that Pr(c′U ) relates to these probabilities as

Pr(c′U ) =
Pr(cU )− Pr(c1)

1− Pr(c1)

In the design of (the variants of) the original leaky noisy-or model, the values for Pr(cU ) and
Pr(eU | cU ) were chosen pragmatically, setting either of them to 1 and thereby effectively reducing
the freedom of choice to a single parameter (Dı́ez and Druzdzel, 2007; Zagorecki, 2010). In the
design of our unfold transform, we have taken a similar approach and chose to set Pr(cU ) = 1 in
the initial leak construct. The prior probability of the leak being present thereby becomes invariant
and the computations involved after extracting a new cause variable are restricted to just an update
of the leak parameter Pr(eU | cU ). We note that if the cause variables cannot be assumed mutually
independent apriori, the above formula needs to account for the dependencies involved and would
thereby become less elegant.

4.2.2 INVARIANCE OF THE PRIOR PROBABILITY OF THE EFFECT

As mentioned above, we designed the unfold transform such that its application does not affect the
overall semantics of the underlying represented information. More formally, we imposed the prop-
erty Pr(e) = Pr′(e) for the main invariant of the transform, where Pr is the probability distribution
defined over the subnetwork W(i) prior to applying the transform and Pr′ is the distribution over
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the subnetworkW(i + 1) resulting from its application. We now show that the unfold transform as
detailed in Section 4.1 indeed satisfies the above stated property.

We begin by showing that the property Pr(e) = Pr′(e) holds upon application of the unfold
transform to the subnetworkW(0), that is, to the initial auxiliary leak construct. We recall that in
this subnetwork we have that Pr(e) ≡ Pr(eU ) = pU . In the subnetworkW(1) resulting from the
transform, with Pr′(e) ≡ Pr′(e1), we then have that

Pr′(e1) = Pr′(e1 | c1, e′U ) · Pr′(c1) · Pr′(e′U ) + Pr′(e1 | c1, e′U ) · Pr′(c1) · Pr′(e′U )

+ Pr′(e1 | c1, e′U ) · Pr′(c1) · Pr′(e′U ) + Pr′(e1 | c1, e′U ) · Pr′(c1) · Pr′(e′U )

Filling in the parameters as prescribed by the unfold transform, gives

Pr′(e1) = Pr′(c1) · Pr′(e′U ) + Pr′(c1) · Pr′(e′U ) + p1 · Pr′(c1) · Pr′(e′U )

= p1 · Pr′(c1) + (1− p1 · Pr′(c1)) · p′U

using p′U = Pr′(e′U ) in the latter step. From the transform’s leak updating rule, we then find

Pr′(e1) = p1 · Pr′(c1) + (1− p1 · Pr′(c1)) ·
pU − p1 · Pr′(c1)

1− p1 · Pr′(c1)
= pU

from which we have that the invariant Pr(e) = Pr′(e) holds upon applying the transform toW(0).
The above argument is readily generalised to application of the unfold transform to any sub-

network W(i), i > 0. To this end, we first recall that the equivalence Pr(e) ≡ Pr(e1) holds in
all subnetworks W(i) with i > 0 (Renooij and van der Gaag, 2019). We now observe that upon
unfolding a subnetworkW(i) toW(i + 1), just only the leak construct ofW(i) is modified. The
probability tables of all cause variables Cj , j = 1, . . . , i, and of all associated effect variables Ej

remain unaltered. The marginal distributions Pr(E1, C1, . . . , Ci) and Pr′(E1, C1, . . . , Ci) from the
subnetworksW(i) andW(i + 1) respectively, can therefore differ only if Pr(EU ) inW(i) differs
from Pr′(Ei+1) inW(i + 1). By the argument above it is readily seen that Pr(EU ) = Pr′(Ei+1)
and, hence, that the invariant holds. More in general in fact, the marginal distribution over the
variables E1, . . . , Ei, C1, . . . , Ci coincides for any subnetworkW(k) with k ≥ i.

5. Practical Properties of Recursive Unfolding

In the preceding sections we introduced and detailed our technique of recursive unfolding for leaky
noisy-or models. As mentioned in our introduction, enhancing the flexibility of causal interaction
models for engineering purposes was the main motivation for its development. We now return to
this motivation and briefly discuss properties of our unfolding scheme that allow for such flexibility.

Order of Unfolding. With leaky noisy-or models in general, the meaning of the represented in-
formation is independent of the order in which the cause variables are specified. Our technique of
recursive unfolding equally respects this property, in the sense that the result of recursive application
of the unfold transform does not depend on the order in which the cause variables are extracted from
the leak variable. To support this claim, we consider a subnetworkW(k)ij capturing a leaky noisy-
or model with the cause variables C1, . . . , Ci, . . . , Cj , . . . , Ck, 1 < i < j ≤ k, ordered according to
their order of extraction, and with the remaining leak parameter pU . We compare this representation
to the subnetwork W(k)ji in which the cause variables Ci and Cj have swapped positions in the
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extraction order. The property Prij(e1) = Prji(e1), with the probability distributions defined by
W(k)ij andW(k)ji respectively, now readily follows from the following considerations:

• The conditional probability tables for the auxiliary effect variables Ei and Ej differ in just
their noisy-effect parameters. These parameters pm, m ∈ {i, j}, moreover, are determined
solely by the cause parent Cm of the variable Em and not by its effect parent Em+1.

• The remaining leak parameter pU in the probability table of the leak’s effect variable EU is
the same in both subnetworks, as a result of commutativity of the leak updating rule.

A subnetwork representing a leaky noisy-or model with the cause variables C1, . . . , Ck thus includes
the exact same conditional probability tables, albeit in a different order, regardless of the extraction
order used. We note that, as a consequence, also the conditional probabilities Pr(e1 | c) for the main
effect variable E1, given cause combinations c, will be the same across the possible subnetworks.
The semantics of the intermediate auxiliary-effect variables as formulated by Renooij and van der
Gaag (2019) however, will differ among representations.

Undoing Unfolds. From an engineering perspective, it is desirable that earlier extraction of a cause
variable for a leaky noisy-or model, can be undone without changing the underlying represented
information. Our technique of recursive unfolding provides for this purpose, as it allows folding a
previously extracted cause variable back into the auxiliary leak construct. To support this claim, we
consider a subnetwork W(k) with the remaining leak variable CU and associated leak parameter
pU , and address undoing the extraction of a cause variable Ci for some i ≤ k. Undoing the earlier
extraction now amounts to the following two steps:

• To include the previously extracted cause variable Ci back into the leak construct, the defini-
tion of the leak variable CU is adapted from CU ≡ Ck+1 ∨ . . . ∨ Cn to C ′U ≡ Ci ∨ Ck+1 ∨
. . . ∨ Cn and the prior probability of c′U is set to Pr(c′U ) = 1.

• To include the noisy-effect parameter pi of the cause Ci back into the leak construct, the leak
parameter pU in the probability table for the effect variable EU is adapted to p′U by means of
the inverse of the leak updating rule, that is, to p′U = 1− (1− pU ) · (1− pi · Pr(ci)).

Based on these steps, a fold-back transform is readily defined.

Merging Unfolded Causes. From an engineering perspective, it is also desirable that earlier ex-
tracted cause variables in a leaky noisy-or model can be merged into a single binary compound
variable without changing the underlying represented information. Our technique of recursive un-
folding readily provides for this purpose as it allows constructing the merged cause variable and its
associated parameters from those of the separate variables being merged. To support this claim, we
consider the two cause variables Ci and Cj that were previously extracted from the leak construct
and now are to be merged. By exploiting the properties stated above, the variables Ci and Cj can
each be folded back into the leak construct, after which the new compound cause variable Cij is
extracted. For the extraction, the prior probability Pr(cij) and the noisy-effect parameter pij are
required. Assuming mutual independence of the original cause variables Ci and Cj , these probabil-
ities are readily established from the information available for the two separate cause variables and,
hence, do not require any further acquisition efforts from the network engineer:
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Figure 6: The results of application of the merge transform (left) and subsequently the fold back
transform (right) to our example (leaky) noisy-or subnetwork.

• The compound cause variable Cij has cij = ci∨cj for its semantics, in line with the semantics
of the compound leak variable discussed in Section 4.2.1. The prior probability of the cause
cij being present is found to be Pr(cij) = 1− (1− Pr(ci)) · (1− Pr(cj)).

• Since the compound variable Cij represents both cause variables Ci and Cj , the remaining
leak after extracting Cij should be the same regardless of whether we extracted the two cause
variables separately or in merged form. We thus have that the property pij · Pr(cij) = 1 −
(1− pi · Pr(ci)) · (1− pj · Pr(cj)) must hold, from which the noisy-effect parameter pij for
the compound cause variable Cij is readily derived.

Based on the above considerations, a merge transform is readily defined that directly constructs the
merged cause variable with the appropriate associated probabilities without the need to first undo
the unfolds of the separate cause variables.

We conclude this section with an example to demonstrate the flexibility offered by our approach.

Example 2 We reconsider our fictitious medical example from Section 4.2.2. At hindsight we decide
that, from a domain’s point of view, the two cause variables representing different virus infections
had better be merged. We apply to this end the merge transform to the variables A and C; we
substitute the merged compound variable AC for the original cause variable A (chosen arbitrarily)
and replace the latter’s effect variable by FAC; the result is shown in Figure 6 (left). The prior
probability of the compound cause ac is established from the prior probabilities of the original
causes a and c to be Pr(ac) = 1 − 0.90 · 0.70 = 0.37. The three prior probabilities are further
combined with the original noisy-effect parameters to give the parameter pAC ≈ 0.59. We note
that, since effectively no causes are removed, the leak parameter pU requires no updating. We
subsequently decide that a heat stroke need not be captured as an explicit cause in the subnetwork
representation after all. We therefore apply the fold-back transform to the cause variable H; the
result is shown in Figure 6 (right). The leak parameter pU is increased from zero to 0.9 ·0.01 = 0.09
as a result of the folding back. We note that the resulting subnetwork now describes a leaky noisy-or
model rather than a noisy-or model, and that the leak construct is part of the final subnetwork. �

6. Conclusions

While causal interaction models have become quite popular as a means to simplify the construc-
tion of conditional probability tables for Bayesian networks, network engineers are offered little
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support with the modelling decisions they typically have to take upon their application. In this pa-
per, we have introduced the novel technique of recursive unfolding to support inserting, removing
and merging cause variables in an interaction model, without affecting the underlying informa-
tion; use of the technique was illustrated by means of a small fictitious example. We would like
to note that, although we have detailed our technique of recursive unfolding for cascading subnet-
work representations, it is also applicable to interaction models in standard representation, provided
that the underlying deterministic function is self-decomposable; this observation is substantiated by
the equivalence of the two representations (Renooij and van der Gaag, 2019). Furthermore, while
we have used the leaky noisy-or model for our causal interaction model of study, the engineering
properties of recursive unfolding are transferable to any interaction model involving binary-valued
variables and an underlying self-decomposable deterministic function. For our further research we
aim at extending our results to causal interaction models involving multi-valued variables, such as
the noisy-MAX model, and involving other types of decomposable function.
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