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Abstract
Semi-graphoid independence relations, composed of independence triplets, are typically exponen-
tially large in the number of variables involved. For compact representation of such a relation, just
a subset of its triplets, called a basis, are listed explicitly, while its other triplets remain implicit
through a set of derivation rules. Two types of basis were defined for this purpose, which are the
dominant-triplet basis and the elementary-triplet basis, of which the latter is commonly assumed to
be significantly larger in size in general. In this paper we introduce the elementary po-triplet as a
compact representation of multiple elementary triplets, by using separating posets. By exploiting
this new representation, the size of an elementary-triplet basis can be reduced considerably. For
computing the elementary closure of a starting set of po-triplets, we present an elegant algorithm
that operates on the least and largest elements of the separating posets involved.

Keywords: Independence relations, Efficiency of representation, Elementary closure computation.

1. Introduction

The notion of independence plays a key role in practical systems of uncertainty, since effective use
of knowledge about independences allows these systems to deal with the computational complex-
ity of their problem-solving tasks; probabilistic graphical models in fact build explicitly on this
observation. To allow a study of independence without the numerical context involved, classical
probabilistic independence has been formulated in independence relations and associated axiomatic
systems describing their properties. The statements of an independence relation are called triplets,
and describe the independence of two sets of random variables given a third, so-called, separating
set. The most often studied axiomatic system of independence includes four axioms, called the
semi-graphoid axioms. Any set of triplets over a set of variables that is closed under these axioms,
is called a semi-graphoid independence relation (Geiger et al., 1991; Pearl, 1988).

Semi-graphoid independence relations are typically exponentially large in the number of vari-
ables involved, and representing them by enumeration of their triplets is infeasible from a practical
point of view. A more concise representation of a semi-graphoid relation is arrived at by explicitly
listing a small subset of its triplets, called a basis, and letting its other triplets be defined implicitly
through the four semi-graphoid axioms (Studený, 1998); the full relation can then be generated by
exploiting the axioms as derivation rules. Two types of basis have been proposed to this end: the
dominant-triplet basis, composed of triplets such that any remaining triplet can be derived directly
from one triplet from this basis (Studený, 1998), and the elementary-triplet basis. The latter type of
basis is composed of all elementary triplets of a semi-graphoid relation, where an elementary triplet
captures an independence between two individual variables. The dominant-triplet basis has been
studied more intensively, since elementary-triplet bases are generally assumed to be larger in size
than dominant-triplet bases for semi-graphoid relations.
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We focus in this paper on elementary-triplet bases of semi-graphoid independence relations. We
will introduce the elementary po-triplet as a compact representation of multiple elementary triplets.
The triplets captured by a single po-triplet share a fixed pair of (conditionally) independent vari-
ables, and their separating sets form a partially ordered set. For the manipulation of po-triplets,
we define various concepts and operators, among which are intersection and complete-union op-
erators. Depending on the structure of a given semi-graphoid relation, a po-triplet representation
of its set of elementary triplets will generally be more compact than the set of elementary triplets
itself. Yet, a po-triplet representation of the full elementary-triplet basis of a relation can typically
be further reduced, based on the observation that an elementary-triplet basis includes redundancies
(Matúš, 1992; Peña, 2017; Bolt and van der Gaag, 2019). These redundancies originate from two
axiomatic properties of elementary independence. A smaller elementary-triplet basis can there-
fore be constructed by letting specific triplets be defined implicitly through these two axioms; the
full elementary-triplet basis can then be generated by exploiting these axioms as derivation rules.
Building upon this observation, we will address the generation of a full elementary-triplet basis
in po-triplet representation from a starting set of po-triplets. We show, more specifically, that the
closure of a starting set of elementary po-triplets can be efficiently computed by means of a ded-
icated operator that manipulates just the least and largest elements of the separating posets of the
po-triplets involved, without the need to explicitly generate all represented elementary triplets.

The paper is organised as follows. In Section 2, we provide some preliminaries on semi-
graphoid independence relations in general and on the two most commonly studied types of ba-
sis. Section 3 then introduces our concept of elementary po-triplet as a compact representation of
multiple elementary triplets. Section 4 addresses the computation of a full elementary-triplet basis
in po-triplet representation from a given starting set of elementary po-triplets. The paper ends in
Section 5 with our conclusions and envisioned further research.

2. Preliminaries

We consider a finite, non-empty set V of discrete random variables, with |V | = n, n ≥ 2. We will
use small letters to indicate separate variables from V and capital letters to denote sets of variables;
when indicating individual variables in a set, we slightly abuse notational conventions and write xyz
instead of {x, y, z}, as long as ambiguity cannot occur. An (ordered) triplet over V is a statement
of the form θ = 〈X,Y |Z〉, where X,Y, Z ⊆ V are pairwise disjoint subsets with X,Y 6= ∅. The
triplet θ indicates that the sets of variables X and Y are (conditionally) independent given the set
Z; Z is called the separating set of X and Y in θ. A triplet θ = 〈X,Y |Z〉 over V has an associated
triplet θT = 〈Y,X |Z〉, called its (symmetric) transpose, which is considered different from θ itself.

A set of triplets constitutes a semi-graphoid independence relation if it is closed under the well-
known axioms of symmetry, decomposition, weak union and contraction (for further details, see
(Pearl, 1988)). Semi-graphoid relations typically are exponentially large in the number of variables
involved, which makes representing them by enumeration of their element triplets infeasible for
practical purposes. By taking the four axioms as derivation rules however, semi-graphoid indepen-
dence relations can be represented more concisely by enumerating a tailored subset of their triplets,
called a basis, and letting all other triplets be defined implicitly through these rules. More formally,
given a starting set of triplets J , we write J `∗ θ if the triplet θ can be derived from J by finite
application of the semi-graphoid derivation rules. The closure of J , denoted by J , then is the set of
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all triplets θ such that J `∗ θ. A triplet set J is a basis for a semi-graphoid independency relation
K if J = K; we note that any triplet set J thereby constitutes a basis for its own closure J .

Although different types of basis were proposed for independence relations, most attention has
focused on the dominant-triplet basis introduced by Studený (1998). This basis of so-called dom-
inant triplets builds on the convenient property that any triplet of a given semi-graphoid relation
can be derived from one of its dominant triplets by means of the semi-graphoid derivation rules.
A dominant-triplet basis thereby provides for efficiently solving the membership problem on semi-
graphoid independence relations, which is the problem of deciding whether a specific triplet θ is an
element of the closure J of a given triplet set J , or phrased alternatively, whether θ can be derived
from J . For computing a dominant-triplet basis from a given starting set of triplets, an elegant al-
gorithm is available (Studený, 1998; Baioletti et al., 2009; Lopatatzidis and van der Gaag, 2017),
which has a dedicated operator for deriving (possibly) new dominant triplets at its core.

In this paper, we focus on another type of basis for semi-graphoid independence relations, called
the elementary-triplet basis. An elementary triplet is a triplet of the form 〈x, y |Z〉 where x, y are
individual variables (Matúš, 1992; Peña, 2017). Any non-empty semi-graphoid relation J includes
two or more such elementary triplets. The set JE of all elementary triplets of a semi-graphoid
independence relation J is closed under the symmetry and equivalence axioms, which are defined
for all variables x, y, w ∈ V and separating sets Z ⊆ V as:

E1: if 〈x, y | Z〉 ∈ JE , then 〈y, x | Z〉 ∈ JE (Symmetry);

E2: if 〈x, y |Z〉 ∈ JE and 〈x,w |Z ∪{y}〉 ∈ JE , then 〈x, y |Z ∪{w}〉 ∈ JE and 〈x,w |Z〉 ∈ JE

(Equivalence).

The set JE of all elementary triplets of a semi-graphoid independence relation J is known to con-
stitute a basis for J (Matúš, 1992; Studený, 2005; Peña, 2017), and we will refer to this basis as
the full elementary-triplet basis of J . Full elementary-triplet bases have been shown to provide for
efficiently solving some common problems on semi-graphoid independence relations, such as the
above-mentioned membership problem and the problem of finding the intersection of two indepen-
dence relations (Peña, 2017). A full elementary-triplet basis may include redundant triplets however,
and a smaller elementary-triplet basis may exist (Peña, 2017; Bolt and van der Gaag, 2019), from
which the full basis can be generated by taking the symmetry and equivalence axioms as derivation
rules. We will call the closure, under the axioms E1–E2, of an arbitrary set of elementary triplets
JE , the elementary closure of JE .

3. Introducing elementary po-triplets

For introducing our concept of elementary po-triplet as a compact representation of multiple ele-
mentary triplets, we focus on the two random variables x, y. We consider the powerset of V \{x, y}
and take set inclusion as a partial order over its elements, to arrive at a poset with the empty set ∅
for its least element and V \{x, y} for its largest element; slightly abusing notation, we will denote
this poset by P(V \{x, y}). We define a full interval IP of P(V \{x, y}) to be a poset of elements
such that, for any A,C ∈ IP and B ∈ P(V \{x, y}), we have that: if A ⊆ B ⊆ C, then B ∈ IP . A
full interval of P(V \{x, y}) with the least element Z and greatest element Z ′, will be indicated by
IP = [Z;Z ′]; a full interval composed of a single element Z will be written as [Z;Z]. Figure 1 il-
lustrates a commonly used graphical representation of posets, called a Hasse diagram: shown is the
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Figure 1: A Hasse diagram of the poset P(1234), with the full interval [1; 1234] indicated in bold;
within this interval, the full intervals [1; 123] and [14; 1234] are indicated by different shadings.

example poset P(1234), in which the full interval [1; 1234] is indicated in bold. We now formally
introduce our concept of elementary po-triplet.

Definition 1 An elementary po-triplet over V is a statement of the form 〈x, y | [Z;Z ′] 〉 where
x, y ∈ V and [Z;Z ′] is a full interval of the poset P(V \{x, y}).

An elementary po-triplet σ = 〈x, y | [Z;Z ′] 〉 is taken to represent the set of elementary triplets
{〈x, y |W 〉 | Z ⊆ W ⊆ Z ′}. To distinguish σ from the set of elementary triplets it describes, we
will use the notation σ̂ to indicate the projection of σ onto this set. We further use the notation σT to
denote the symmetric transpose 〈y, x | [Z;Z ′] 〉 of the po-triplet σ = 〈x, y | [Z;Z ′] 〉, which captures
the set of elementary triplets {θT | θ ∈ σ̂}. The interval [Z;Z ′] of a po-triplet σ = 〈x, y | [Z;Z ′] 〉
is called the separating interval for the variables x and y in σ. We note that, if the separating interval
of σ has the set Z ′ = V \{x, y} for its largest element, then the elementary triplet θ = 〈x, y | Z〉 is
a stable triplet, with stability indicating that the variables x and y are independent given Z and any
possible superset of Z (cf. de Waal and van der Gaag (2004)).

We now define various concepts and operators for elementary po-triplets. We say that an ele-
mentary triplet θ = 〈x, y |W 〉 is included in the po-triplet σ = 〈x, y | [Z;Z ′] 〉 if the separating set
W of θ is an element of the separating interval of σ, or alternatively, if θ ∈ σ̂. We generalise this
concept of inclusion to elementary po-triplets as follows.

Definition 2 Let σi = 〈x, y | [Zi;Z ′i] 〉, i = 1, 2, be elementary po-triplets. Then, σ1 = 〈x, y |
[Z1;Z

′
1] 〉 is po-included in σ2 = 〈x, y | [Z2;Z

′
2] 〉, denoted σ1 E σ2, if Z2 ⊆ Z1 and Z ′1 ⊆ Z ′2.

From the definition above, it is readily seen that σ1 E σ2 if and only if σ̂1 ⊆ σ̂2, that is, σ1 is
po-included in σ2 if and only if each elementary triplet described by σ1 is also captured by σ2.
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We define the intersection of two elementary po-triplets.

Definition 3 Let σi = 〈x, y | [Zi;Z ′i] 〉, i = 1, 2, be elementary po-triplets with Z1∪Z2 ⊆ Z ′1∩Z ′2.
Then, the po-intersection of σ1 and σ2, denoted by σ1 u σ2, is the po-triplet defined as

σ1 u σ2 = 〈x, y | [Z1 ∪ Z2;Z
′
1 ∩ Z ′2] 〉

From the definition above, we have that the po-intersection σ1 u σ2 of two elementary po-triplets
σ1, σ2 is defined if and only if the condition Z1 ∪Z2 ⊆ Z ′1 ∩Z ′2 is met. The po-triplet σ = σ1 u σ2
then has σ̂ = σ̂1 ∩ σ̂2, and by Definition 2 we further have that σ E σi, i = 1, 2. If the condition
Z1 ∪ Z2 ⊆ Z ′1 ∩ Z ′2 is not met for two po-triplets σ1, σ2, then there does not exist a separating set
W ⊆ V \{x, y} and associated triplet θ = 〈x, y |W 〉 such that θ is included in both σ1 and σ2. The
set σ̂1 ∩ σ̂2 then is empty and the po-intersection of σ1, σ2 is not defined. We stress that the concept
of po-intersection is stated in terms of just the least and largest elements of the separating intervals
of the two po-triplets being intersected. From an algorithmic perpective therefore, using the above
definition of po-intersection is more efficient than taking the intersection of the set projections of the
two po-triplets and constructing a po-triplet representation of the result. We illustrate the concept of
po-intersection by means of an example.

Example 1 Using Figure 2 as a reference for the separating intervals involved, we consider the
following three elementary po-triplets:

σ1 = 〈5, 6 | [∅, 123] 〉 σ2 = 〈5, 6 | [13, 1234] 〉 σ3 = 〈5, 6 | [13, 123]〉

To establish the po-intersection σ1 u σ2 of the two po-triplets σ1, σ2, we first verify the condition
for its existence. As Z1 ∪ Z2 = {1, 3} ⊆ {1, 2, 3} = Z ′1 ∩ Z ′2, we find that the po-intersection is
indeed defined and that its separating interval equals [13; 123]. We conclude that σ1 u σ2 = σ3. 2

While taking the po-intersection of two elementary po-triplets is quite straightforward, taking
their union is more subtle as a consequence of the following observation: if we would define the
po-union of two elementary po-triplets σ1, σ2 to correspond with simply taking the set union of their
projections, then the resulting set of elementary triplets σ̂1 ∪ σ̂2 would not always be representable
by a single po-triplet. We illustrate this observation by means of an example.

Example 2 Referring to Figure 1 for the separating intervals involved, we consider the following
four elementary po-triplets

σ1 = 〈5, 6 | [1; 123] 〉 σ2 = 〈5, 6 | [14; 1234] 〉 σ3 = 〈5, 6 | [12; 1234] 〉 σ4 = 〈5, 6 | [1; 1234]〉

with their set projections σ̂i, i = 1, . . . , 4. We adopt the concept of po-union as suggested above,
that is, defined as taking the union of the set projections of the po-triplets being united. For taking
the po-union of the two po-triplets σ1, σ2, we establish the union of their set projections σ̂1, σ̂2, and
find that it equals the set projection of the po-triplet σ4, that is, we find that σ̂1 ∪ σ̂2 = σ̂4. For the
two po-triplets σ1, σ2 therefore, taking their po-union as suggested would result in the single po-
triplet σ4. We now address the po-union of the po-triplets σ1, σ3. Taking the union of their set pro-
jections results in the set of all elementary triplets 〈5, 6 |W 〉 with W ∈ {1, 12, 13, 123, 124, 1234}.
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Figure 2: A Hasse diagram of the poset P(1234), with the full intervals [∅; 123] and [13; 1234]
indicated in bold; the elements shared by these intervals are shown in grey.

We observe that the separating sets W do not jointly constitute a full interval of the poset P(1234).
More specifically, the set union σ̂1 ∪ σ̂3 does not include the elementary triplets 〈5, 6 |W ′〉 with
W ′ = 14 and W ′ = 134, respectively, which would be required to arrive at a full interval. We
conclude that the set union σ̂1 ∪ σ̂3 cannot be represented by a single po-triplet. 2

The previous example demonstrated that defining the po-union of two po-triplets as taking the union
of their set projections, does not always give a result that is representable by a single po-triplet.
For now, we will nonetheless build on the concept of po-union as suggested above and define the
complete po-union for two elementary po-triplets having the property that the union of their set
projections can be described by a single po-triplet.

Definition 4 Let σi = 〈x, y | [Zi;Z ′i] 〉, i = 1, 2, be elementary po-triplets. The po-triplets σ1, σ2
are said to have a complete po-union, denoted as σ = σ1 t σ2, if either of the following two
conditions holds:

• if σi E σj , i, j = 1, 2, then the complete po-union σ of σ1, σ2 equals σ = σj;

• if there exists a variable z ∈ V \({x, y} ∪ Z ′j) such that Zi = Zj ∪ {z} and Z ′i = Z ′j ∪ {z},
i, j = 1, 2, i 6= j, then the complete po-union σ of σ1, σ2 equals σ = 〈x, y | [Zj ;Z ′i] 〉.

The above definition indicates the conditions under which two elementary po-triplets have a com-
plete po-union. The first of these conditions covers the situation where the one po-triplet is included
in the other one; in this situation, the complete po-union equals the including po-triplet. The second
condition describes the situation where the separating intervals of the two po-triplets are order-
isomorphic and the one interval is stacked directly on the other one, as illustrated in Figure 1 for
the intervals [1; 123] and [14; 1234]. In this situation, the order isomorphism implies that the two
separating intervals have the same structure for their Hasse diagrams and, hence, are of equal size.
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ELEMENTARY PO-CLOSURE

Input: a starting set Jpo of elementary po-triplets;
Output: an elementary po-closure Jpo of Jpo .

1: function ElementaryPoClosure(Jpo)
2: J0 ← Jpo

3: i← 0
4: repeat
5: i← i+ 1

6: Ni ←
⋃
σ,σ′∈Ji−1

GE(σ, σ′)

7: Ji ← UnitePoTriplets(Ji−1 ∪Ni)

8: until Ji = Ji−1

9: Ji ← UnitePoTriplets(AddTransposes(Ji) )

10: return Jpo ← Ji

11: end function

Figure 3: An outline of our algorithm for computing an elementary po-closure of a set of po-triplets.

As the two separating intervals moreover are stacked directly on top of one another, the order iso-
morphism is captured by a function that inserts a single new variable in each element of the interval
of the one po-triplet, to give the elements of the separating interval of the other one. As this function
specifies a partial order between the elements of the two intervals conform to the partial order of the
poset P(V \{x, y}), the separating intervals are guaranteed to jointly constitute a full interval of the
poset. We note that, like the concept of po-intersection, complete po-union is stated in terms of just
the least and largest elements of the separating intervals of the elementary po-triplets being united.

Our concept of elementary po-triplet provides for a more compact representation of a semi-
graphoid independence relation than the relation’s set of elementary triplets itself, in the sense that
the po-triplet representation generally includes fewer statements. While for a given pair of variables
x, y, the maximum number of elementary triplets in an independence relation equals the size of the
powerset P(V \{x, y}), a po-triplet representation of the elementary triplets of any such relation
includes maximally half this number of statements. As the number of separating sets in an interval
[Z;Z ′], Z,Z ′∈P(V \{x, y}), Z ⊆ Z ′, is exponential in |Z ′\Z|, a single po-triplet can represent ex-
ponentially many elementary triplets. Depending on the structure of a given semi-graphoid relation
therefore, the po-triplet representation of its set of elementary triplets is likely to be more compact
than the representation by the elementary triplets themselves. For a given set of elementary triplets,
typically multiple po-triplet representations exist, ranging from a separate po-triplet per elementary
triplet, to a representation by the smallest possible number of po-triplets. In the remainder of this
paper, we assume po-triplet representations in which no two po-triplets have a complete po-union.
Such a representation may not be the smallest possible, as the separating intervals of multiple po-
triplets may possibly be re-arranged to give a representation by a smaller number of statements; we
leave the problem of constructing smaller po-triplet representations for our further research.
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4. Computing elementary po-closures

In the previous section, we introduced the concept of elementary po-triplet for compact representa-
tion of sets of elementary triplets. As argued in Section 2, full sets of elementary triplets have been
studied mostly in the context of representing independence relations. In this section, we address
the computation of a full set of elementary triplets JE from a defining subset JE by means of the
derivation rules E1–E2. We will argue more specifically that a po-triplet representation of JE can
be computed directly from a po-triplet representation of the set JE , without the need to explicitly
generate its full set projection. Figure 3 provides an outline of our algorithm for this purpose. The
core of our algorithm is an iterative loop (lines 4–8), in which new po-triplets are constructed by
means of a dedicated operator called GE (line 6) and a compact po-triplet representation is built
from the po-triplets obtained thus far, by means of the UnitePoTriplets function (line 7). We discuss
some of the steps of our algorithm in detail.

We begin the discussion of the concepts underlying our algorithm for po-closure computation by
defining the generalised equivalence operator, or ge-operator for short, which basically implements
the equivalence rule E2 tailored to po-triplets; this ge-operator will be extended shortly to the GE-
operator used by our algorithm for constructing po-triplets.

Definition 5 Let σ1 = 〈x, y | [Z1;Z
′
1] 〉, σ2 = 〈x,w | [Z2;Z

′
2] 〉, y 6= w, be elementary po-triplets.

Then, the ge-operator is defined by

• ge(σ1, σ2) = {σ′1, σ′2} with

– σ′1 = 〈x, y | [ ((Z1 ∪ Z2) \ {y}) ∪ {w}; (Z ′1 ∩ Z ′2) ∪ {w}] 〉;
– σ′2 = 〈x,w | [ (Z1 ∪ Z2) \ {y}; Z ′1 ∩ Z ′2] 〉;

if (Z1 ∪ {y}) ∪ Z2 ⊆ (Z ′1 ∪ {y}) ∩ Z ′2;

• ge(σ1, σ2) = ∅, otherwise.

The ge-operator essentially applies the equivalence rule E2 to each possible (ordered) pair of ele-
mentary triplets (θ1, θ2), θi ∈ σ̂i, in the set projections of its argument po-triplet σ1, σ2; the set of
elementary triplets resulting from these multiple applications is returned in po-triplet representation.
The ge-operator does not require the set projections of the po-triplets σ1, σ2 to be generated explic-
itly, but instead establishes its result by direct manipulation of the least and largest elements of the
separating intervals of its argument po-triplets. We note that the operator embeds po-intersection
for this purpose, to guarantee that the equivalence rule is applied only to the relevant parts of the
separating intervals of σ1, σ2. More specifically, the condition (Z1∪{y})∪Z2 ⊆ (Z ′1∪{y}) ∩ Z ′2
for the result to be non-empty, formulates the existence of separating sets Z that are shared by the
intervals [Z1 ∪ {y};Z ′1 ∪ {y}] and [Z2;Z

′
2], as required by the equivalence rule. By these consid-

erations, application of the equivalence rule to a set of po-triplets by means of the ge-operator, is
more efficient from an algorithmic perspective than its application to the starting set of elementary
triplets itself. We illustrate application of the ge-operator by means of an example.

Example 3 We consider the two po-triplets σ1 = 〈6, 1 | [3; 345]〉 and σ2 = 〈6, 2 | [13, 1347]〉, and
address application of the ge-operator to the ordered pair (σ1, σ2). We now first observe that the
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condition for ge(σ1, σ2) to be non-empty is met, as

(Z1 ∪ {y}) ∪ Z2 = {1, 3} ⊆ {1, 3, 4} = (Z ′1 ∪ {y}) ∩ Z ′2

The interval [13; 134] thus identified by the criterion, captures the separating sets of the second-
argument triplets of the triplet pairs from σ̂1, σ̂2 to which the equivalence rule can be applied:

• (θ1, θ2) with θ1 = 〈6, 1 | 3〉 ∈ σ̂1 and θ2 = 〈6, 2 | 13〉 ∈ σ̂2;

• (θ′1, θ
′
2) with θ′1 = 〈6, 1 | 34〉 ∈ σ̂1 and θ′2 = 〈6, 2 | 134〉 ∈ σ̂2.

Application of the rule to these pairs returns the two triplet sets {〈6, 1 | 23〉, 〈6, 2 | 3〉} and {〈6, 1 |
234〉, 〈6, 2 | 34〉}, respectively. For the ordered po-triplet pair (σ1, σ2), the ge-operator returns

ge(σ1, σ2) = { 〈6, 1 | [23; 234]〉, 〈6, 2 | [3; 34]〉 }

We observe that this set of po-triplets describes the four elementary triplets that result from applica-
tion of the equivalence rule to all possible ordered pairs of triplets from the set projections σ̂1, σ̂2,
respectively. We emphasize that the ge-operator is applied to ordered pairs of po-triplets. For the
same po-triplets σ1, σ2, we find in fact that ge(σ2, σ1) = ∅ as the condition for a non-empty result
is not met for the reversed pair. 2

We now show that the ge-operator, when applied to the ordered po-triplet pair (σ1, σ2), returns
a set of po-triplets that include all elementary triplets that can be derived by application of the
equivalence rule to the ordered pairs of triplets from the set projections σ̂1, σ̂2, and does not include
any other triplet. In the proof, we use the notation `E2 to indicate an application of the equivalence
rule E2, that is, we write ( 〈x, y | Z〉, 〈x,w | Z ∪ {y}〉 ) `E2 {〈x, y | Z ∪ {w}〉, 〈x,w | Z〉}.

Proposition 6 Let σ1 = 〈x, y | [Z1;Z
′
1]〉, σ2 = 〈x,w | [Z2;Z

′
2]〉, y 6= w, be elementary po-triplets,

and let ge(σ1, σ2) = {σ′1, σ′2} be conform Definition 5. Then,

(i) for all ordered triplet pairs (θ1, θ2), θi ∈ σ̂i, i = 1, 2, it holds that: if (θ1, θ2) `E2 {θ′1, θ′2},
then θ′i ∈ σ̂′i;

(ii) for each θ′ ∈ σ̂′1 ∪ σ̂′2, there exists an ordered triplet pair (θ1, θ2), θi ∈ σ̂i, i = 1, 2, such that
(θ1, θ2) `E2 θ′.

Proof To prove the first property of the proposition, we consider an ordered pair of elementary
triplets (θ1, θ2), θi ∈ σ̂i, i = 1, 2, with (θ1, θ2) `E2 {θ′1, θ′2}. Since application of the equivalence
rule to the pair (θ1, θ2) yields valid triplets, there must exist a separating set Z such that θ1 = 〈x, y |
Z〉 ∈ σ̂1 and θ2 = 〈x,w |Z ∪{y}〉 ∈ σ̂2. By definition, we have that this set Z does not include the
variables y or w; we further know that Z1 ⊆ Z ⊆ Z ′1 and Z2 ⊆ Z ∪ {y} ⊆ Z ′2. By the equivalence
rule, we conclude that θ′1 = 〈x, y |Z ∪ {w}〉 and θ′2 = 〈x,w |Z〉. Now, to show that θ′i ∈ σ̂′i, we
first verify that the ge-operator, when applied to the po-triplet pair (σ1, σ2), yields a non-empty set
of po-triplets. By the existence of the separating set Z with the inclusion properties above, we find
that (Z1∪{y})∪Z2 ⊆ Z ∪{y} ⊆ (Z ′1∪{y})∩Z ′2 and, hence, that the condition for the operator
to yield a non-empty result is met. It follows that ge(σ1, σ2) = {σ′1, σ′2} with σ′i, i = 1, 2, conform
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Definition 5. From the observation that ((Z1 ∪Z2) \ {y})∪{w} ⊆ Z ∪{w} ⊆ (Z ′1 ∩Z ′2)∪{w},
we conclude that θ′1 ∈ σ̂′1. By an analogous argument, we find that θ′2 ∈ σ̂′2.

To prove property (ii) of the proposition, we consider an arbitrary triplet θ′1 ∈ σ̂′1. As θ′1 must
have resulted from application of the ge-operator to the po-triplet pair (σ1, σ2), there must exist an
associated triplet θ′2 ∈ σ̂′2. By the definition of the set projections σ̂′1, σ̂′2, we know that the triplet θ′1
is of the form θ′1 = 〈x, y | Q∪{w}〉 for some separating setQwith (Z1∪Z2)\{y} ⊆ Q ⊆ Z ′1∩Z ′2
and that θ′2 then must be of the form θ′2 = 〈x,w | Q〉. We now show that the po-triplets σ1, σ2 with
ge(σ1, σ2) = {σ̂1, σ̂2} include triplets θ1, θ2 of the forms θ1 = 〈x, y | Q〉 and θ2 = 〈x,w | Q∪{y}〉,
respectively. From the inclusion property (Z1 ∪ Z2) \{y} ⊆ Q ⊆ Z ′1 ∩ Z ′2 of the set Q, we find
that Z1 ⊆ (Z1 ∪ Z2) \ {y} ⊆ Q as y /∈ Z1 and, moreover, that Q ⊆ Z ′1 ∩ Z ′2 ⊆ Z ′1. It follows
that Q is an element of the interval [Z1;Z

′
1] and, hence, that θ1 ∈ σ̂1. From the inclusion property

of Q ∪ {y}, we further find that Z2 ⊆ Z1 ∪ Z2 ∪ {y} ⊆ Q ∪ {y} ⊆ (Z ′1 ∩ Z ′2) ∪ {y} ⊆ Z ′2,
where the latter property follows from the condition of the ge-operator being met. It follows that
Q∪ {y} is an element of the interval [Z2;Z

′
2] and, hence, that θ2 ∈ σ̂2. It is now easily verified that

(θ1, θ2) `E2 θ′1 as stated in property (ii) of the proposition. By an analogous line of arguments, a
similar property is found for an arbitrary triplet θ′2 ∈ σ̂′2.

The ge-operator defined above takes for its argument an ordered pair of po-triplets that have a fixed
order for their separated variables. For constructing, from an ordered pair of elementary po-triplets
(σ1, σ2), all possible po-triplets that can be derived not just by the equivalence derivation rule but
also by the rule of symmetrythe derivation rules, we define an enhanced operator, called the GE-
operator. The operator takes a pair of po-triplets for its argument, and applies the basic ge-operator
to the pair’s po-triplets and all their symmetric transposes:

GE (σ1, σ2) = ge(σ1, σ2) ∪ ge(σT1 , σ2) ∪ ge(σ1, σ
T
2 ) ∪ ge(σT1 , σ

T
2 )

This enhanced GE-operator is the operator used in our algorithm for po-closure of Figure 3. We
note that the selection of the reversed po-triplet pair (σ2, σ1) is covered by the algorithm’s loop.

As discussed above, the core of our algorithm for elementary po-closure is an iterative loop
in which new po-triplets are constructed by means of the GE-operator. The set of po-triplets that
results after applying this operator to all possible po-triplet pairs thus far, may already be smaller in
size than its set projection. The size of the resulting set of po-triplets can often be further reduced
however, by uniting po-triplets that share the same pair of conditionally independent variables. For
this purpose, the UnitePoTriplets function, called from the main loop of our algorithm (line 7),
implements iteratively taking complete po-unions until no further changes are induced in the po-
triplet set at hand. In the final step of our algorithm, subsequent to the main loop, the construction
of the elementary po-closure is completed by adding to the representation, the symmetric transposes
that were not derived explicitly. We conclude the discussion of our algorithm for elementary po-
closure, by briefly commenting on our algorithm for uniting po-triplets, oulined in Figure 4. The
core of this algorithm is an iterative loop in which complete po-unions are constructed (line 6) and
po-included po-triplets are removed (line 7). We emphasize that the UnitePoTriplets function builds
upon the concept of complete po-union only for combining po-triplets, and thereby is not guaranteed
to result in a smallest possible set of po-triplets describing the elementary po-closure of a given
starting set. Also the order in which po-triplets are addressed by the UnitePoTriplets function will
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POSET REPRESENTATIONS FOR SETS OF ELEMENTARY TRIPLETS

UNITING PO-TRIPLETS

Input: a set Jpo of elementary po-triplets;
Output: a set Jpo− in which no two elements have a complete po-union.

1: function UnitePoTriplets(Jpo)
2: J0 ← Jpo

3: i← 0
4: repeat
5: i← i+ 1

6: Ni ←
⋃
σ,σ′∈Ji−1

σ t σ′

7: Ji ← RemovePoIncluded(Ji−1 ∪Ni)

8: until Ji = Ji−1
9: return Jpo− ← Ji

10: end function

Figure 4: An outline of our algorithm for iteratively uniting po-triplets.

affect the size of the po-triplet representation returned for an elementary closure. These observations
suggest that our algorithm for uniting elementary po-triplets leaves ample room for optimization.

5. Conclusions

In this paper we proposed the compact representation of sets of elementary triplets by elementary
po-triplets. Using separating posets instead of separating sets to describe independence of individual
variables, a single po-triplet has the potential to represent an exponential number of elementary
triplets. A po-triplet representation may thus be exponentially smaller in size than the represented
set of elementary triplets itself. For manipulating sets of po-triplets, we defined intersection and
complete-union operators. Application of these operators involves the manipulation of just the
least and largest elements of separating posets, without the need to generate the set projections of
the po-triplets at hand. We further outlined a basic algorithm for computing the po-closure of a
starting set of elementary po-triplets under the symmetry and equivalence axioms; we introduced
the dedicated ge-operator for parallel application of the equivalence rule to the multiple pairs of
elementary triplets described by its argument po-triplets.

Elementary-triplet bases have become of interest because they allow specific problems on inde-
pendence relations to be solved efficiently, such as the problem of finding the intersection of two
semi-graphoid relations. We are in the process of looking into the efficiency of solving this and
various other well-known problems on semi-graphoid relations in po-triplet representation. We fur-
ther intend to optimize our basic algorithm for computing elementary po-closures of arbitrary sets
of po-triplets and hope to report the results from our further investigations in the near future.
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