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Abstract

Tractable yet expressive density estimators are a key building block of probabilistic machine learn-
ing. While sum-product networks (SPNs) offer attractive inference capabilities, obtaining struc-
tures large enough to fit complex, high-dimensional data has proven challenging. In this paper, we
present a residual learning approach to ease the learning of SPNs, which are deeper and wider than
those used previously. The main trick is to ensemble SPNs by explicitly reformulating sum nodes as
residual functions. This adds references to substructures across the SPNs at different depths, which
in turn helps to improve training. Our experiments demonstrate that the resulting residual SPNs
(ResSPNs) are easy to optimize, gain performance from considerably increased depth and width,
and are competitive to state-of-the-art SPN structure learning approaches. To combat overfitting,
we introduce an iterative pruning technique that compacts models and yields better generalization.

Keywords: tractable inference; structure learning; sum-product networks.

1. Introduction

Arguably one of the most general approaches to unsupervised machine learning is density estima-
tion, whereby the goal is to learn the joint probability distribution underlying a given dataset. Given
an estimated distribution, classification and regression essentially boil down to probabilistic infer-
ence, and one can even generate new data via sampling. Traditionally, joint densities have been
specified compactly as probabilistic graphical models (PGMs) using conditional independencies
between random variables (RVs). Recently, a number of deep generative models have also been
proposed such as variational autoencoders (Kingma and Welling, 2014), generative adversarial net-
works (Goodfellow et al., 2014), neural autoregressive models (van den Oord et al., 2016), and
normalizing flows (Kingma and Dhariwal, 2018). While these models achieve high expressivity by
leveraging the representational power of deep neural networks, they are also highly intractable and
generally rely on approximate inference methods such as MCMC or variational inference (Hoffman,
2017; Ranganath et al., 2014).

One promising alternative to gain representational efficiency while remaining tractable is to di-
rectly leverage context-specific independencies in a computational graph for joint probabilities. This
is the idea underlying sum-product networks (SPNs), a deep but tractable family of density estima-
tors (Poon and Domingos, 2011). In their basic form, SPNs represent distributions as a deep net-
work where the “neurons” are either mixtures (sums), context-specific independencies (products),
or primitive input distributions. They are tractable in the sense that any marginal or conditional
probability can be computed exactly in time linear in the size of the SPN.
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While the parameters of a given SPN can be readily optimized via stochastic gradient descent or
expectation-maximization, obtaining a suitable structure is much harder. Approaches such as Learn-
SPN (Gens and Domingos, 2013) typically rely on independence tests, which are hard to scale to
large networks and datasets (Chechetka and Guestrin, 2008). Random SPN structures (Peharz et al.,
2019) on the other hand run the risk of making wrong independence assumptions, leading to sub-
optimality. To address these issues, we explore the combination of random SPNs, residual links,
and ensemble methods. Specifically, we start by learning a set of Extremely Random SPNs (Ex-
traSPNs). However, besides simply adding references only to ensemble components as in random
forests (Breiman, 2001) and with the aim to make use of the highly specialized substructures of
learned SPNs, we propose to employ residual links, i.e., references to nodes in other SPNs. The
resulting Residual SPNs (ResSPNs) may be thought of as a probabilistic analog to ResNets (He
et al., 2016), refining density estimates made by simple components. Our experimental evidence
on a variety of datasets demonstrates that residual links in SPNs indeed improve performance. We
proceed as follows. We start by briefly reviewing SPNs. We then introduce ResSPNs, and our SPN
iterative pruning technique combating overfitting based on the Lottery Ticket hypothesis (Frankle
and Carbin, 2019). Before concluding, we present our experimental evaluation.

2. Background on Sum-Product Networks

Sum-Product Networks (SPNs) are a family of tractable deep density estimators first presented in
(Poon and Domingos, 2011). They have been successfully applied on a variety of domains such as
computer vision (Amer and Todorovic, 2015), natural language processing (Molina et al., 2017),
and speech recognition (Peharz et al., 2014).

Definition of Sum-Product Networks. An SPN S is a computational graph defined by a rooted
DAG, encoding a probability distribution1 PX over a set of RVs X = {X1, . . . , Xn}, where inner
nodes can be either sum or product nodes over their children (graphically denoted respectively as⊕

and
⊗

), and leaves are univariate distributions defined on one of the RVs Xi ∈ X . Each node
n ∈ S has a scope scope(n) ⊆ X, defined as the set of RVs appearing in its descendant leaves. The
subnetwork Si, rooted at node i, encodes a distribution over its scope i.e. Si(x) = PX|scope(i)(x)
for each x ∼X|scope(i). Each edge (i, j) emanating from a sum node i to one of its children j has a
non-negative weight wij , with

∑
j wij = 1. Sum nodes represent a mixture over the probability dis-

tributions encoded by their children, while product nodes represent factorizations over contextually
independent distributions. In summary, an SPN can be viewed as a deep hierarchical mixture model
of different factorizations, where the hierarchy is based on the scope of the nodes w.r.t. the whole
set of RVs X . In order to encode a valid and normalized probability distribution, an SPN has to
fulfill two structural requirements (Poon and Domingos, 2011). First, the scopes of the children of
each product node need to be disjoint (decomposability). Second, the scopes of the children of each
sum node need to be identical (completeness). In a valid SPN, the probability assigned to a given
state x of the RVs X can be read out at the root node, and will be denoted S(x) = PX(X = x).

Probabilistic Inference within SPNs. Given an SPN S, S(x) can be computed by eval-
uating the network bottom-up. When evaluating a leaf node i concerning variable Xj , Si(xj)
corresponds to the probability of that state Pi(Xj = xj). The value of a product node corre-
sponds to the product of its children’s values: Si(x|scope(i)) =

∏
i→j∈S Sj(x|scope(j)); while, for

a sum node, its value corresponds to the weighted sum of its children’s values: Si(x|scope(i)) =

1. We are not strict on “density” vs. “distribution.”
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Algorithm 1 LearnSPN(D, X , µ, ρ)
Require: a set of samples D over RVs X; µ: minimum number of instances to split; ρ: statistical

independence threshold
Ensure: an SPN S encoding a pdf over X learned from D

1: if |X| = 1 then
2: S ← univariateDistribution(D,X)
3: else if |D| < µ then
4: S ← fullFactorization(D,X)
5: else
6: {Xd1 ,Xd2} ← splitFeatures(D,X, ρ)
7: if |Xd2 | > 0 then
8: S ←

∏2
j=1 LearnSPN(D,Xdj , µ, ρ)

9: else
10: {Di}Ri=1 ← clusterInstances(D,X)

11: S ←
∑R

i=1
|Di|
|D| LearnSPN(Di,X, µ, ρ)

return S

∑
i→j∈S wijSj(x|scope(j)). All the marginal probabilities, the partition function, and even approx-

imate MPE queries and states can be computed in time linear in the size of the network i.e. its
number of edges as shown in (Gens and Domingos, 2013).

Structure Learning of SPNs. The prototypical structure learning algorithm for SPNs is Learn-
SPN (Gens and Domingos, 2013). It provides a simple greedy learning schema to infer both the
structure and the parameters of an SPN by executing a greedy top-down structure search in the
space of tree-structured SPNs, as summarized in Alg. 1. Specifically, LearnSPN recursively parti-
tions the training data matrixD consisting of i.i.d instances over X , the set of columns, i.e., the RVs.
For each call on a data slice, LearnSPN first tries to split the data slice by columns. This is done
by splitting the current set of RVs into different groups such that the RVs in a group are statistically
dependent while the groups are independent, i.e., the joint distribution factorizes over the groups
of RVs. We denote this procedure as splitFeatures. If no independencies among features/RVs are
found, i.e. the splitting fails, LearnSPN tries to cluster similar data slice rows (procedure clusterIn-
stances) into groups of similar instances. In the original work of Gens and Domingos (2013), an
online version of hard expectation-maximization (EM) algorithm is employed for this clustering
step. Depending on the assumptions on the distribution of X, other clustering and splitting algo-
rithms may be more suitable and may be employed instead (Vergari et al., 2015; Molina et al., 2017,
2018). When a column split succeeds, LearnSPN adds a product node to the network whose children
correspond to partitioned data slices. Similarly, after a row clustering step, it adds a sum node where
children weights represent the proportions of instances falling into the obtained clusters. LearnSPN
stops in two cases: (1) when the current data slice contains only one column or (2) when the number
of its rows falls under a certain threshold µ. In the first case, a leaf node, representing a univariate
distribution, is introduced by a maximum likelihood estimation from the data slice. In the second
case, the data slice’s RVs are modeled as a full factorization: They are assumed to be independent
and a product node is put over a set of univariate leaf nodes (each estimated as described for the first
case).
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Indeed, clustering and splitting influence each other in terms of quality (Vergari et al., 2015).
If a good instance clustering is achieved, then it is likely to enhance the variable splitting and the
other way around. This holds for more advanced structure learning approaches too. For instance,
Peharz et al. (2013) introduced a bottom-up approach to learn SPN structures, using an information-
bottleneck method. Vergari et al. (2015) employed multivariate leaves for regularization. Rahman
and Gogate (2016) compressed tree-shaped structures into general DAGs. Di Mauro et al. (2018)
investigated approximate independence testing, and Molina et al. (2018) non-parametric indepen-
dence tests for learning SPN structures over hybrid domains. Rooshenas and Lowd (2014) refined
LearnSPN by learning leaf distributions using Markov networks represented by arithmetic circuits.
The resulting learner, called ID-SPN, is state-of-the-art in density estimation on binary data when
considering singleton models. Of course, any of the structure learning approaches can be improved
by ensemble (Conaty et al., 2019) and boosting methods (Liang et al., 2017; Di Mauro et al., 2017).

3. Residual Sum-Product Networks

While SPNs have attractive inference properties, scaling them in a manner similar to deep neural
networks has proven challenging. The structural constraints, which SPNs have to obey in order to
guarantee validity, are a major reason for this. They necessitate the careful design of structures,
either by hand or through learning from data. Consequently, learning SPN structures (as sketched
by LearnSPN) has been proven hard to scale in practice, since determining how to split variables
is costly: Ideally, one would always determine the two subsets with minimum empirical mutual in-
formation. This takes cubic time (Gens and Domingos, 2013), which is much too slow. Therefore,
one typically considers only pairwise dependencies in practice, reducing the cost to quadratic time,
which is unfortunately still prohibitive for many applications. Recently, Peharz et al. (2019) pro-
posed random tensorized SPNs (RAT-SPNs), which forgo structure learning in favor of randomly
generated structures. While this works surprisingly well, it carries the risk of introducing false in-
dependency assumptions. To repair such mistakes, we propose to employ residual learning between
a set of SPNs and then, similarly to Random Forests (Breiman, 2001), we ensemble the resulting
network with its components.

Step 1: Ensemble SPNs. In principle, any SPN learned via structure learning (potentially in
combination with bagging) or just RAT-SPNs can be used as components in this ensemble. Here,
we opt for a faster and even simpler method: Akin to extremely randomized trees (Geurts et al.,
2006), each individual SPN is trained using the whole learning sample and the top-down splitting in
LearnSPN is randomized. That is, instead of computing the locally optimal splitting of RVs based
on, e.g., mutual information or independence tests, a random split is selected in Line 6 in Alg. 1.
The resulting extremely randomized SPNs (ExtraSPNs) are similar in spirit to extremely randomized
cutset networks (Di Mauro et al., 2017), except that ExtraSPNs do not use any statistical test for any
splitting procedure. Instead, we fix a parameter β to set the probability of the splitting test to fail,
and randomly group the features in two clusters. In this way, the splitting procedure has linear
complexity instead of the quadratic complexity of the G-test employed in the original LearnSPN.
Moreover, to foster diversity in the set of ExtraSPNs, we sample the parameter µ at random from
the range [1, |D|/γ] for each SPN. Here, D is the dataset and γ is a hyperparameter that can shrink
the range of the possible values of µ. When γ is greater than 1 then the range of the possible values
for µ is smaller, in this way, we can both tune the learning times of the ExtraSPNs and also their
depth.
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Alice Bob

Figure 1: Residual Sum-Product Learning. The blue edges denote residual links between the right
(Bob) and left (Alice) SPN, which let Bob directly fit a residual. Green edges realize the
global mixture.

Step 2: Residual Sum-Product Learning. SPNs can be seen as a set of hierarchical mixtures
of context-specific subdistributions. Thus, an ensemble method for SPNs should also work at the
level of these substructures. Instead of hoping that each SPN fits a desired contribution to the global
joint distribution, we explicitly let them fit residuals. Consider two SPNs called Alice and Bob as
shown in Fig. 1. Our goal is to improve the performance of one of Bob’s sum nodes using a node
a(z) of the same scope from Alice. We denote Bob’s desired density as b(z). Instead of learning
this density directly, we instead let Bob fit a residual, namely, r(z) = b(z) − a(z), up to proper
weighting. That is, Bob’s original density is recast into b(z) = a(z)+r(z), up to proper weighting.
This can be achieved in a simple way: We add Alice’s product node as a child to Bob’s sum node, cf.
Fig. 1. Adding such residual links between individual SPNs does not affect the validity of individual
SPNs, since the scope of the two nodes is the same — the sum-product networks remain complete.
For additional flexibility, we can also pick one of Alice’s nodes a with scope(b) ⊂ scope(a), and
marginalize the surplus RVs from a before adding the connection. The weights of the new mixture
components can be set proportionally to their training data slices or eventually optimized jointly in
a supplementary parameter estimation step. This may even take place after mixing Alice and Bob
additionally using a single sum node at the top. Thus, we propose to apply residual sum-product
learning to every ExtraSPN. To do so, we generate an array of ExtraSPNs E1, E2, . . . , En, pick a
random one Ei, and introduce residual links between it and each other SPN Ej . We then add a top
sum node connecting all the ensemble components and finally train all parameters jointly. We name
the resulting model residual SPN (ResSPN).

Step 3: Sparsification using Lottery Ticket Pruning. Since ResSPNs, as ensemble models,
can have a considerable size compared to the models learned with state-of-the-art structure learners,
we explore the application of a recent successful pruning technique for deep models based on the
“Lottery Ticket Hypothesis” (Frankle and Carbin, 2019). This is an iterative pruning technique i.e.
it iteratively trains, prunes lowest magnitude weights and then resets the weights of the network to
their initial values from before the training. At each iteration, the percentage of the weights to be
removed is reduced. It has been shown to be very effective on deep neural networks (DNNs) by
being able to considerably reduce the size of the network, reaching better or similar accuracy with
only 10-20% of the size of the original model. Specifically, the authors showed that this technique
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Algorithm 2 ResSPN(D, S, k)
Require: a set of samples D; a set of input SPNs to be combined S = S1, . . . ,Sn; the ratio of

nodes from which to draw residual links k
Ensure: a ResSPN built from S and optimized on D

1: ResSPN ← copy(RandomElement(S))
2: for S ∈ S \ ResSPN do
3: η = 0
4: for s1 ∈ BFS(ResSPN ) do
5: for s2 ∈ BFS(S) do
6: if scope(s1) ⊆ scope(s2) then
7: s′2 ←Marginalize(s2, scope(s1))
8: Add connection from s1 to s′2
9: η ← η + 1

10: if η > k|ResSPN | then
11: break
12: ResSPN ← buildMixture(D,S ∪ {ResSPN })
13: return ResSPN

is able to find the “winning tickets”, i.e., those subnetworks which are responsible for the majority
of the network’s performance thanks to well-initialized weights. They showed that the randomly
initialized weights of these networks resemble winning lottery tickets, since the same or better
accuracy can be achieved consistently after pruning only when retraining from their initial state. To
apply this technique to our ResSPNs, and generally to any SPN, we have to take into account that
SPNs are not as dense as the DNNs used originally with this technique, and that we need to preserve
the validity of the SPN. Therefore, to adapt it to SPNs, we make a number of adjustments: 1) At
each iteration, we prune a fraction of sum node children with the lowest weight magnitude, keeping
the SPN valid. We do not consider the root node children for pruning2. 2) We reset the weights by
setting the surviving ones to the values they had in the original model before the optimization, and
then renormalize. 3) We optimize the model and iterate until no more nodes are pruned.

Discussion. ResSPN is a sensible idea to follow. It is easier to optimize a residual density than
to optimize the original, unreferenced density. To the extreme, if a density from Alice was optimal,
it would be easier to push the residual in Bob to zero than to fit the density in Bob from scratch or
by mixing Alice and Bob at the top node only. As a result, we build a stronger density estimator
by referencing local context-specific substructures. In fact, residual connections make SPNs wider
as also suggested by Fig. 1 and, in turn, increase the variance in sizes of training data slices used
to train mixture components. This is akin to what is known for residual (neural) networks (Veit
et al., 2016) but now we carried this over to hierarchical mixture models in the form of SPNs.
Different procedures are imaginable for selecting the pairs of nodes between which edges are to be
added. For this reason, one can see the residual sum-product learning as a general schema, where
different strategies for adding residual links may be selected based on the problem at hand. Here,
we adopt a randomized greedy approach as summarized in Alg. 2. From the set of input SPNs, we

2. In the original version a similar strategy is applied: the output layer is pruned at half of the rate of the current pruning
rate. We also need to consider that, differently from DNNs, when we prune a sum node child in an SPN we might
prune all its descendants, also.
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|X| |Ttrain| |Tval| |Ttest|

NLTCS 16 16181 2157 3236
MSNBC 17 291326 38843 58265

Plants 69 17412 2321 3482
Audio 100 15000 2000 3000
Jester 100 9000 1000 4116

Netflix 100 15000 2000 3000

Table 1: Statistics of the datasets used in the experimental evaluation.

randomly select one to which all future edges will be added. Then, we iteratively add references to
each of the remaining input SPNs S, where the maximum percentage of nodes from which to draw
connections in each step is given by the hyperparameter k (usually no more than 10% or 20%). The
connections are drawn in a greedy fashion: We start by selecting candidate nodes from our ResSPN
by traversing it via breadth-first-search (BFS), excluding the root. For each visited node, we try
to find a suitable partner in S, by also traversing it via BFS. If we find a suitable pairing, i.e. one
where the scopes match as described above, we draw a residual link. We employ this k-limited
BFS since it conveniently maximizes the chance to find compatible scopes given that scopes at top
levels are generally larger and it does not blow-up in quadratic complexity. Finally, we sparsify the
overparameretized ResSPNs.

4. Experimental Evidence

Our intention here is to investigate the pros and cons of ResSPNs. Along the way, we also explore
how SPNs benefit from wider and deeper structures. Specifically, we examine the following ques-
tions: (Q1) Can ResSPNs improve upon singleton SPNs being an effective ensemble method for
SPNs? (Q2) Can ResSPNs repair wrong independencies? (Q3) Do ResSPNs contain subnetworks
that can reach a test accuracy comparable to the original ResSPNs, i.e., can we sparsify them?

To answer these questions, we learned ResSPNs on standard binary benchmarks summarized
in Tab. 1, and split into training, validation and test sets. For parameter estimation we used the
EM algorithm. The datasets are a subset of the ones used e.g. in (Gens and Domingos, 2013)
and (Rooshenas and Lowd, 2014). All algorithms were implemented in Python3 making use of the
SPFlow library (Molina et al., 2019). All experiments were run on a DGX-2 system.

ResSPNs can improve upon singleton SPNs – (Q1). We learned ResSPNs by choosing the
number n of ensemble components from {3, 5, 10}. For learning the ExtraSPNs—the ensem-
ble components—we took the µ hyperparameter at random in the range [1, |D|/5] and fixed β to
0.6. We similarly randomized the instance clustering step using the same hyperparameter β. The
ResSPN was then built as described in Alg. 2. We optimized the parameters with EM with a limit
of 1000 iterations. The optimization stopped if the variance of the training likelihood on the last
5 iterations was lower than 1e-7. We performed a hyperparameter search over k within the range
[0.1, 0.2], and selected the models with the best accuracy on a separate validation set. Then, to
assess the accuracy of learned estimators, we computed the average log-likelihood on the test sets.
We compare it with the ones obtained with LearnSPN as reported in (Rooshenas and Lowd, 2014).
Tab. 2 shows the average test likelihood for LearnSPN and ResSPN built with 10 ExtraSPNs. One
can see that ReSPNs is competitive compared to LearnSPN since it can achieve similar accuracy

3. Code at https://github.com/fabriziov/resspn
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Test Accuracy

Baseline Singleton SPN Learners Ensemble SPN
Best ExtraSPN LearnSPN ID-SPN ResSPN

NLTCS -6.153 -6.11 -6.02 -6.040⇑
MSNBC -6.433 -6.11 -6.04 -6.097⇑

Plants -16.683 -12.98 -12.54 -13.908•
Audio -42.639 -40.5 -39.79 -40.762•
Jester -55.335 -53.48 -52.86 -53.956•

Netflix -60.330 -57.33 -56.36 -57.867•

Table 2: Average test log-likelihood of ResSPN compared to baseline singleton SPN learners. The
best results, including the baselines, are shown in bold. As one can see, ID-SPN gives the
best results. However, it uses Markov networks represented as ACs in the leaves. More
importantly, ResSPNs improve upon ExtraSPNs, as denoted by “•”, sometimes getting
even better than LearnSPN, denoted as “⇑”.

Test Accuracy

With Residual Links Without Residual Links
ResSPN 3 ResSPN 5 ResSPN 10 RSPF 3 RSPF 5 RSPF 10

NLTCS -6.118• -6.068• -6.040• -6.192 -6.109 -6.046
MSNBC -6.235• -6.145• -6.097• -6.316 -6.225 -6.104

Plants -14.732• -14.631• -13.908• -15.616 -15.161 -14.573
Audio -41.492• -41.433• -40.762• -41.883 -41.482 -40.833
Jester -53.772• -54.040 -53.995 -53.987 -53.734• -53.885•

Netflix -58.609• -58.509• -57.867• -59.121 -58.570 -57.900

wins 6/6 5/6 5/6 0/6 1/6 1/6

Table 3: Average test log-likelihood of ResSPN with ensembles of 3, 5, and 10 ExtraSPNs com-
pared to the simple shallow mixture RSPFs. The best results are denoted using “•”. Over-
all, one can clearly see that adding residual links is beneficial. The only exception is Jester,
where ResSPNs overfit.

and is more accurate on NLTCS and MSNBC without involving a meticulous hyperparameter se-
lection. Notably, ResSPN accuracy is comparable to ID-SPN, which is the most accurate method
so far. However, this comparison is rather unfair since ID-SPN employs Markov Networks as mul-
tivariate leaves and this also makes learning intractable and difficult to scale with the need for an
attentive hyperparameters selection. Thus, we use ID-SPN as our accuracy gold standard. More-
over, we compared ResSPNs to the single best available ExtraSPN. To do so, we generated a set
of ExtraSPNs as before, except that we included a proper clustering step for learning sum nodes
as opposed to random clustering. We then optimized their parameters with EM and reported the
best test log-likelihood achieved among all of them. By looking at the results in Tab. 2, one can
see that the ResSPNs always outperform the best ExtraSPN4. Thus, ResSPNs do indeed improve
upon its components, even when the latter are augmented using proper clustering and optimization.
Therefore, ResSPNs improve upon singleton SPNs.

To investigate the effectiveness of our ensemble method based on residual links, we compared
ResSPNs with simple ensembles built starting from the same sets of ExtraSPNs and connecting
them in a shallow mixture model by a top sum node. We refer to these simple models as Random

8
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LearnSPN ResSPN LTP

layers edges layers edges test accuracy edges test accuracy

NLTCS 4 7509 15 14972 -6.04• 13493 -6.04•
MSNBC 4 22350 13 7420 -6.10• 6946 -6.10•

Plants 6 55668 19 58490 -13.91• 37644 -13.97
Audio 8 70036 24 138392 -40.76 93324 -40.75•
Jester 4 36528 21 92174 -53.96 65956 -53.71•

Netflix 4 17742 24 81084 -57.87 54951 -57.80•

Table 4: The structure of ResSPNs can be deeper and/or wider compared to singleton tree-SPNs
learned via LearnSPN as reported in (Vergari et al., 2015). Sparsifying ResSPNs: Lottery
Ticket Pruning (LTP) can considerably reduce the size of the model (smaller models are
bold) without sacrificing considerably performance (• denotes best value), especially on
Jester, a dataset where ResSPNs overfit.
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Figure 2: The lower triangle of the matrices shows the pairwise empirical mutual information be-
tween variables in the NLCTS dataset. (Upper triangle, left) MI computed with a ResSPN
after adding links to one other SPN. (Upper triangle, right) MI computed with a ResSPN
after adding links to 9 other SPNs. The MI of the fully trained ResSPN is much closer
to the empirical MI, indicating that ResSPNs are able to repair wrong independence as-
sumptions.

Sum-Product Forests (RSPF). Tab. 3 summarizes the average test log-likelihood of ResSPNs and
RSPFs4 comparing the models built with 3, 5, and 10 components. As one can clearly see, residual
links generally5 improve the test accuracy, with Jester being the only exception. The dataset appears
to be generally prone to overfitting, as even for RSPFs better results were achieved with fewer than
10 components. In summary, residual links generally yield better test accuracy. These observations
also hold when a smaller number of ExtraSPNs are used. Moreover, employing more components
yields better accuracy. This further highlights the effectiveness of our ensemble method. Given this,

4. The difference is statistically significant according to a Wilcoxon signed rank test with p = 0.05.
5. For ResSPNs built with 5 components, the difference is not statistically significant only on Audio and Netflix, for the

ones built with 10 components is not statistically significant only on NLTCS and Netflix.
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Input

ResSPN-3

ResSPN-10

Completed

Figure 3: Image completion on Binary MNIST. (Top) test images without the right half. (Middle
resp. bottom) completed images using a ResSPN with 3 resp. 10 component SPNs. Both
ResSPNs were optimized using 10 EM iterations. As one can see, the deeper and wider
ResSPN completes the test images in a more realistic way.

we can answer (Q1) affirmatively. ResSPN learning shows also to be particularly efficient on large
datasets, in fact, compared to ID-SPN, it achieves comparable accuracy on 20 NewsGroup (11k
instances, 910 features) and on our MNIST (see the following paragraph) being more than 10X
faster. Additionally, by considering that ensembles are larger than their components, and by taking
into account the structural details of the learned models shown in Tab. 4, we can indeed confirm
that wider and deeper SPNs —learned by adding residual links— in general, perform considerably
better than singleton tree-shaped models.

ResSPNs can repair wrong independencies – (Q2). ResSPNs are also capable of repairing
wrong independence assumptions made by the singleton models. To demonstrate this, we com-
pared the empirical pairwise mutual information between RVs on the training dataset with the one
computed on our model at various stages of training. Fig. 2 depicts the empirical pairwise mutual
information on the NLTCS dataset on the lower triangle of the matrices, and the mutual information
computed from our model on the upper triangle. The left matrix uses a ResSPN in early iterations,
after the first set of residual links has been added, while the right one shows the result for a fully
trained ResSPN based on 10 ExtraSPNs. Both ResSPNs are optimized with EM for 10 iterations. It
is apparent that after full training, the ResSPN is much more capable of representing the correlations
among the RVs, since the matrix on the right is almost symmetric. Furthermore, in order to have a
visual understanding of our results, we trained a ResSPN with 3 components and a ResSPN with 10
components on a binarized version of MNIST resizing the images to 14 by 14 pixels. We trained
the models on 50k images and left apart 10k images for validation and 10k as test set. We optimized
both models with EM for 10 iterations and we completed images with MPE giving the left half of
test images as input. Besides obtaining a better average test log-likelihood, the ResSPN composed
with 10 components is able to generate more realistic images as one can clearly see in Fig. 3. Thus,
we can answer (Q2) affirmatively.

Sparse ResSPN: Lottery Ticket Pruning – (Q3). We pruned the ResSPNs built with 10 com-
ponents starting pruning the 20% and 40% of the weights with lowest magnitude. After resetting
the weights, we optimize the network with EM for 10 iterations. Then, we selected the pruned
ResSPNs with the best likelihood on the validation set. As one can observe from Tab. 4, with Lot-
tery Ticket Pruning, we obtain more compact networks that achieve similar or even better accuracy
than the original models, especially on Jester where ResSPN overfits. Thus, we can answer (Q3)
affirmatively. To summarize, all questions (Q1)-(Q3) can be answered affirmatively, i.e. residual
learning can ease the training of SPNs.
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5. Conclusion

Deeper and wider probabilistic models are more difficult to train. To make this task easier, we
have introduced an ensemble learning framework for sum-product networks (SPNs), which makes it
possible to combine arbitrary groups of SPNs into a larger model. Our experimental evidence shows
that even when the input SPNs are generated randomly, the resulting ResSPNs are competitive with
state-of-the-art SPN learners. ResSPNs can be seen as a general schema for building ensembles
of SPNs and thus provide several interesting avenues for future work. One is to explore structure
learners instead of ExtraSPN, e.g. ID-SPN, or even a mix of different ones. Furthermore, one should
explore other strategies for adding residual links. For instance, given that we have a tractable model
at hand, one may compute the expected value of adding a residual link. Employing dropout, as well
as online learning, are further interesting avenues.
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