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Abstract
Sum-Product Networks (SPNs) are hierarchical, graphical models that combine benefits of deep
learning and probabilistic modeling. SPNs offer unique advantages to applications demanding ex-
act probabilistic inference over high-dimensional, noisy inputs. Yet, compared to convolutional
neural nets, they struggle with capturing complex spatial relationships in image data. To allevi-
ate this issue, we introduce Deep Generalized Convolutional Sum-Product Networks (DGC-SPNs),
which encode spatial features in a way similar to CNNs, while preserving the validity of the prob-
abilistic SPN model. As opposed to existing SPN-based image representations, DGC-SPNs allow
for overlapping convolution patches through a novel parameterization of dilations and strides, re-
sulting in significantly improved feature coverage and feature resolution. DGC-SPNs substantially
outperform other SPN architectures across several visual datasets and for both generative and dis-
criminative tasks, including image inpainting and classification. These contributions are reinforced
by the first simple, scalable, and GPU-optimized implementation of SPNs, integrated with the
widely used Keras/TensorFlow framework. The resulting model is fully probabilistic and versatile,
yet efficient and straightforward to apply in practical applications in place of traditional deep nets.
Keywords: Sum-Product Networks, Deep Probabilistic Models, Image Representations

1. Introduction

Sum-Product Networks (Poon and Domingos, 2011) are deep models with unique probabilistic se-
mantics based on a rigorous theoretical framework. They can be seen as both probabilistic graphical
models (PGMs) and deep nets, and can be trained using common deep learning techniques (adap-
tive gradient descent, dropout (Peharz et al., 2019)) as well as those used for PGMs (Zhao et al.,
2016; Rashwan et al., 2018). As opposed to specialized CNNs or GANs (Radford et al., 2015),
SPNs can perform a wide range of probabilistic inferences efficiently through a single forward and
backward pass (including marginal, conditional, joint, MPE), and naturally marginalize out miss-
ing data. Whereas CNNs excel at classification, an SPN can perform classification and a variety
of generative tasks within a single network. Analogously, GANs, while ideal for sampling, lack
probabilistic interpretation and struggle with (or are inefficient for) many generative problems other
than sampling. This makes SPNs ideal for domains demanding real-time performance and involving
uncertainty and heterogeneous tasks, such as robotics (Pronobis and Rao, 2017; Zheng et al., 2018).

In this work, we propose Deep Generalized Convolutional Sum-Product Networks (DGC-SPNs)
that combine the probabilistic properties of SPNs with the ability to capture spatial relationships in
a way similar to convolutional neural networks (CNNs). DGC-SPNs are deep, layered models
that exploit the inherent structure of image data and hierarchically capture spatial relations through
products and weighted sums with local receptive fields. We introduce a novel parameterization of
strides, dilation rates and connectivity for convolutional operations in product layers that makes
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DGC-SPNs more general than existing approaches to convolutional SPNs (Sharir et al., 2016; Butz
et al., 2019). Unlike other architectures, DGC-SPNs employ overlapping patches in product layers,
thus avoiding the loss of feature resolution and coverage which enhances representations of spatial
relations across the input image, while at the same time preserving the constraints that guarantee
validity. We demonstrate that this translates to significant improvements in performance for both
generative and discriminative tasks, such as image inpainting and image classification.

Our main contributions are (i) the introduction of a novel convolutional SPN architecture, (ii) a
comprehensive range of experiments with SPNs on image data where our DGC-SPNs substantially
outperform other SPN models, and (iii) the first layer-centered SPN library libspn-keras1 built
on top of the widely used TensorFlow and Keras frameworks. The library implements the DGC-
SPN architecture as well as many other types of SPN models, and provides ease-of-use, flexibility,
efficiency, and scalability. Our experiments are easily reproduced using this library.

2. Background

We begin with a brief introduction of the theoretical background behind SPNs. A Sum-Product
Network represents a joint probability distribution over a set of random variables X . An example
of a simple SPN is given in Figure 1. An SPN is a rooted directed acyclic graph where the root node
computes the unnormalized probability S(x) of a distribution at x ∈ X . The leaves of an SPN
correspond to individual random variables Xi. In the discrete case, they are typically represented as
Bernoulli variables, while Gaussian distributions are often used for continuous inputs. In between
the leaves and the root, an SPN consists of weighted sum and product operations. The weighted
sum nodes have non-negative weights and can be interpreted as probabilistic mixture models over
subsets of variables, while products compute joint probabilities by multiplying input values and can
be seen as features. The output of a sum node sj is given by Ssj (x) =

∑
i∈ch(sj)wjiCi where Ci is

the value of the i-th child and ch (sj) is the set of children of sj . The output of a product node pj is
given by Spj (x) =

∏
i∈ch(pj)Ci.

Following (Poon and Domingos, 2011), we define the following concepts related to SPNs:

1. https://www.github.com/pronobis/libspn-keras

Leaf Product Weighted Sum

Root

Figure 1: An example of an SPN over 4 discrete binary variables (sc(n) denotes the scope of n).
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Definition 1 (Scope) The scope of a node n, denoted sc (n), is the set of variables that are descen-
dants of n.

In other words, the scope of a node is the union of the scopes of its children. Typically, leaf nodes
have a singular scope containing a single variable Xi.

Definition 2 (Validity) An SPN is valid if it correctly computes the unnormalized probability for
all evidence E where E ⊆X .

A sufficient set of conditions that ensure validity consists of completeness and decomposability:

Definition 3 (Completeness) An SPN is complete if all children of a sum node have identical
scopes.

Definition 4 (Decomposability) An SPN is decomposable if all children of the same product node
have pairwise disjoint scopes.

A unique feature of SPNs is the ability to compute the partition function ZS =
∑

x∈X S(x) using
only a single pass through the network. To this end, all evidence is removed from network’s inputs
and an upwards pass is computed. For a Bernoulli variable Xi, both indicators xi and x̄i are set to
1. If all Xi are continuous and represented as multiple Gaussian components per variable, then all
of the components corresponding toXi are set to 1. It has been shown that ZS = 1 for a normalized
SPN, where the weights of each sum node add up to one. Therefore, a normalized SPN computes
valid probability with a single upward pass: S(x) = P (x) (Peharz, 2015).

2.1 Parameter Learning for SPNs

For discriminative tasks, SPNs can be trained with traditional gradient descent techniques used in
deep learning, such as SGD or Adam (Kingma and Ba, 2014). Generative learning is commonly
done with expectation maximization (EM). A single EM step requires one forward and one back-
ward pass through the network. As an alternative to vanilla EM, with ‘dense’ non-zero training
signals for all sum children in the backward pass, hard EM backpropagates sparse signals by select-
ing only one ‘winning’ child per sum. For each sum, the child with maximum weighted probability
(as computed in the forward pass) is selected as the winning child. The winning child receives a
signal of 1 and so its accumulator is incremented by 1 after the corresponding training step, while its
siblings receive a signal of 0, yielding no increments for their accumulators. Yet another alternative
is unweighted hard EM which similarly selects one winning child per sum, but relies on unweighted
values of the children computed in the forward pass for the selection (Kalra et al., 2018).

3. Related Work on Visual Tasks with SPNs

SPNs are expressive and have previously been used in a wide range of domains (Amer and Todor-
ovic, 2015; Zheng et al., 2018). Within computer vision, SPNs have been applied to both discrimi-
native and generative problems. In the seminal work (Poon and Domingos, 2011), SPNs were used
for image inpainting, and assembled following a recursive procedure, where each rectangular image
region was split into all possible vertical and horizontal non-overlapping sub-regions. The same
architecture was trained with the Extended-Baum Welch (EBW) algorithm to perform image clas-
sification (Rashwan et al., 2018). The non-uniform dimension sizes in this architecture do not lend
themselves to GPU-optimized tensorized implementations, limiting their scalabilty.
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The fact that SPNs could benefit from the introduction of convolutions was first recognized
in (Hartmann, 2014), where a hybrid model consisting of CNN and SPN layers was used for image
classification. However, this yields an architecture that is not fully probabilistic, thereby lacking
the ability to perform probabilistic inferences all the way down to the inputs of the model. More
closely related to our work are Convolutional Arithmetic Circuits (ConvACs) (Sharir et al., 2016),
which can be viewed as convolutional SPNs, and Deep Convolutional Sum-Product Networks (Butz
et al., 2019). Both ConvACs and DCSPNs ensure SPN validity and decomposability of products by
using non-overlapping image patches. This effectively reduces feature resolution and fails to capture
spatial relations across many regions of the image. In contrast, DGC-SPNs employ a more general
approach to convolutions that allow for significantly improved feature coverage and resolution and
capture a superset of probability distributions of other convolutional SPNs.

Apart from spatial SPNs, other works rely on randomly structured SPNs (Peharz et al., 2019),
an SVD-based structure learning algorithm (Adel et al., 2015), a structure learning algorithm based
on clustering of variables (Dennis and Ventura, 2012), or a structure learning algorithm based on
both correlation matrices and clustering (Jaini et al., 2018). Instead, DGC-SPNs take inspiration
from CNNs and impose a spatial prior on the structure that corresponds to the inherent spatial
relations present in image data. Our experiments show that this translates to gains in performance
as DGC-SPNs yield superior results compared to the aforementioned approaches.

4. Deep Generalized Convolutional SPNs

DGC-SPNs are valid Sum-Product Networks with unique structure inspired by CNNs, consisting of
weighted sum and product operations corresponding to local receptive fields. DGC-SPNs are specif-
ically designed to enable efficient utilization of GPU hardware within tensor-based frameworks.
DGC-SPN layers are represented as tensors with one dimension for samples in the batch, an arbi-
trary number of spatial dimensions (2 for images), and one dimension for channels. From hereon,
we omit the batch dimension for simplicity and discuss DGC-SPNs for a single image sample.

The SPN nodes of DGC-SPN (products and sums) are aligned spatially. We refer to all nodes
corresponding to a single location (i, j) indexed on the spatial axes as a cell. The probabilities
computed by the nodes are represented as a tensor X ∈ RH×W×C for an image with dimensions
W × H and number of channels C (e.g. RGB channels for color images). As shown in Figure 3,
nodes are stacked along the channel axis to form cells, while cells are stacked along the spatial
axes to form layers. Sum layers and product layers are stacked in alternating fashion to form a
deep network. Sum layers compute mixtures at each cell, resulting in new output channels. Spatial
products combine inputs locally to form hierarchical spatial features that exponentially increase
their receptive field from the leaf layer to the root.

4.1 Scopes in DGC-SPNs

Scopes of nodes within a DGC-SPN have a clear relation to the tensor dimensions mentioned above.
If we consider a single cell at the input tensor, we find multiple channels that cover the same variable
Xi (e.g. different Gaussian components in case of continuous data or different indicators in case of
discrete data). Since channels within a cell cover the same variable, they have the same singleton
scope {Xi}. In other words, scopes within a cell of the input tensor are homogeneous. In contrast,
for image data, different cells at the input correspond to different pixels. If we take any pair of
cells, we can say that the scopes of these cells are heterogeneous. By ensuring that sum layers
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and product layers preserve within-cell homogeneity, across-cell heterogeneity, completeness and
decomposability, we can derive valid convolutional SPN architectures. We now elaborate on how
to implement and parameterize such spatial layers.

4.2 Spatial Sum Layers

A sum is complete if it has children with identical scopes. The within-cell homogeneity and across-
cell heterogeneity dictate that at each level, sums should only be connected to a single input cell.
Yet, multiple single-cell sums can be added to form an arbitrary amount of output channels. Hence,
the spatial layout of the scopes remains unchanged and the validity propagates up the network.

4.3 Spatial Product Layers

Products are decomposable if they are connected to children with pairwise disjoint scopes. As
a result, products at each level can have children from at most one channel per cell, but cover
two or more input cells. At the input layer, it is trivial to see that neighboring cells are not only
heterogeneous, but also pairwise disjoint. Hence, the products on top of an input layer can join
scopes by taking small patches of several cells while selecting only one input channel per cell.

Product Node
Sum Node
Leaf Node

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0,1 2,3 4,5 6,7

0-3 4-7

0-3 4-7

0-3 4-7

0-3 4-7

R

Layer 3 (Products)

Layer 2 (Sums)

Layer 0 (Leaves)

Layer 1 (Products)

Cell

Layer 6, Root (Sum)

0-3

0-3

0-3

0-3

0-3 4-7

0-3 4-7

Layer 4 (Sums)

Layer 5 (Products)

Figure 2: An example of a ‘vanilla’ convolutional SPN. As opposed to the more general DGC-SPNs
depicted in Figure 3, such architecture does not allow for spatially overlapping patches.
Node types are indicated by different colors and some connections are highlighted to
improve readability.
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Layer 3 (Products)

Layer 2 (Sums)

Layer 0 (Leaves)

Layer 1 (Products)

Cell 0

Cell 3

Channel 0

Channel 1
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Figure 3: An illustration of a DGC-SPN simplified to 1D. Connections for only one cell per layer
are highlighted for readability. Layer 0 contains leaf distributions, where each channel
corresponds to an indicator for discrete variables or a distribution component (e.g. Gaus-
sian) for continuous variables. Every product layer doubles the dilation rate, starting at
the rate of 1. The scopes are indicated by the numbers within each node. Padding nodes
have a fixed probability of 1 (or 0 in log-space). The nodes of a single cell share the same
scope. All children of the root node R have a scope that contains all input variables.

4.4 Convolutional Log Products

SPNs are implemented to propagate log-probabilities to avoid underflow. Hence, the local patches
of products become local patches of sums. In previous works, such local products in log-space
were computed through sum pooling (Sharir et al., 2016; Butz et al., 2019), so that the number of
input channels equals the number of output channels. We propose a more general alternative that
implements local products in log-space through convolutions using kernels with one-hot weights
per cell. One-hot weights are needed so that only one channel per cell has a coefficient of 1, while
all other channels have a zero coefficient. We refer to such products realized using convolutions as
convolutional log-products (CLP). In Section 4.5, we describe an even more general view of CLPs.
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In general, there are Ct combinations of child nodes per patch, where C is the number of input
channels and t is the number of cells under a patch. Consequently, there are at most Ct output
channels in a CLP layer. To limit that number, one can take an arbitrary subset of combinations of
child nodes. In this context, sum-pooling can be seen as a special case of CLPs where the number of
output channels equals the number of input channels. Figure 2 displays a convolutional SPN using
CLPs highlighted by the blue and red lines. A red line indicates that the product is connected to
the top channel of the previous layer, while a blue line indicates that the product is connected to the
bottom channel of the previous layer.

4.5 Generalized Convolutional Log Products

Existing approaches to convolutional SPNs (Sharir et al., 2016; Butz et al., 2019) use non-overlapping
patches for their products. Hence, neighboring cells in the output of such layers are not only hetero-
geneous, but also pairwise disjoint. However, non-overlapping patches require strides larger than 1,
thus skipping many combinations of input cells, yielding sub-optimal feature coverage. In fact, this
becomes visibly apparent in patch-wise artifacts in image completions (Butz et al., 2019).

To overcome these limitations, DGC-SPNs use generalized convolutional log-products (GCLPs).
A GCLP is obtained by (i) ‘full’ padding (Dumoulin and Visin, 2016), (ii) strides as small as 1, and
(iii) exponentially increasing dilation rates. A dilated kernel with a dilation rate of d takes in cells
that are d positions apart, leaving gaps of d − 1 positions. For example, a kernel with 2 × 2 cells
and a dilaton rate of 2 × 2 (same in both directions), covers a patch of 3 × 3 cells of the input.
The first layer of GCLPs in Figure 3 use a dilation rate of 1. We see that the convolutional patches
overlap as a consequence of unit strides. Hence, neighboring cells in layer 1 are heterogeneous,
but not pairwise disjoint. This forbids us from applying another convolution with a dilation rate of
1. Instead, we exponentially increase the dilation rate to obtain kernels that ‘skip’ the input cells
that would otherwise yield non-disjoint children. The exponentially increasing dilation rates yield
patches covering pairwise disjoint scopes. Hence, GCLPs exhibit significantly improved feature
coverage while preserving decomposability. Full padding is required to ensure uniform dimension
sizes in tensors along each axis, allowing the use of GPU-optimized convolution implementations.

For readability, the above explanation of DGC-SPNs focuses on 1 spatial dimension and ker-
nel sizes of 2 for all GCLPs. Nevertheless, our architecture generalizes to any number of spatial
dimensions and kernel sizes that vary per layer2 as shown in our experiments.

5. Experiments

We evaluated the generative and discriminative capabilities of DGC-SPNs on two visual tasks: im-
age inpainting and image classification. All experiments were performed using our recently open-
sourced libspn-keras library. We first describe the experimental setup for both types of experiments.

5.1 Experimental Setup: Generative Learning

We assessed generative capabilities of DGC-SPNs for unsupervised image inpainting on a varied
collection of image types and datasets. We used images of objects belonging to 101 categories from
the Caltech 101 dataset (Fei-Fei et al., 2004) and images of faces from the Olivetti dataset (Samaria
and Harter, 1994), for which we employed the same 64 × 64 crops and train and test splits as in

2. In case of varying kernel sizes, the GCLP dilation rates must equal the product of all preceding GCLP kernel sizes.
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(Poon and Domingos, 2011) to ensure a fair comparison. In addition, we used the MNIST written
digits dataset (Lecun et al., 1998) and the Fashion MNIST (Xiao et al., 2017) dataset with images of
cloth. For these datasets, we used the default train and test splits. All generative experiments were
unsupervised, and any class labels in the datasets were ignored. Pixels were normalized sample-wise
by subtracting the mean and dividing by the standard deviation for each image.

To build DGC-SPNs, we started with a Gaussian leaf layer followed by a stack of alternating
GCLP layers and spatial sum layers. The first GCLP layer computed all possible combinations of
products under each patch through one-hot kernels. For the remaining GCLP layers, we used depth-
wise convolutions (i.e. sum pooling). All GCLP layers considered 2× 2 patches with exponentially
increasing dilation rates. Between each pair of GCLP layers was a spatial sum layer with 16 output
channels. Finally, the top GCLP layer consisted of cells with all variables in their scopes, so that
their receptive field covered the full image. This layer was followed by a root sum node.

We trained our generative SPNs with online hard EM using a batch size of 128 for 15 epochs.
Although hard EM formally requires MPE inference in the forward pass, following the suggestion
in (Poon and Domingos, 2011), we used marginal inference instead. For each hard EM iteration,
the sum weights were obtained by normalizing the MPE path accumulators with additive smoothing
dependent on the number of weights per sum: wi = ci+ε∑

j cj+ε , ε = 10−2/|w|. The Gaussian leaf
layer was parameterized by 4 univariate components per pixel. Following (Poon and Domingos,
2011), for each pixel, the values over all samples in the train set were divided over 4 quantiles. The
mean of the i-th quantile was used as the value of the mean of the i-th Gaussian component at the
corresponding pixel, and variances were set to 1.

For vanilla hard EM, we observed that values of nodes sharing the same sum as a parent start to
converge as the depth of the SPN increases. Hence, the impact of sum weights gradually increases,
eventually overcoming the impact of the values of the nodes for winning child selection. This forms
a self-amplifying chain of signals that only follow the sum child with the maximum weight. Relying
on unweighted sum inputs (USI) (Kalra et al., 2018) for selection of the winning child mitigates that
effect and allows for capturing more complex data patterns during training.

We performed image inpainting by computing the marginal posterior probability at the Gaus-
sian leaves through partial derivatives (Darwiche, 2003). The predicted pixel value is obtained by
linearly combining the modes of the leaf components using the marginal posterior probability (Poon
and Domingos, 2011).

5.2 Experimental Setup: Discriminative Learning

We assessed the discriminative abilities of DGC-SPNs on the task of image classification. We used
the MNIST (Lecun et al., 1998) and Fashion MNIST datasets (Xiao et al., 2017), as these were
standard benchmarks for discriminative learning of SPNs in the previous works. We performed
sample-wise normalization of pixel values in the same way as for the generative case.

To build DGC-SPNs for these datasets, we used a Gaussian leaf layer with 32 components per
pixel followed by a stack of alternating GCLP and spatial sum layers. For generative experiments,
we applied unit strides and exponentially increasing dilation rates with zero padding for all GCLPs.
In contrast, here we obtained better results when first using two GCLP layers with non-overlapping
strides without zero padding. For the remaining GCLP layers, we applied overlapping strides,
exponentially increasing dilations and padding. All GCLP layers used 2 × 2 patches. We used 64
channels for the first 3 spatial sum layers and 128 channels afterwards.
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Table 1: Results of generative experiments (averaged over 5 runs). We trained DGC-SPNs with
and without unweighted sum inputs (USI) and report MSE of predictions for the occluded
parts of images.

Dataset Authors Method Bottom Left
Olivetti (Butz et al., 2019) DCSPN 1006 910
Olivetti (Poon and Domingos, 2011) APVAHRS 918 942
Olivetti (Dennis and Ventura, 2012) ClusterVars 820 814
Olivetti Ours DGC-SPN 804 847
Olivetti Ours DGC-SPN + USI 735 811

Caltech 101 (Poon and Domingos, 2011) APVAHRS 3270 3551
Caltech 101 Ours DGC-SPN 3216 3161
Caltech 101 Ours DGC-SPN + USI 2801 2722

MNIST Ours DGC-SPN 3767 3102
MNIST Ours DGC-SPN + USI 2996 2476

FMNIST Ours DGC-SPN 2870 2268
FMNIST Ours DGC-SPN + USI 2223 1637

We used the Adam optimizer (Kingma and Ba, 2014) with its default settings in Keras (learning
rate α = 10−4, decay rates β1 = 0.9, β2 = 0.999). We parameterized the sums with log-space
accumulators, denoted c′i = log(ci), so that additional projections onto R+ were not necessary after
gradient updates (Peharz et al., 2019). Gaussian means were initialized using equidistant intervals
in the range of [−1.5, 1.5] per pixel, and variances were initialized to 1. In contrast to the generative
case, the parameters of the Gaussian leaves were adapted after initialization as part of the learning
procedure. We used cross-entropy as the loss function.

For regularization, we applied product dropout (PD) (Peharz et al., 2019) by randomly setting
product outputs to zero with a rate of pPD = 0.2 throughout the entire network. Finally, we applied
input dropout (ID) by setting the components of a variableXi to 1 at random with a rate of pID = 0.2
(Peharz et al., 2019), as if the dropped out variables were excluded from the evidence. Finally, we
used a batch size of 64 and trained our SPNs for 400 epochs.

5.3 Results

Table 1 shows the results for generative learning and the task of unsupervised image inpainting. We
tasked the models with recreating half of an image based on its other half, an extremely difficult
problem for a deep architecture. We masked either the left or the bottom half of the images. The
performance was assessed based on the mean squared error (MSE)3 between predicted pixel values
and original images. Pixels were scaled to the range of [0, 255] when computing MSE.

In all experiments, DGC-SPNs outperformed all other approaches indicating that the generality
of our convolutional architecture translates into practical benefits for image data. Figure 4 shows a
random selection of completions for images from the Olivetti dataset for one of our experiments.

The performance gains are apparent even without the use of the unweighted sum inputs heuristic
(USI in Table 1). However, using unweighted sum inputs with hard EM further improves MSEs for

3. MSEs for (Butz et al., 2019) corrected following: github.com/jhonatanoliveira/dcspns/issues/1.
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Figure 4: Random selection of examples of original images (top row) and inpainting results for left-
occluded (middle row) and bottom-occluded (bottom row) test images from the Olivetti
dataset.

Table 2: Results of discriminative experiments (averaged over 5 runs).
Dataset Algorithm Architecture Authors Accuracy
MNIST EBW APVAHRS (Rashwan et al., 2018) 95.07%
MNIST DSPN-SVD Learned (Adel et al., 2015) 97.34%
MNIST Prometheus Learned (Jaini et al., 2018) 98.37%
MNIST SGD CNN + SPN (Hartmann, 2014) 98.34%
MNIST Adam RAT-SPN (Peharz et al., 2019) 98.19%
MNIST Adam DGC-SPN Ours 98.66%

FMNIST Adam RAT-SPN (Peharz et al., 2019) 89.52%
FMNIST Adam DGC-SPN Ours 90.74%

all datasets. To the best of our knowledge, our results provide the first quantitative evaluation of
this heuristic in the SPN literature. We suggest that its benefits can be attributed to the fact that
exponentially decreasing variances cause strong biases in path selection, which can be mitigated by
reducing the effect of weights on this process.

The results for the task of image classification are shown in Table 2. In the discriminative
learning case, DGC-SPNs again outperformed all other SPN approaches in the literature for both
the MNIST and Fashion MNIST datasets.

Several other SPN approaches, including (Gens and Domingos, 2012; Hartmann, 2014), require
sub-SPNs per class after which the class-specific SPNs are combined by a single sum node at the
root of the SPN. Consequently, these SPN architectures scale poorly with increasing number of
classes. In contrast, DGC-SPNs use only a single stack of product and sum layers shared by all
classes followed by a top layer of K sums (where K is the number of classes) and a root node
resulting in greatly improved scalability.

6. Conclusions

This paper introduced DGC-SPNs, a novel, scalable, deep convolutional architecture for spatial and
image data applicable to both generative and discriminative tasks. DGC-SPNs are the most general
realization of convolutional SPNs to date, allowing for overlapping convolution patches without
breaking validity thanks to a unique parameterization of strides and dilations. This translates to a
significant improvement in performance. In our experiments, DGC-SPNs offered state-of-the-art
results compared to related SPN architectures on several visual tasks and datasets.
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DGC-SPNs are fully probabilistic, naturally deal with missing inputs, and are capable of ef-
ficient joint, marginal, and conditional queries over complex, noisy data. The general design of
the model permits its application to a wide range of domains involving spatial data beyond images
and two dimensions. By releasing an implementation based on the well-established Keras and Ten-
sorFlow frameworks, we hope to encourage further development and application of spatial SPN
architectures.
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