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Abstract
Graphical event models (GEMs) provide a framework for graphical representation of multivariate

point processes. We propose a class of GEMs named Hawkesian graphical event models (HGEMs)
for representing temporal dependencies among different types of events from either a single event
stream or multiple independent streams. In our proposed model, the intensity function for an event
label is a linear combination of time-shifted kernels where time shifts correspond to prior occur-
rences of causal event labels in the history, as in a Hawkes process. The number of parameters in our
model scales linearly in the number of edges in the graphical model, enabling efficient estimation
and inference. This is in contrast to many existing GEMs where the number of parameters scales
exponentially in the edges. We use two types of kernels: exponential and Gaussian kernels, and
propose a two-step algorithm that combines strengths of both kernels and learns the structure for the
underlying graphical model. Experiments on both synthetic and real-world data demonstrate the
efficacy of the proposed HGEM, and exhibit expressive power of the two-step learning algorithm
in characterizing self-exciting event patterns and reflecting intrinsic Granger-causal relationships.
Keywords: Asymptotic consistency; Event streams; Granger causality; Graphical event models;
Hawkes processes; Point processes; Temporal dependencies

1. Introduction

Learning temporal dependencies from streams of different types of events has attracted increasing
attention in recent years for a wide range of applications, such as preemptive maintenance for system
management (Gunawardana et al., 2011), myocardial infarction prediction for health care (Weiss
and Page, 2013), and impact evaluation of social services for social good (Bhattacharjya et al.,
2020). An event stream consists of a sequence of timestamps with labels on a common timeline.
A label corresponds to an event type and they occur as irregular and asynchronous time arrivals.
Exploring the underlying temporal dependencies primarily involves the question: How does the
history of a collection of events statistically affect the arrival time of another event type in the
future? Knowledge of such dependencies can provide data-driven insights for decision-makers to
intervene in operations and guide system evolution to achieve a desired goal.

A traditional approach to capture the dynamics of event occurrences is to employ a multivari-
ate point process and use conditional intensity functions. Conditioned on the history of prior event
occurrences, the intensities depict the instantaneous rates of future event occurrence. A more chal-
lenging task is to model the inter-dependencies of history of multiple event occurrences on the
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instantaneous intensities in a compact and interpretable manner. This motivates a graphical repre-
sentation for the dependence structure in multivariate point processes.

Didelez (2008) introduced local independence graphs – also referred to as graphical event mod-
els (GEMs) (Meek, 2014) – to capture dependencies among events, where the intensity function of
an event depends only on the history of its parent event labels in the graph. However, in practice it is
challenging to consider all possible histories for modeling dependencies. To mitigate this difficulty,
Gunawardana et al. (2011) proposed a piece-wise constant intensity model (PCIM) assuming that
the intensity function depends only on the projection of histories to pre-determined basis functions.
Gunawardana and Meek (2016) slotted the histories of a parent into bins up to a certain maximum
time bound in the past and considered a family of models where the multiset of the counts of events
in these bins influence the intensity function. Bhattacharjya et al. (2018) simplified by assuming
that the intensity function was influenced only by whether or not parent events happened in some
recent window, and proposed an algorithm to learn this window without user-provided information.

In this work, we propose a new self-exciting graphical model, named Hawkesian graphical event
model (HGEM), to model the temporal dependencies among events given either a single stream of
event occurrences or multiple independent streams. One important task in GEMs is to automatically
learn the structure of graphical models to find the pattern of dependencies (in the form of a directed
graph). Compared with start-of-the-art GEMs, our model greatly reduces the number of parameters
that scaled exponentially in the number of edges (like in Bhattacharjya et al. (2018); Gunawardana
and Meek (2016)) to a linear scaling. We propose a two-step learning algorithm that first uses
exponential kernels to recover the structure and then uses Gaussian kernels to model the intensity
functions on learned structure. We prove asymptotic consistency for structure recovery when the
true model is a HGEM with exponential kernels. We demonstrate the efficacy of the two-step
approach on both synthetic and real datasets comparing with existing baselines.

We consider intensity functions akin to a Hawkes process (Hawkes, 1971). Hawkes models
have received considerable interest in many scientific communities such as seismology, criminology,
high-frequency financial econometrics, etc. There have been many existing works that studied the
estimation of parameters for Hawkes processes (Xu et al., 2016; Chen et al., 2017; Bacry et al.,
2020). Our method fundamentally differs from their approach in many aspects. One of the major
differences between our work and most prior works in multivariate Hawkes processes is that we
take a score-based graph search approach as opposed to penalized matrix estimation for structure
learning. In practice, the regularized likelihood optimization requires a carefully chosen tuning
parameter to ensure a good performance. In contrast, our approach is entirely data-driven without
need of any hyperparameters. Our proposed two-step learning approach combines the strengths
of exponential kernels and Gaussian kernels. Xu et al. (2016) also considered Gaussian kernels,
but they chose not to vary some parameters of the kernel before optimization, and only a subset
of parameters of the kernel function are estimated from the optimization. Our model provides
flexibility and automatic learning by parameterizing the kernels. In addition, our model works even
when there is only one single event stream available, and we do not require access to identically and
independently distributed (i.i.d.) realizations of the process as in Xu et al. (2016).

The rest of this paper is organized as follows. Section 2 sets up the problem framework and
presents Hawkesian graphical event models. We then discuss how Granger causality relates to
HGEMs. Section 3 introduces our proposed two-step approach for structure learning and parameter
learning. Section 4 demonstrates the numerical performance of our proposed models on synthetic
datasets as well as on real-world datasets. In Section 5, we conclude and discuss future work.
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2. Hawkesian Graphical Event Models (HGEMs)

2.1 Problem Setup

Let E be a finite set consisting of different types of event labels with cardinality |E| = M . An event
stream is denoted by D = {(ti, ei)}Ni=1 with t1 < · · · < tN , where ti is the time-stamp of the i-th
event and ei is its event label taking values in E . We further use t0 = 0 to denote the initial time and
T ≥ tN to denote the end time, and let I(·) denote the indicator function.

The event stream can be regarded as a multivariate temporal point process which is commonly
characterized using conditional intensity functions (Gunawardana et al., 2011). Let ht = {(tj , ej) :
tj < t} represent historical events that happened before time t and Ne(t) be a counting process that
records the number of type-e events happening before or at time t. We also define the ending time
tend(h) of a event sequence h as the timestamp of the last event in h, that is tend(h) = max(t :
(t, e) ∈ h)). In this way, tend(hti) = ti−1. The conditional intensity function λe(t|ht) describes the
expected number of type-e events happening in an infinitesimal interval [t, t + ∆t] given histories
of all other event labels prior to time t, that is, λe(t|ht) = lim∆t→0E[Ne(t+ ∆t)−Ne(t)|ht]/∆t.
From a practical perspective, λe(t|ht) is assumed to be λe(t|ht) = 0 for t ≤ tend(ht) and > 0 for
t > tend(ht). Then, the log-likelihood of data D is given by:

l(D) =
∑
e∈E

(
N∑
i=1

I{ei = e} log(λe(ti|hti))−
N∑
i=1

∫ ti

ti−1

λe(τ |hτ )dτ −
∫ T

tN

λe(τ |hτ )dτ

)
. (1)

2.2 Model Description

Following the general idea of GEMs, we introduce a directed graph G = (E ,A) to represent the de-
pendencies among various types of events in the event stream. The nodes E in the graph correspond
to event labels, and the directed arrowsA represent the dependence of one event label’s intensity on
histories of other events. For each event label e ∈ E , its conditional intensity λe(t|ht) depends only
on historical occurrences of its parent events, that is λe(t|ht) = λe(t|[ht]Pa(e)), where Pa(e) ⊆ E
are parents of node e in G and [ht]Pa(e) is the history of events whose labels are in the set Pa(e).

In order to capture the self-exciting pattern among the events, we proposed a Hawkesian Graph-
ical Event Model (HGEM) 〈G, θG〉 by assuming that the conditional intensity function λe(t|ht; θG)
follows a multivariate Hawkes process (Hawkes, 1971), i.e., for each event label e ∈ E ,

λe(t|ht; θG) = γe +
∑

k∈Pa(e)

∑
j:tj<t

I{ej = k}αekνek(t− tj), (2)

where γe > 0 provides a base intensity that is independent of history, αek > 0 measures the
magnitude of historical influences of type-k events on type-e events, and νek(·) > 0 is a function
defined on R+ that captures the pattern of impacts. For ease of notation, we use θG to denote all the
model parameters including γe, αek and those contained in νek(·) under a graph structure G.

Before proceeding with the properties of the model, we consider the following regularity as-
sumptions to ensure that a HGEM defined by conditional intensities in (2) is non-explosive, station-
ary, and identifiable (Hawkes and Oakes, 1974; Eichler et al., 2017).

Assumption 1 (Non-explosivity) (1) γe > 0 is lower bounded. (2) The kernel function νek(z) > 0
is upper bounded for z > 0, and νek(z) = 0 for z ≤ 0.

Assumption 2 (Stationary & Identifiability) The spectral norm of the matrix Φ = (φek)M×M is
less than 1, where φek =

∫∞
0 αekνek(z)dz.
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Assumption 3 (Parameter Space) Let ΘG be the parameter space of θG for a given graph G. ΘG is
nonempty and compact. Further, there exists an open set Θ̃ ⊇ ΘG such that νek(·) is differentiable
with respect to θG in Θ̃.

Two dominant choices of νek(·) are exponential kernels νEek(z) = I{z > 0} exp(−βekz), and
Gaussian kernels νGek(z) = I{z > 0} exp

(
−1

2w
2
ek(z − µek)2

)
, where βek, µek, wek > 0 for any

e, k ∈ E . In Section 3, we shall discuss the pros and cons of using the two different kernels and
propose a two-step procedure which combines the strengths of utilizing both kernels. From now on,
we use superscriptE andG to represent the log-likelihood function l(θG ;D) defined by exponential
kernels and Gaussian kernels respectively. To be more specific, we use lE(θG ;D) to denote the
log-likelihood function in (1) for νEek(z) and lG(θG ;D) with νGek(z).

2.3 Relationship to Granger Causality

Granger causality is a notion that aims to capture temporal dependencies between processes that
evolve in time (Granger, 1969). Briefly, if we have a collection of processes V , process a ∈ V
non-Granger causes b ∈ V if the future of b is independent of the past history of process a given
the histories of processes in V/{a} (Meek, 2014). Didelez (2008) connected Granger causality
with local independence property in GEMs. Meek (2014) further explored assumptions connect-
ing GEMs with causal discovery for point processes, and proposed a new asymmetric graphical
separation criterion for directed graphs. Eichler et al. (2017) studied Granger causality of multivari-
ate Hawkes processes. We recall below a key result in this work that establishes the relationship
between Granger causality and the conditional intensity functions of various processes.

Lemma 1 (Eichler et al. (2017)) For a M -dimensional stationary multivariate Hawkes process
N = (N1, · · · , NM )′, where Ni is a counting process with conditional intensity function

λi(t|ht)) = γi +

M∑
j=1

∫ t

0

φij(u)dNj(t− u), (3)

the process Nj does not Granger-cause Ni with respect to N if and only if φij(t) = 0 for all t > 0.

Lemma 1 provides an explicit representation of the Granger causal relationships for a multi-
variate Hawkes process. Connecting the conditional intensity functions of a HGEM model with
those defined in (3), for each node in the graph, its intensity function is influenced only by its parent
events. As a result, for two event labels e, k ∈ E , φek(t) = 0 for all t > 0 if and only if k /∈ Pa(e).
Therefore, the graph of the HGEM model G = (E ,A) is identical to the graph representing Granger
causality relations amongst events in E . We summarize this relationship below.
Proposition 1 (Granger-Causality in HGEMs) For two event labels e, k ∈ E in a HGEM G =
(E ,A), label-k event Granger-causes label-e event if and only if k is a parent event of e in G.

3. Learning HGEMs

3.1 Overview

The learning problem is as follows: given event dataset D, learn HGEM 〈G, θG〉, i.e., the struc-
ture of the graph, and the conditional intensity parameters for each event label given the structure.
One popular approach in point processes literature is via regularized maximum likelihood estimator
(MLE) (Xu et al., 2016; Chen et al., 2017; Bacry et al., 2015), which simultaneously achieves pa-
rameter learning and structure learning by penalizing some of the coefficients to zeros. However, the
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regularization approaches usually require a carefully chosen tuning parameter to control the model
complexity. A bad choice of penalty term may resulting in high bias in parameter estimation and
severe structure learning errors, leading to spurious edges or miss of important edges.

To avoid the potential issue brought by hyper-parameters, in what follows, we separate the struc-
ture learning and parameter learning by defining a score-based criterion to select optimal structure
and learning parameters for given structure. To this end, we introduce a two-step learning approach
which is specially designed for learning HGEMs. The two-step approach addresses the questions
about which kernels to use in HGEMs, and achieves satisfactory performance with respect to both
likelihood fitting and structure learning accuracy.

Before proceeding, we first introduce some notation. we use ⊂ to represent subset relationships
between sets and use≺ to represent subset relationships between graphs. For all graph comparisons,
we only consider graphs having the same node sets. For two sets S1 and S2, S1 ⊂ S2 means all
elements in S1 are contained in S2 and S2 has at least one element that is not in S1. For two graphs
G1 = (E ,A1) and G2 = (E ,A2), G1 ≺ G2 means A1 ⊂ A2, in another word, all the arrows in G1

appear in G2 and G2 contains at least one arrow that is not in G1. We use ΘG to denote the parameter
space corresponding to G, and use θG ∈ ΘG to denote a parameter contained in ΘG . Note that for
two graphs G1 and G2, G1 ≺ G2 implies ΘG1 ⊂ ΘG2 . For a HGEM

〈
G?, θ? = θ?G?

〉
, G? and θ?

stands for the ground truth graph structure and the ground truth parameters. For any given graph G,
θ̂G represent the MLE in parameter space ΘG , that is

θ̂G = argmax
θG∈ΘG

l(θG ;D). (4)

3.2 Parameter Learning

When the graph G is known, with the parametric assumptions on the condition intensity functions
defined in (2), the log-likelihood of dataset D given a HGEM can be explicitly written as

l(θG ;D) =
∑
e∈E

(

N∑
i=1

I{ej = e} log(λe(ti|hti ; θG))− Tγe −
∑

k∈Pa(e)

N∑
j=1

I{ej = k}αekFek(T − tj)), (5)

where Fek(t) =
∫ t

0 νek(z)dz, and λe(ti|hti ; θG) = γe+
∑

k∈Pa(e)

∑i−1
j=1 I{ej = k}αekνek(ti− tj).

Since the log-likelihood function l(θG ;D) can be decomposed based on each node in the graph,
i.e., l(θG ;D) :=

∑
e∈E le(θGe ;D), we are able to estimate the parameters separately with respect to

each event label. The problem of interest becomes for each e ∈ E , given structure G, find the MLE
θ̂Ge ∈ ΘG , such that

θ̂Ge
= argmax

θGe∈ΘG

le(θGe
;D). (6)

Therefore, for given structure G, the MLE for θG is directly obtained by θ̂G = {θ̂Ge , e ∈ E}. We
implement a nonlinear augmented Lagrange multiplier method (Ye, 1987; Alexios and Stefan, 2015)
to numerically solve the optimization problem in (6).
To investigate the asymptotic behavior of a HGEM, we first consider the summability assumption.
Assumption 4 (Summability) Both αekνek(z) and αekdνek(z)/dz are uniformly summable, such

that for a time sequence {ti}∞i=0, where t0 = 0 and
∑∞

i=1(ti − ti−1)−1 <∞,

(i)
∑∞

i=1(ti − ti−1) supx∈(t+ti−1,t+ti] αek

∣∣∣dνek(x)
dx

∣∣∣ < C for some constant C > 0 and all t > 0.

(ii)
∑∞

i=1(ti − ti−1) supx∈(t+ti−1,t+ti] αek |νek(x)| → 0 as t→∞.
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Assumption 4 controls the tail behaviors of kernel function and its first-order deviation (Yang
et al., 2017). It is trivially satisfied by exponential kernels. Guo et al. (2018) studied consistency
of MLE for multivariate Hawkes processes with exponential kernels. As a graphical extension, the
MLE consistency remains valid in HGEMs if the graph under consideration contains the ground
truth structure. The results are formally presented in Theorem 2.

Theorem 2 For a HGEM
〈
G?, θ? = θ?G?

〉
generated by exponential kernels, with Assumptions 1-3,

as T →∞, the MLE θ̂G under graph G is a consistent estimator for θ? if G � G? or G = G?.

3.3 Structure Learning

The BIC criterion has been widely advocated for structure learning of graphical models (Xue et al.,
2012; Gunawardana and Meek, 2016; Bhattacharjya et al., 2018). For a graph G, the BIC score for
a HGEM is defined by

BICT (G) = −2 l(θ̂G ;D) + k log(T ), (7)

where k is the number of parameters under structure G, θ̂G is the MLE for given G and l(θ̂G ;D) is the
corresponding maximum log-likelihood. Following the same notation as in the log-likelihood func-
tions, we use superscript E and G to represent the BIC scores defined by lE(θ̂G ;D) and lG(θ̂G ;D).

As discussed in Section 3.2, the maximum log-likelihood l(θ̂G ;D) is decomposable with respect
to each node in the graph. In addition, the model complexity penalty k in (7) can also be decomposed
as a summation of the total number of parameters in each node. Therefore, the BIC score defined
above can be decomposed into

BICT (G) =
∑
e∈E

BICT (Ge) =
∑
e∈E

(
−2 l(θ̂Ge ;D) + ke log(T )

)
. (8)

Remark 3 ke is the number of parameters corresponding to event label e ∈ E . Suppose for a given
structure Ge, label e has Ue number of parents, then ke = 2Ue + 1 for exponential kernels while
3Ue + 1 for Gaussian kernels. In comparison with the state-of-art PGEMs (Bhattacharjya et al.,
2018), in which ke = 2Ue , our proposed HGEM’s parameter complexity scales only linearly in the
sparsity of the graphical model.

Since there are no constraints like acyclicity of the graph, (8) enables the structure learning to
be decomposed into learning individual optimal sub-graphs and then combining them to form the
global optimal graph. We would like to search for each node to obtain its parent set with the smallest
BIC score. Sharing the spirit with many existing structure learning approaches such as Gao and Wei
(2018) and Bhattacharjya et al. (2018), we consider the Forward-Backward Search (FBS) for parent
search on each node in the graph. The FBS algorithm for HGEM is presented in Algorithm 1.

Theorem 4 (BIC consistency) For a HGEM generated by exponential kernels, with Assumptions
1-3, we have limT→∞ P (BICET (G) > BICET (G?)) = 1 for any G ≺ G? or G � G?.

3.4 Two-Step Learning Approach

In Sections 3.2 and 3.3, we introduce our approach for parameter and structure learning. It remains
to discuss the choice of kernel types. As presented in Section 4, we notice that Gaussian kernels
yield a better fit to the data with respect to log-likelihood, yet they do not perform well in struc-
ture learning. In contrast, exponential kernels are able to recover the structure well, but do not fit
likelihood as well as Gaussian kernels.
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Algorithm 1 Forward-Backward Search (FBS) for e ∈ E

1: Step 1: Initialization
2: parent set Pa(e)← ∅;
3: BIC score S ←∞;
4: Step 2: Forward Search
5: repeat
6: for each k ∈ E \ Pa(e) do
7: Pak(e)← Pa(e) ∪ {k};
8: Sk ← BIC(Ge) for Pak(e);
9: end for

10: if mink Sk < S then
11: Pa(e)← Pa(e) ∪ {k};
12: S ← mink Sk;
13: end if
14: until mink Sk ≥ S or Pa(e) equals E

15: Step 3: Backward Search
16: repeat
17: for each k ∈ Pa(e) do
18: Pak(e)← Pa(e) \ {k};
19: Sk ← BIC(Ge) for Pak(e);
20: end for
21: if mink Sk < S then
22: Pa(e)← Pa(e) ∪ {k};
23: S ← mink Sk;
24: end if
25: until mink Sk ≥ S or Pa(e) is empty
26: Return: parent set for node e: Pa(e)

To borrow strengths from both types of kernels, we propose a two-step learning approach illus-
trated in Algorithm 2. The main idea is to use exponential kernels defined BIC to perform structure
learning, and then use Gaussian kernels defined log-likelihood to fit HGEM parameters. The two
stages combine the advantages of exponential kernels in structure learning and Gaussian kernels in
model fitting, providing a straightforward approach for learning HGEMs in practice.

Algorithm 2 Learning HGEMs

1: Step 1: Use Forward-Backward Search (FBS) to find the graph G̃ with the smallest BIC score
defined by exponential kernels, i.e., G̃ = argmin

G
BICET (G).

2: Step 2: Given the structure G̃ obtained from Step 1, find the MLE θ̂G̃ with respect to the log-

likelihood defined by Gaussian kernels, that is, θ̂G̃ = argmax
θG̃∈ΘG

lG(θG̃ ;D).

3: Return: a HGEM {G̃, θ̂G̃}

4. Experimental Results
We evaluate the proposed model through experiments on synthetic as well as real datasets. Our
main baseline is the proximal graphical event model (PGEM) (Bhattacharjya et al., 2018). In this
model, an event label’s conditional intensity rate at any time depends only on whether its parent
labels have occurred at least once in some recent window(s). As another baseline, we also include
the piece-wise constant intensity model (PCIM) (Gunawardana et al., 2011; Parikh et al., 2012),
which is more general than PGEM but requires the user to specify a set of basis functions in the form
of relevant historical time intervals. This model requires domain knowledge to specify the basis
functions; we use our judgment while selecting basis functions for the various datasets considered.
Since it was not easily evident how to recover the structure from the implementation, we only report
the log-likelihood results for PCIM. We also compare with the sparse-group-lasso regularized
maximum likelihood estimation (MLESGL) (Xu et al., 2016), which serves as a baseline for
Hawkes processes. The implementation is conducted via the THAP package (Xu and Zha, 2017).

7



4.1 Synthetic Data Experiments

We generate datasets from two different graphs, shown in Figure 1. G1 contains two nodes (M = 2)
and both nodes exhibit self-exciting patterns. The arrow from X1 to X2 implies occurrences of
type-1 events trigger the intensities of type-2 events. G2 contains five nodes (M = 5) that are
all self-excited but mutually non-Granger causal of each other. Essentially, G2 is a 5-dimensional
Hawkes processes in which the occurrences of each label are not affected by other labels.

For both structures, we generate synthetic datasets from HGEMs with exponential kernels and
Gaussian kernels, respectively. Details of parameter settings are relegated to the Appendix. In each
setup, we generate 20 event streams. We conduct various learning approaches using the event stream
one at a time, and evaluate model performances averaged across the streams. We use negative log-
likelihood to evaluate model fitting, and accuracy for structure recovery. We compare performances
of six different approaches, including our proposed two-step learned HGEMs, HGEMs with expo-
nential as well as Gaussian kernels. PGEM, PCIM and MLESGL serve as baselines. For ease of
notation, we refer to our proposed methods using acronyms as follows: (i) HGEM (T): HGEM fit
with two-step approach (Algorithm 2); (ii) HGEM (E): HGEM fit with exponential kernels; (iii)
HGEM (G): HGEM fit with Gaussian kernels.

Figure 1: Graphs for Synthetic
Datasets Figure 2: Learned Graphs from

Microservice Dataset
Tables 1 reports the negative log-likelihood (neg-LL) and structure learning accuracy to compare

the six approaches using four HGEMs generated from the aforementioned data generating process.
From the results, we can see that HGEM(E) yields slightly better performance than the baselines
with respect to both log-likelihood and structure learning accuracy. HGEM(G) exhibits large im-
provements in model fitting as it has much smaller negative likelihood than that of HGEM(E) and
the baselines. However, it has a large drawback in terms of structure learning accuracy. It is exciting
to see that our proposed two-step learned HGEM(T) shows a much better performance compared to
the other five methods. As can be seen from the Table, HGEM(T) reveals its ability in achieving a
high structure learning accuracy and small negative log-likelihood simultaneously.

HGEM(GE1 ) HGEM(GG1 ) HGEM(GE2 ) HGEM(GG2 )
neg-LL Accuracy neg-LL Accuracy neg-LL Accuracy neg-LL Accuracy

HGEM (T) 480.33 98.8 % 160.57 97.5 % 634.52 98.0 % -303.93 99.6 %
HGEM (E) 1787.46 98.8 % 1660.97 97.5 % 2162.79 98.0 % 1796.74 99.6 %
HGEM (G) 422.72 73.8 % 131.11 73.8 % 349.45 75.6 % -672.76 77.2 %

PGEM 1807.50 95.0 % 1712.04 96.3 % 2195.53 97.6 % 1942.96 99.1 %
PCIM 1818.44 - 1725.46 - 2180.02 - 1929.49 -

MLESGL 1907.88 96.3 % 1633.02 93.8 % 2461.01 94.8 % 1897.66 94.0 %

Table 1: Model Performances on Synthetic Datasets
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In summary, the experimental results coincide with our statements in Section 3 that HGEMs
with exponential kernels tend to perform well in structure learning while HGEMs using Gaussian
kernels tend to achieve better likelihood in modeling fitting. Our propose two-step learning algo-
rithm combines the strength of the two types of kernels in one HGEM. Inherited from the structure
learning outcomes of utilizing exponential kernels in the first step, the HGEM(T) retains high accu-
racy in structure recovery. After obtaining the structure, using Gaussian kernels in the second step
helps improve the model fitting with respect to log-likelihood.

4.2 Real Data Experiments

For our real data analysis, we use the same datasets considered in Bhattacharjya et al. (2018). The
first involves real-world political event streams from the Integrated Crisis and Early Warning Sys-
tem (ICEWS) dataset, which was constructed by machine-generated event detection over streaming
news articles (O’Brien, 2010). ICEWS involves events where an actor performs an action on another
actor, for instance ‘Police (Mexico) Fight Citizen (Mexico)’. The second dataset includes selected
words that are treated as events, from two books in the SPMF data mining library (Fournier-Viger
et al., 2014). We ignore the top 100 most frequent words to remove the stop-words and pay attention
to the next most frequent M words. Each word is labeled as an event type and its index in the book
is encoded as the occurrence time.

HGEM PGEM PCIM
Argentina 5090 6090 5931

Brazil 5392 7047 6605
Colombia 1332 1495 1493
Mexico 2054 2794 2726

Venezuela 1988 2380 2265

Table 2: neg-LL on ICEWS Dataset

HGEM PGEM PCIM
BIBLE (M=10) 65269 72013 72801
BIBLE (M=20) 123990 138254 140327

LEVIATHAN (M=10) 17287 18870 19237
LEVIATHAN (M=20) 32174 35179 36055

Table 3: neg-LL on Books Dataset

Tables 2 and 3 compare the negative log-likelihood for the HGEM (two-step) with the PGEM
and PCIM learner baselines. We observe that HGEM fits the data better than the baselines for all
datasets in ICEWS, hinting that political event datasets may involve historical dependencies that are
more amenable to the spikes and decays of Hawkes-like intensity rates. We also see HGEM fits the
data substantially much better on Books dataset.

In addition, we examine the structure learning performance of our proposed approach using the
train ticket microservice data (Zhou et al., 2018). Figure 2 plots the learned graph from HGEM and
PGEM along with the ground-truth graph. Even though HGEM misses some edges compared with
the ground truth, it correctly reflects the Granger-causal relationship. On the contrary, the PGEM
gives a lot of spurious edges, which is less desirable in causal analysis.

5. Conclusion and Future Work

In this work, we propose the Hawkesian graphical event model (HGEM), a new class of graphi-
cal event models for learning temporal dependencies among different types of events in an event
stream. From a modeling perspective, our proposed model captures the self-exciting patterns in-
herently. Connecting the multivariate Hawkes process with graphical representations, the proposed
model provides a more interpretable model to reveal temporal dependencies. More importantly,
benefiting from the relationships between the Granger causality and intensity functions in a mul-
tivariate Hawkes process, a HGEM acquires the ability of explicitly implying the Granger causal
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relationships among event labels in the model. We also propose a two-step algorithm for learning
HGEMs. The proposed approach combines the strengths of two popular kernel functions, resulting
in substantial improvements in both model fitting and structure learning. In addition, the proposed
approach is data-driven, which makes HGEMs practically convenient. We demonstrate the expres-
sive power of HGEMs in model fitting and structure learning on both synthetic and real datasets.

The idea of HGEMs can be further extended to model situations where occurrences of various
types of events influence the evolution of a set of state variables which reflect a system’s status.
The framework of modeling the dynamics of an event-driven system was first introduced by Bhat-
tacharjya et al. (2020). In the future, we plan to extend our work to an “event-state” system to
modeling the impacts of events on certain state variables as well as learning the complex temporal
dependencies and Granger causality among states.

Acknowledgments

This work was conducted under the auspices of the IBM Science for Social Good initiative. Xiufan
Yu and Lingzhou Xue were supported in part by NSF grants DMS–1953189 and CCF–2007823.

Appendix A. Proofs

A.1 Proof of Theorem 2

Proof Guo et al. (2018) studied the MLE estimator of multivariate Hawkes processes with decaying
kernels. They proved that under the regularity conditions on parameter space, stationary and identi-
fiability of processes, and summability of decaying kernels, θ̂MLE = argmax

θ∈Θ
lE(θ;D) consistently

estimates θ? ∈ Θ as T → ∞. By definition, a HGEM with exponential kernels naturally satisfies
all of their assumptions. For any G such that G? ≺ G or G? = G, θ? ∈ ΘG? ⊆ ΘG . As a result,
θ̂G = argmax

θG∈ΘG

lE(θG ;D) is a consistent estimator of θ? as T →∞.

A.2 Proof of Theorem 4

Proof If G � G?, then ΘG ⊃ ΘG? and kG ≥ kG? . Ogata (1978) proved under mild conditions,
lE(θ̂G ;D)− lE(θ?G ;D) = Op(1). Note that θ?G = θ?G? for G � G?. Then,

P (BICET (G)−BICET (G?) > 0) ≥ P (Op(1) + (kG − kG?) log(T ) > 0)→ 1 as T →∞.

If G ≺ G?, then ΘG ⊂ ΘG? and kG ≤ kG? . Building on results of Ogata (1978), Guo et al. (2018)
further proved that, for the true parameter θ? ∈ ΘG? , an arbitrary open neighborhood U around θ?,
there exists an ε > 0, such that:

lim
T→∞

P

(
sup

θ∈U⊆ΘG?

lE(θ;D) ≥ sup
θ∈ΘG?\U

lE(θ;D) + εT

)
= 1. (9)

Since U is an arbitrary neighborhood we choose it as follows: Define u : ΘG → ΘG? where the
lifting function u zero-pads for the parameters that are due to the extra edges in G? but not in G and
for all other edges that are shared, u is an identity function. Since, G is missing an edge that is in G?
associated with non trivial parameters, we have that ‖θ? − u(θ̂G)‖2 > δ for any T . We take a small
open neighborhood around θ? that excludes u(θ̂G). We have, supθ∈ΘG?\U l

E(θ;D) ≥ lE(u(θ̂G);D)

and lE(θ̂G? ;D) ≥ supθ∈U l
E(θ;D). Thus, {E : supθ∈U⊆ΘG?

lE(θ;D) ≥ supθ∈ΘG?\U l
E(θ;D) +

εT} implies {Ẽ : lE(θ̂G? ;D) ≥ lE(u(θ̂G);D) + εT}. Equation (9) implies that P (E) → 1. This
implies that P (Ẽ)→ 1. Hence P

(
lE(θ̂G? ;D) ≥ lE(θ̂G ;D) + εT

)
→ 1. Therefore,
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P (BICET (G)−BICET (G?) > 0) = P (2(lE(θ̂G? ;D)− lE(θ̂G ;D)) + (kG − kG?) log(T ) > 0)

≥P (Ẽ)P (2εT − (kG? − kG) log(T ) > 0)→ 1 as T →∞.

The proof of Theorem 2 is complete.

Appendix B. Parameters of HGEMs for Synthetic Datasets

HGEM # 1: γ1 = 0.4, α11 = 0.2, β11 = 0.8, γ2 = 0.5, α21 = α22 = 0.3, β21 = 0.8, β22 = 1.
HGEM # 2: γ1 = 0.4, α11 = 0.2, µ11 = 0.2, w11 = 2, γ2 = 0.5, α21 = α22 = 0.3, µ21 = 0,
µ22 = 0.3, w21 = w22 = 1.
HGEM # 3: γ1 = α11 = 0.25, γ2 = α22 = 0.30, γ3 = α33 = 0.35, γ4 = α44 = 0.40,
γ5 = α55 = 0.45, β11 = β22 = β33 = β44 = β55 = 1.
HGEM # 4: γ1 = α11 = µ11 = 0.25, γ2 = α22 = µ22 = 0.30, γ3 = α33 = µ33 = 0.35,
γ4 = α44 = µ44 = 0.40, γ5 = α55 = µ55 = 0.45, w11 = w22 = w33 = w44 = w55 = 1.
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