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Abstract

Transfer in reinforcement learning is usually
achieved through generalisation across tasks.
Whilst many studies have investigated transferring
knowledge when the reward function changes,
they have assumed that the dynamics of the envi-
ronments remain consistent. Many real-world RL
problems require transfer among environments
with different dynamics. To address this prob-
lem, we propose an approach based on succes-
sor features in which we model successor feature
functions with Gaussian Processes permitting the
source successor features to be treated as noisy
measurements of the target successor feature func-
tion. Our theoretical analysis proves the conver-
gence of this approach as well as the bounded er-
ror on modelling successor feature functions with
Gaussian Processes in environments with both
different dynamics and rewards. We demonstrate
our method on benchmark datasets and show that
it outperforms current baselines.

1. Introduction

Reinforcement learning (RL) is a computational approach
that learns how to attain a complex goal by maximising
rewards over time. Successful applications range from Atari
games (Mnih et al., 2015), to robotics (Zhang et al., 2017),
and self-driving cars (Liang et al., 2018). However, this
success is based on solving each task from scratch, and thus
training these agents requires vast amounts of data.

Several solutions have been proposed to address this prob-
lem. Most works in transfer RL such as Progressive Neural
Networks (Rusu et al., 2016) and Inter-Task Mapping setups
(Ammar & Taylor, 2011; Gupta et al., 2017; Konidaris &
Barto, 2006; Yin & Pan, 2017) assume that the state-action
space, or reward distribution space can be disentangled
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into independent sub-domains. However, learning inter-
pretable, disentangled representations is challenging (Zhu
et al., 2020). The dynamics and the reward was decoupled
for the first time in (Barreto et al., 2017). Building upon an
elegant formulation called the successor function (Dayan,
1993), the method allowed flexible transfer learning across
tasks that differ in their reward structure. The underlying
assumption was that the environmental dynamics remains
unchanged and using a Generalised Policy Improvement
(GPI) method, the optimal policy is determined. Such suc-
cessor feature based methods have been shown to efficiently
transfer knowledge across RL tasks (Barreto et al., 2018;
2019; 2020). Other works that have built upon successor
features include generalised policy updates on successor
features (Barreto et al., 2020), a universal type of successor
feature based on the temporal difference method (Ma et al.,
2020), and Variational Universal Successor Features (Siri-
wardhana et al., 2019) that perform target driven navigation.
Option Keyboard (Barreto et al., 2019) leveraged successor
features to combine skills to define and manipulate options.
This allows for change in reward, but a slight change of the
environment can deteriorate the performance of a new task.
If however both the environmental dynamics and the reward
differs across tasks, these methods are unable to handle this
challenge.

In real-world problems when environment dynamics and
rewards change across tasks, both these aspects need careful
modelling. Failing to do so can lead to negative transfer
of knowledge from the previously seen tasks. Thus RL
methods using successor features need to be extended to
handle the changes in environmental dynamics. Such work
is limited. Zhang et al. (Zhang et al., 2017) aim to address
this problem by considering a linear relationship between
the source and target successor features. This modelling is
restrictive and may fall short in capturing the complexity of
the changed environment dynamics. Thus, the problem of de-
signing a method using a successor feature based approach
to transfer knowledge from source to target environment
where the dynamics are dissimilar, is still open.

Our new approach enables the efficient learning of novel
successor features to cater to the new target environmental
dynamics. This is done by using the distribution of the previ-
ous (source) task successor features as a prior for the new tar-
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get task. We model both the target and source distributions
through Gaussian Processes (GPs). The target distribution is
modeled as a noisy version of the source distribution. This
approach assumes that the source and target environments
lie within some proximity to each other i.e. they are similar
within some noisy envelope. However, this adjustable noisy
envelope impacts the upper bounded error on the modelling
of optimal policy in the target environment. The advan-
tage of this approach is that the source observations provide
a head-start for the learning process and additional explo-
rations in the target will provide efficient convergence to
the optimal policy. We use a GPI method to estimate the
target action value function. We provide theoretical analysis
and upper bounds (1) on the difference of action-value func-
tions when the optimal policy derived from environment ¢
is replaced by the optimal policy derived from environment
7; (2) on the estimation error of the action-value function
of an optimal policy learned in a source environment when
executed in the target environment; (3) on the difference of
the optimal action-value function in the target environment
and our GPI-derived action value function. We evaluate
this approach in a variety of benchmark environments with
different levels of complexity. Our key contributions are:

¢ A new method based on successor features and Gaus-
sian Processes that enhances transfer from source to
target tasks when the dynamics of the environment are
dissimilar;

* A theoretical analysis for the new successor based
method; and,

* An empirical comparison on diverse suit of RL bench-
marks with different levels of complexity.

2. Background
2.1. Reinforcement Learning

We model the RL framework as a Markov Decision Pro-
cess (MDP) described as < S, A,p, R >, where S is
a finite state space, A represents a finite action space,
p: S xS xA— [0,1] the transition probabilities, and
R:S x A— Ris abounded reward function. A discount
factor v € (0, 1] encodes the importance of future rewards
with respect to the current state. The objective of RL is
to find an optimal policy 7(als) : S — A that maps the
states to the actions such that it maximises the expected dis-
counted reward. The action-value of policy 7 is defined as
Q" (st,a1) = ET[302 0 7" R(st4k, arsr)lso = si,a0 =
at], where s; and a; are the state of the agent at time step ¢,
and the action that is taken in that state, respectively.

Q-Learning: Q-Learning is an off-policy RL approach that
aims to learn the optimal action-value function. This func-

tion can be updated recursively as:

Q" (st ar) = Es,,, [R(st, ar) + Vgleaj((Q”(SHl» a))].
(D

After learning the action-value function, the optimal policy

can be retrieved by selecting the best action at every state:

7*(s) € argmax Q*(s, a). In the next section we draw the
acA

connection between Q-Learning and successor features.

2.2. Successor Features

The successor feature representation allows decoupling of
the dynamics of an MDP from its reward distributions.
Baretto et al. (Barreto et al., 2017) generalised the suc-
cessor representations that was first formulated in Dayan et
al. (Dayan, 1993) decomposing the action-value function
into a set of features that encode the dynamics of the en-
vironment and a weight that acts as a task-specific reward
mapper. This decomposition can be formulated as:

R(s,a) = ¢(s,a)Tw, 2)

where ¢(s,a) € RP are the features of (s, a) that represent
the dynamics of the environment and w is the reward map-
per of the environment. The two components can be learnt
through supervised learning (Zhu et al., 2020). Note that
(., .) can be any complex model such as a neural network.
Baretto et al. (Barreto et al., 2017) showed that this decom-
position can be used in the construction of the action-value
function. Let us assume a reward function as in Eq. (2), the
action value function can be derived as:

Q7 (s,a) = E™[R(s¢41,ar11) + YR(s142, ary2)+

o]
. .‘St = S,0a¢ = a} =FE" [Z’}/t(ﬁ(st-‘rl’ at+1)
t=0

|st = s,a¢ = a}w =(s,a)w, 3)

where 1) (s,a)" is the “Successor Feature (SF)” of (s, a)
and summarises the dynamics induced by 7. Eq. (3) satisfies
the Bellman Equation and and can be learnt through any
conventional method. By treating the latent representation
¢(.,.) as the immediate reward in the context of Q-Learning,
the successor feature function can be written as:

Y7 (s,a) = P(st,ar) + VET [T (s41, 7 (5041)) |50 = s,
at = a] .

“4)

The principal advantage of SFs is that when the knowledge
of 1™ (s, a) is observed, one can compute a task-specific
reward mapper based on the observations seen in the same
environment with different reward function. Given ¥™ (s, a),
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Figure 1. Our proposed approach uses GPs to model the source
successor features functions (»"*) as noisy measurements for the
target successor features functions (¢»™).

the updated reward mapper w for a new reward function can
be approximated by solving a regression problem in tabular
scenarios (Barreto et al., 2020). This enables us to construct
the new action-value function Q (s, a) = ¥ (s, a)TW by
only observing few steps of the new reward function in a
similar environment. In non-tabular problems, a deep neural
network can be used to learn the successor feature functions
of an environment by minimising the following loss:

Ly(8) = [|d(st, ar)+7' P (5141, ars1; 0y)
— P (51, 15 0) |- (5)

Similarly, by having the ¢(.,.) function, the new task-
specific reward mapper w is computed as:

[’w (W) = IEV(s,a)Enew task [(’I"(S, G/)—d)(s, a)T‘X’) 2:| . (6)

where r (s, a) is the obtained reward.

3. Method

We now consider source and target environments with both
dissimilar dynamics and different reward functions. The
goal of transfer in RL in such problems is to learn an optimal
policy for the target environment, by leveraging exterior
source information and interior target information (Joy et al.,
2019; Shilton et al., 2017). We first define the set of source
environments as:

MS = {M(87A7p17R1)7"'aM(SwAap]\hRN)};

where M(.) represents an MDP induced by ¢(.,.) as a
feature function used in all environments. We denote the
N source environments by Si,...,Sy and train an opti-
mal policy in each environment to create a set of policies:
15 = {75, ... #5~}. By executing these N optimal
policies in their corresponding source environments, N

Algorithm 1 Extracting Successor Feature Functions of
Source Environments.
1: Input:
2: Source observation and learned policies DSi=1--N =
{}, 1S,
Discount factor ~, exploration rate e..
Feature function ¢(.,.) € RP.
M2 maximum number of episodes.
Output: Successor feature functions in source environ-
ments 1,5”1, e ,@B”N.
7: Initialise 4™V : S x A — RP.
8: foric1,...,Ndo
9 while M., do

AN

10: Sample the initial state randomly s € S.

11: while ¢ € steps not terminated do

12: if ¢ — greedy then

13: a; =Uniform (A).  //random action

14: else

15: a; = 75 (s4).

16: end if

17: Execute a;, observe s;1.

18: at41 = 7TSi(St+1).

19: Minimise the loss Ly~ (0). /Eq. (5)

20: Store the transition [st, ag, 12;7” (8¢, ag; 0¢""i):|
in DS:.

21: Perform gradient descent w.r.t. 8y .

22: end while

23:  end while

24: end for

distinct successor feature functions ™, i = {1,..., N}

are computed using the loss function Eq. (5). We define

Y™ =p", ... 4] and 9]’ is the d-th dimension. Source

successor feature functions can be learnt using neural net-
works with parameters 6, that can be updated by gradient
descent. Algorithm 1 shows how the successor feature func-
tions are computed.

Using state-action pairs as observations, we construct
a set of successor feature function samples as: DSi =
Si L Tmi(<Si Si 7 (Si Si 27y (Si
{(Xl 7¢7r (Xl ))7 (X2 7¢Tr (X2 ))7 ey (Xn 7”/’77 (Xn ))}v
where x5 = (s;,a4) is a tuple of state-action in S; at
time ¢ following policy m; and 9™ (x5?) is the successor
feature for xtS ‘. If observations from target environment
exist, a set of successor feature function samples in
the target environment can be constructed as D7 =

{9 D) (T B (D)), (3T 97 (xT))
where x] = (s, a;) records a tuple of state-action visited
at time step ¢ following policy 7 in the target environment
T, and ¢p™(x/ ) is an approximation of successor feature of
x/ in the target environment.

We assume that the target successor feature function QZYZ{, fol-
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lowing policy 7 has a measurement noise of €4~ N(0, 02),
ie.

yi(xT) = P5(x7) +eq, Vd € {1,...,D},

where y7 (x7') represents the noisy value of successor fea-
tures in the target environment. Likewise, source succes-
sor features are assumed to have a measurement noise of

ea~ N(0,0?),1ie.:

yoi(x51) = T (x5 ) teq, Vd € {1,...,D}, i ={1,...,N}.

We model the samples of successor features from the source
environment as noisy variants of successor features in the
target environment. Under this model, the target successor
feature for observation x” is defined as:

Pr(xT) =g (xT) + €5, Vd e {1,..., D},

where esi is the modelling noise of target successor feature
functions. We assume the modeling noise to be Gaussian
distributed with variance 03 as €5 = €S~ N (0,03), i =
{1,..., N}. Intuitively, this allows the use of the source
samples as a noisy version for the target successor feature
values. The value of the “modeling noise” variance o3
depends on the difference between source and target envi-
ronments (Shilton et al., 2017). Using the successor fea-
ture samples from both source and target environments, we
model the target successor feature function using a Gaus-
sian Process . The overall idea is illustrated in Figure 1.
Without loss of generality, we use GP (0, k(.,.)), i.e. a GP
with a zero mean function, a symmetric positive-definite
covariance function k(x,x’) : X x X — R a.k.a. kernel,
and we also assume k(x,x) = 1,¥x € X. A covariance
matrix K based on the combined source and target samples
of successor features can be written as:

Me(xs, x5) k(x$,xS) kS, x]) k(x$, %] )T

K = | RO ) RO, xR) kG xT) LEAESN
k(x],x$) k(x],x5) k<], xT) k(x],xT)
_k(x%,x§) k(x%,xi) k(x;,xz—) k(x;,x;)_

@)

where k(x5 xjs-), 1,7 = {1,...,n} is the self-covariance
among source observations of S € {Sy,...,Sy} and
k(xP,xT), i = {1,...,n},j = {1,...,m} denotes the co-
variance between source and target observations. After
incorporating the source, target measurement noise with the
modeling noise, the covariance matrix can be written as:

(O’% +0)xn 0

K.=K+ 0 021m><m

®)

Intuitively, a higher value of 0% implies higher uncertainty
about similarity between source and target environments.

Having defined the required components, using the property
of GP (Rasmussen, 2003), the predictive mean and variance

for a new target observation x” = (s, a) is derived as:
pma(x") = K"K Mya, ©)
Oma(x") = k(T xT) KKk (10)

where K, is the kernel matrix as defined in Eq. (8) and k =
[k(x;,x7)],Vx; € DS|JD7. We use the posterior mean
as in Eq. (9) as the predicted value of the d-th successor
feature dimension for the target observation as 97 (x7)) =

pim,a(x7).

Using GPI (Barreto et al., 2017), we identify the optimal

policy by selecting the best action of the best policy as:
7'(s) = argmax maxQ™ (s, a). (11)

acA TEIS

We note that Q™ (x7 ) ~ 9™ (x” )T, where w is obtained

by minimising the loss function in Eq. (6) as the agent

interacts with the target environment. We term our method

Successor Features for Dissimilar Environments (SFDE)
and is detailed in Algorithm 2.

3.1. Theoretical Analysis

This section answers the key question of “what are the ef-
fects of relaxing the assumption of similarity among source
and target environments on the convergence and transfer via
successor features?”. We prove (1) an upper bound on the
difference of action-value functions when the optimal policy
derived from environment ¢ is replaced by the optimal pol-
icy derived from environment j (Theorem I); (2) an upper
bound on the estimation error of the action-value function
of an optimal policy learned in S; when executed in target
environment 7 (Lemma 1); (3) Using (1) and (2) an upper
bound on the difference of the optimal action-value function
in the target environment and our GPI-derived action value
function (Theorem 2).

Theorem 1

Let S; and S; be two different source environments with
dissimilar transition dynamics p; and p; respectively. Let
8i; = maxg 4 |ri(s, a)—r;(s,a)|, where r;(.,.) and r;(.,.)
are the reward functions of environment S; and S; respec-
tively. We denote 7 and 7} as optimal policies in S; and

S;. It can be shown that the difference of their action-value
functions is upper bounded as:

Q™ (s,a) — QU (s,a) < 12iijv
VHPi(s,a) _P‘j(s’a)H
(1-=7)
(|jai - a|+||e; - a
(1-7)

+

) , (12)

X
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where Q?’t shows the action-value function in en-

vironment S; by following an optimal policy that

is learned in the environment S; € {Si,...,Sn}.

We also define P;(s,a) = [pi(s']s,a),..]vsess

P;(s,a) = [PJ( '|5 a), . lvses,  Q; =
=

[IgleaXQﬂ(s’ b),..Jvsres, Q (s, D), ..

Ql = [maxQ (5’,b),...

and ||.|| to be 2—norm (Euclidean norm).

maXQ Jvses,

]vs/eg, ~ as the discount factor,
Proof: We provide a sketch of the proof which involves

two key steps. The left side of the inequality (12) can be
rewritten as:

We can prove that (I) < % + ’YHPi - PjH X HQ; -
Q| /(1 =) ana () < £ G

Ql

is available in supplementary material.

) (1 — ), leading to the upper bound. Detailed proof

Theorem 1 uses 6;; as a metric of maximum immediate re-
ward dissimilarities in the environments S; and S;. Clearly,
the higher §,;, the less similar S; and S; are, and the upper
bound will be looser accordingly. This upper bound also

depends on the value of ‘ ‘Pi -P; H that captures the dif-
ference in dynamics of S; and S; - larger the value, looser

-qll[+ Q) -l
incorporates the difference of action-value functions that
are related to both the dynamics and the future discounted
reward in the two environments. Hence, a larger value of
this term implies that S; and S; are expected to produce
different sum of discounted future reward by following their
corresponding policies. Note that if S; = S; (in terms of
both dynamics and reward), the upper bound will vanish to
0 as the two environments are identical. Clearly, our bound
is an extension of the bound in (Barreto et al., 2018) for
environments with dissimilar dynamics. In the special case

the upper bound. However,

of identical environments i.e. when HP’ — PjH = 0, the
two bounds become the same.
We now prove an upper bound on the estimation error of

the action-value function of an optimal policy learned in S;
when executed in the target environment 7 .

Algorithm 2 Successor Features for Dissimilar Environ-
ments.

1: Input:

2: Source environments DSt~ and target observations
DT = {}.

3: Set the amount of noises for source and target o2, o2.

4: SFs of source environments 15”1 yeee ,157”\’ .

5: Feature function ¢(.,.) € R”.

6: Initialise reward mapper weight for target environment
.

7: Output: Optimal policy 7*(s) for the target environ-
ment.

8: while ¢t € steps not terminated do

9: forVSe{Sl,...,SN}do

10: for o’ € Ado

11: xtT:(sha’).

12: GPS({DS,DT}), ¥d = {1,...,D}. /fFit the
GPs with source and target data

13: Calculate K., k. //(Eq 8)

14: d (XZ—)) #m d(xt) vd = {1,...,D}.
/I(Eq. 9)

15: end for

16:  end for

17:  Reconstruct the action-value functions of all
source environments given the target observations
Q’”(st, a) = Y i(sy,d)w,Vd € AV =
{L....N}.

18: ﬂ*(s) = argmax maxQ”(

a’'eA mellsS

19:  Add the new target observation to D7 .

20:  Update the estimation of w based on Eq. (6).

21: end while

7). //Performing GPI

Lemma 1

Let 7}, ...,m5 be N optimal policies for Sy,...,Sy re-

spectively and Q;J = (JJ”; )TffvT denote the action-value
function of an optimal policy learned in S; and executed
in the target environment 7. Let ¢p™ denote the estimated
successor feature function from the combined source and
target observations from S; and 7" as defined in Eq. (9), and
w is the estimated reward mapper for environment 7 by
using loss function in Eq. (6). It can be shown that the dif-
ference of the true action-value function and the estimated
one through successor feature functions and reward mapper,
is bounded as:

Pr(‘QTﬂj (s,a) — ng(s,a)‘ < e(m) Vs, a) >1-4,

where e(m) = /2log(|X|um/d)om.a(x), x€X 4§ €
(0,1), uy, = ”Qénz , m being the number of observations in
environment 7, and x = (s, a). o, (%) is the square root
of posterior variance as defined in Eq. (10).
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Proof: Proof is available in the supplementary material.

Lemma 1 ensures that reconstructing the action-value func-
tion on a new target environment 7 by using ™ and W
can be achieved with a bounded error with high probability.
Essentially, the key term in £(m) is 02, ;(x) that is com-
puted by using K, (see Eq. (8)), which itself incorporates
the modeling noise variance 0. Hence, by increasing 02,
072,% 4(x) will be higher and accordingly the upper bound
will become looser. We note that due to the consistency of
GPs, as m — oo, the uncertainty of predictions tends to 0
(07,.4(%) — 0) and thus £(m) — 0.

We now present our final result that bounds the difference of
the optimal action-value function in the target environment
and our GPI-derived action value function.

Theorem 2

Let S;—; n be N different source environments with dis-
similar transition functions p;—1.. . Let us denote the opti-
mal policy 7 that is defined based on the GPI as:

*

Q7 (s.a), (13)

m(s) € argmax max
acA je{l..N}

~7) ~ N T o . . .
where QWT = (1,[)”-7' ) w7 being the action-value function
of an optimal policy learned in S; and executed in target

environment 7, 'WT; is the estimated successor feature from
the combined source and target observations from S; and
T as defined in Eq. (9), and w7 is the estimated reward
mapper for target environment from Eq. (6). Considering
Lemma 1 and Eq. (13), the difference of optimal action-
value function in the target environment and our GPI-derived
action value function is upper bounded as:

Qr(s0) = @77 (sv0) < 20wy —
'yHPT(s,a) - Pj(s,a)H
* (1—=1)
(- + o)
) (1=
+(21€(_”fy)). (14)

where dmax = maxs q||¢(s,a)||. We also define Py =
[pT(S/|S,(L)7 '“]VS’ES: P] = [pj(8/|s7a/)a;"]VS'€$7 Q;’ =
[I&aj{Q?(slv b)a -~-}Vs’€$a Q; = [Igleaj{Q:J (S/a b)7 "']VS’ES,
Q= [Igleza%@;-" (s',b),...]vses, and y as the discount fac-
tor.

Proof: Proof is available in supplementary material.

In inequality (14), “XIT - ij encodes the dissimilar-

ity of reward functions in target environment 7 and S;,

and £(m) holds the error of action-value reconstruction by
GP-modelled successor features (Lemma 1). Additionally,
NPT =Pl x ([QF — QjI[ +11Q; — QFl)/(1 =) isa
term related to both the dissimilarity of dynamics in environ-
ment j € {1,....N} and the target environment 7, as well
as the expected future reward in these two environments.
We note that Eq. (13) enforces the selection of the best
policy among j € {1,....N} policies, hence the derived
upper bound is only based on the best selected policy among
N source environments.

Theorem 2 is the core of our theoretical analysis that shows
by using N different action-value functions that are ob-
tained by their corresponding successor feature functions
and reward mapper weights, one can still hold an upper
bound on the difference of the optimal policy Q%-(s,a),
and Q7 (s, a), if (s) is selected by GPI as defined in Eq.
(13). As expected, this upper bound is looser when the
norm distance between w7 and w; are higher - i.e. the
reward functions are significantly different. As explained in
Lemma 1, by increasing the amount of noise when model-
ing the source successor feature functions, o, ¢4(x) will be
higher and accordingly the upper bound will become looser
since (m) increases. This is reasonable as increasing og
indicates that source and target environment are significantly
dissimilar. Note that if the environments are exactly similar,
VNP7 —P; [ x (1QF — QI +1Q; — Q) /(1 —v) = 0,
this leads to a similar upper bound in (Barreto et al., 2018).
Further analysis on the obtained upper bound can be found
in supplementary materials.

4. Experiments

We evaluate the performance of our method on 3 bench-
marks: (1) A toy navigation problem, (2) Classic CartPole
control, and (3) The environment introduced by Barreto et
al. (Barreto et al., 2020; 2019). We compare our approach,
Successor Features for Dissimilar Environments (SFDE)
with two related studies: Fast Successor Features (FSF)
(Barreto et al., 2020) and Linear Projection of Successor
Features (LPSF) (Zhang et al., 2017). Additional experi-
ments are available in the supplementary materials. All the
algorithms, including SFDE, are used in two phases: (1)
The first phase is adaptation where we fine-tune the source
successor feature functions using the first 1000 target obser-
vations. This step is method specific. (2) A testing phase
in which we only use the learnt policy and collect reward
without updating the models. For the adaptation phase,
e-greedy based exploration is used, afterwards we set the
exploration rate ¢, = 0 in the testing phase to demonstrate
the effects of transfer from previous environments. The
baseline FSF is not equipped to handle environments with
dissimilar dynamics. We adapt this approach by fine-tuning
the successor feature functions of the source environments



A New Representation of Successor Features for Transfer across Dissimilar Environments

Avg. Reward

_20_

|
N
o

\
o
=

\
o]
S

—100+

—— SFDE  ---- LPSF —— FSF
1
PRCOZMIN. e
M
-I
1
1
1
1
1
1
!
0 2000 4000 6000 8000
Steps

Figure 2. (left) Sample of proposed maze environment with red squares as obstacles with -50 reward and green square as goal with +100
reward. (Right) Obtained results of SFDE and two baselines. The results are averaged over 50 runs. The dashed vertical line demarcates

the adaptation phase.

using the first stored 1000 observations of the target en-
vironment in the adaptation phase. A batch size of 64 is
used at every step 64 < t < 1000 to feed the new target
observations to the previously learned source successor fea-
tures. Once the testing phase starts (¢ > 1000), we stop
fine-tuning of the successor models for the rest of the exper-
iment. For the LPSF baseline, we follow the idea of (Zhang
et al., 2017) by defining a linear relation between the source
and target successor feature - that is there exists a mapping
B=01...8xn such that the following loss function is min-
imised: L (65) = 3,y |17 (%) = B (0| vx €
DT . Intuitively, the best linear projection is found for each
source successor feature function to minimise its distance to
the target successor. We follow the same approach explained
for FSF to feed the target observations in adaptation phase
to N neural networks that each represent the model of i—th
source successor features ¢ = {1,..., N} with Lg loss
function. Each of these N neural networks are MLPs with
no hidden layers that is an equivalent of linear regression in
which the weights of the neural networks are 3;. Likewise,
the best obtained value of 3 in the adaptation phase is used
in the testing phase. We used the same batch size of 64 to
minimise £ loss function for LPSFE. The linearly projected
successor features then used in the GPI framework to ob-
tain the optimal policy. In our approach, we construct the
GP based on the combination of source and target observa-
tions. To this end, 500 randomly sampled observations from
source DS, VS € {S,...,Sx} and all the observations in
DT at every step of the adaptation phase is used. However,
once the testing phase is initiated, the new target observa-
tions are disregarded and previously seen observations from
the target are reused. Further details of implementations are
available in the supplementary material.

4.1. Toy Navigation Problem

The proposed maze problem consists of a 10 x 10 grid and
the agent needs to find the goal in the maze. The agent
can pass through the obstacles but it receives a reward of
—50. It also receives —1 reward for each step and +100
reward for reaching the goal. The action set is defined
as A = {left, right, up, down}. Figure 2 (left) shows an
example of this environment with red squares indicating
obstacles, and the green square as the goal.

A set of 12 policies IIS = {wsl, o ,71'812} is learnt using
generic Q-Learning on randomly generated maze source en-
{M(S A p1 B, MS A pra, Bio) }
as Si,...,S12 in which the location of 25 obstacles
and goal are changed. After obtaining the correspond-
ing policies, successor feature functions of these source
environments are learnt following Algorithm 1. Given
WP . .., ™2 we generate a random target environment
and use the first 1000 observations of adaptation phase as
explained. Following Algorithm 2, GP*'? is constructed
as each step by fitting both source and target observations.
We set 03 = 0.1 and 02 = 0.01 as the modelling noise
and the measurement noise, respectively. Having modelled
the successor features, we then perform GPI by using the
predicted mean as shown in Eq. (9) and (10). To calculate
w, the reward mapper of target environment is calculated
by minimising loss function introduced in Eq. (6). Figure
2 (right) shows the performance of our approach and other
baselines. As expected, our method incorporating the dis-
similarity of environments performs better than the other
two related approaches. Figure 2 shows that LPSF adjusts
the source successor features but it seems to be slower than
SFDE in updating the successor feature functions as a linear
projection may not always be found. It can be seen that
FSF can update the values of successor features to some

vironments



A New Representation of Successor Features for Transfer across Dissimilar Environments

—— SFDE  ---- LPSF —-— FSF
]
i
150 i
o !
5 1251 .
5 i
X 100 [
o L ~
< 75‘ ’./":‘_r" \’v
z5~=71
501 ~ i
!
0 2000 4000

Figure 3. Experiments with CartPole-v0 with Pole_Length =
0.5m in source environment and Pole_Length = 3m in target
environment. The results are averaged over 10 runs. The dashed
vertical line demarcates the adaptation phase.

extent, however, it seems to be less effective than the other 2
approaches. This can be the result of fine-tuning the succes-
sor feature models with significantly different observations
that can be an issue in such scenarios. Note that we have
not used any visual information in this experiment and the
location of agent is translated to (x,y) in the 10 x 10 grid.

4.2. CartPole-v0

In the CartPole problem, we define a source environment
S1 with a learnt policy 75 and a target environment 7. We
incorporate the dissimilarities of dynamics in source and tar-
get by changing the length of the pole from Pole_Length =
0.5m in source, to Pole_Length = 3.0m in the target envi-
ronment. This change impacts the transition probabilities
of the target environment, hence, it can be considered as a
change in dynamics. Similar to the previous experiment, we
use the first 1000 observations in all three methods in a same
manner. At each step, we fit GP' by combination of source
and target observations. We set 0% =0.1,062 =0.01, and
the maximum number of steps in the CartPole is set to 200
in each episode. To translate the image data into states that
can be used in our framework, we used the flattened output
of the last convolution layer as the state of the CartPole en-
vironment. The detailed structure of the proposed network
is available in supplementary materials. Figure 3 shows
the results of this experiment and it can be seen that our
proposed method outperforms both FSF and LPSF by using
the GP-based modelled successor features.

4.3. FSF Environment

‘We use the environment introduced in Barreto et al. (Bar-
reto et al,, 2020) as our final experiment. The pro-
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Figure 4. Results on the environment introduced by FSF. The re-
sults are averaged over 10 runs. The dashed vertical line demar-
cates the adaptation phase.

posed environment is a 10 x 10 grid cells with A =
{left, right, up, down}. There are 10 objects spread across
the grid at all time that the agent can pick up. Once an
object is picked up, another random object will appear in
the grid randomly. Each object belongs to one of two types
(red or blue). At each time step, the agent receives an image
showing its position, the position of objects, and type of
each object (Barreto et al., 2020). Then the agent selects the
proper action to move in a direction. The object is assumed
picked up, if the agent occupies the cell in which the object
presents. In that case, it gets a reward based on the type
of the object and a new object will appear randomly in the
grid.

Following the setting of FSF experiments, we trained the
agent in 2 different source environments with different re-
ward functions and dynamics of the environment. We in-
corporated the dissimilarity of environments by adding a
5% random transition noise to the target environment and
creating a single random terminal state with a negative re-
ward of —1. Figure 4 shows the obtained results on this
problem. Similar to other experiments, our approach seems
to outperform the other two baselines. Interestingly, FSF
outperforms LPSF in adaptation phase, but both methods
approximately converge to the same value of the average
reward.

5. Conclusion

In this paper we proposed a novel transfer learning approach
based on successor features in RL. Our approach is for
the scenarios wherein the source and the target environ-
ments have dissimilar reward functions as well as dissimilar
environment dynamics. We propose the use of Gaussian
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Processes to model the source successor features functions
as noisy measurements of the target successor functions.
We provide a theoretical analysis on the convergence of
our method by proving an upper bound on the error of the
optimal policy. We evaluate our method on 3 benchmark
problems and showed that our method outperform existing
methods.
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