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Abstract

We propose a novel method for federated learn-
ing that is customized specifically to the objective
of a given edge device. In our proposed method,
a server trains a global meta-model by collabo-
rating with devices without actually sharing data.
The trained global meta-model is then personal-
ized locally by each device to meet its specific
objective. Different from the conventional feder-
ated learning setting, training customized models
for each device is hindered by both the inherent
data biases of the various devices, as well as the
requirements imposed by the federated architec-
ture. We propose gradient correction methods
leveraging prior works, and explicitly de-bias the
meta-model in the distributed heterogeneous data
setting to learn personalized device models. We
present convergence guarantees of our method
for strongly convex, convex and nonconvex meta
objectives. We empirically evaluate the perfor-
mance of our method on benchmark datasets and
demonstrate significant communication savings.

1. Introduction

Federated learning (FL) introduced by McMahan et al.
(2017), proposes to leverage local data stored across mas-
sively distributed edge devices to train a prediction model
that matches the performance of a learner with centralized
data. An FL system is composed of a server that coordinates
interactions with edge devices, and refines its model over
several rounds of communication. FL is challenging be-
cause it imposes at least two fundamental constraints during
training. Firstly, the local data itself cannot be shared or
transmitted due to privacy concerns. Secondly, the number
of rounds of server-device interaction, as well as the number
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of devices participating in any round, must be small on ac-
count of limited connectivity and available communication
bandwidth.

Additionally, data stored on the edge devices is statistically
heterogeneous, namely, different devices/users have differ-
ent data. As a result, naively fusing independently trained
device models can result in significant bias and poor perfor-
mance. While a number of previous works (see (Karim-
ireddy et al., 2019)) have proposed methods to overcome the
effects of statistical heterogeneity, the goal of these works
have remained the same, namely, to realize a single model
at termination time, which works as well as a learner with
centralized test data. In particular, the performance is mea-
sured with respect to the combined test data of all of the
devices.

Personalizing Federated Learning to an Edge-Device.
While FL optimizes centralized performance, this metric
may not be meaningful from the user’s perspective. An
end user, after all, will have personal objectives and in-
terests. Therefore, a more suitable metric is to measure
model performance against the user’s custom test data'.
Variability in user objectives include assigning increased
importance to specific classes, variability in user tasks (word
completion for native vs. foreign speakers), and requiring
privacy/anonymity of class predictions.

In this paper, we propose a novel federated training approach
based on meta-learning, which allows for sample-efficient
customization of a centralized model to suit an end user’s
objectives. That meta-learning approaches are well-suited
for our customization scenario is not surprising, and has
been leveraged in prior works (Chen et al., 2018; Jiang et al.,
2019; Fallah et al., 2020). Indeed, in our setup, each user
is associated with a different task, and our goal, as in meta-
learning, is to train a meta-model on a variety of tasks, such
that this model can be rapidly re-purposed to solve new or
existing tasks using only a few training examples.

Challenges. Personalized Federated Learning (PFL)

! As a case in point consider two users, one whose experiences
involve wild animals, while the other is primarily interested in
domestic pets.
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presents two fundamental challenges. First, each client
is associated with a personal task, and tasks across differ-
ent clients exhibit significant statistical variability. In the
conventional approach, such as meta-learning or multi-task
learning, one leverages data across different tasks to build
initial models (meta-model) that serve as a basis to refine
and specialize to the presented task. However, since FL
prohibits data sharing, this approach is no longer feasible.
In this context, Fallah et al. (2020) propose to utilize feder-
ated averaging to overcome the no-data-sharing constraint,
and utilize model-agnostic meta-learning (MAML) (Finn
et al., 2017) to personalize to a specific user. Nevertheless,
it is well-known that federated averaging performs poorly
with statistically heterogeneous data, and results in signifi-
cantly biased models in these contexts. To overcome these
drawbacks, Fallah et al. (2020) impose statistical constraints
on task and dataset variability across devices, which, in
practice, maybe unrealistic.

In contrast, our proposed PFL approach allows for arbitrary
variability in user tasks. To overcome task/dataset biases
during meta-training, we propose a novel federated meta-
learning method, which is based on dynamically modifying
device loss functions in each round, so that the resulting
meta-model is relatively unbiased towards any user. The
proposed dynamic modification of loss is rooted in the rich
theory of distributed optimization (Gabay & Mercier, 1976;
Makhdoumi & Ozdaglar, 2017; Hong et al., 2016; Shamir
et al., 2014), where one attempts to solve a distributed con-
strained problem through sequentially updated penalty func-
tions. We focus on deep neural networks, and consider two
meta-learning approaches: one based on MAML, which
requires no additional parameters for customization, and
the other based on ProtoNet (Snell et al., 2017), where the
meta-model serves as a feature representation to train task
customized classifiers. While MAML-based PFL performs
well in most cases, ProtoNet-based PFL is particularly ef-
fective in cases that require generalization to new tasks,
or cases that require anonymization of class names across
devices. We derive convergence results for our algorithm,
which is agnostic to task heterogeneity across devices in
both full- and partial-participation settings. We also perform
extensive experiments to empirically evaluate our method on
real world datasets, and show that our method significantly
outperforms prior works.

Contributions.

* We propose a new algorithm, PFL, for personalized fed-
erated learning and show its convergence guarantees.

* We propose to extend Proto (Snell et al., 2017) meta
adaptation in the personalized federated learning setup.

* We perform extensive empirical evaluations of PFL, as
well as Proto adaptation and compare it to the baselines.

* During evaluation, we consider test performance of each

user. Based on the individual end-user needs, we observe
performance metrics such as average, best and worst de-
vice performance. We observe that PFL leads to signifi-
cant communication savings.

1.1. Related Work

Federated learning. Federated learning (McMahan et al.,
2017) is a distributed optimization problem where a server
iteratively trains a global model by collaborating with many
devices, without centralizing device data. Federated learn-
ing is a fast moving field; here we focus on closely related
works and refer to Kairouz et al. (2019) for a more detailed
discussion.

Federated learning aims to decrease the number of model
transmissions between the server and the devices (McMahan
etal., 2017; Zhang et al., 2013). The motivation comes from
the resource constraint nature of the devices. In IoT devices,
transmission costs due to communication dominates the
energy consumption (Acar et al., 2020; Wang et al., 2019;
Shamir et al., 2014; Zhu et al., 2019).

The FedAvg (McMahan et al., 2017) algorithm is an exten-
sion of local SGD (Zinkevich et al., 2010), where devices
apply a predefined number of SGD updates on the global
model, and the server averages these device models. Fe-
dAvg provides communication savings if the device datasets
are close to each other. When device data are not identi-
cally distributed, the performance of FedAvg significantly
degrades (Zhao et al., 2018). This degradation is due to
the inconsistency between device level optimization and
global optimization. A substantial amount of work has been
proposed to address this inconsistency. One such line of
research focuses on inexact minimization of device-level
problems (Li et al., 2020a;b). For example, FedProx (Li
et al., 2020a) forces device models to be close to the current
server model using an explicit regularization. Another di-
rection is to change server updates (Reddi et al., 2021; Hsu
et al., 2019). For instance, FedAdam (Reddi et al., 2021)
uses ADAM optimization on the server side, instead of aver-
aging device models. Yet another line of research avoids this
inconsistency by explicitly transferring corrections along
with the server model (Shamir et al., 2014; Karimireddy
et al., 2019). For example, SCAFFOLD (Karimireddy et al.,
2019) defines a gradient state for all devices and transmits
the gradient states as well as the models in each round. Fed-
Dyn (Acar et al., 2021a) proposes dynamic regularization
to align local and global objectives. Our proposed approach
builds on these works and specializes it to the personaliza-
tion setting. In contrast to federated learning schemes where
the server aims to find a global model that performs well
on data from every device, personalized federated learning
seeks to find a meta model on the server which each device
can customize based on the locally available dataset.
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Meta learning. Meta learning is defined as ’learning to learn’
(Thrun & Pratt, 2012). In this concept, the aim of the meta
learner is to learn how to learn new tasks. This paradigm is
motivated from human learning where humans are able to
transfer their experience from previous task instances into
new tasks. Thus, meta learning is thought of as an important
step towards future machine learning research (Lake et al.,
2017). We refer to extensive surveys Vanschoren (2018);
Hospedales et al. (2020) for a detailed discussion and we
discuss closely related work here.

Conceptually, a meta learner learns a new algorithm for
every task. There are many efforts to formulate the meta
learning problem. One line of research proposes a non para-
metric meta adaptation (Vinyals et al., 2016; Snell et al.,
2017). For instance, prototypical adaptation (Snell et al.,
2017) is an extension of the non parametric k nearest neigh-
bor method, where adaptation is based on the class clusters
obtained using the available training dataset of the task. An-
other line of research views meta adaptation as a black box
optimization and finds the adaptation based on the state
of the meta learner (Santoro et al., 2016; Mishra et al.,
2017; Ravi & Larochelle, 2017). For example, in (Ravi &
Larochelle, 2017), the authors propose a meta algorithm in
which the meta adaptation is obtained from the current state
of a meta LSTM. Lastly, there are works in which the adap-
tion is a fixed optimization procedure and the meta learning
problem can be optimized using standard gradient descent
techniques (Finn et al., 2017; Antoniou et al., 2018; Li et al.,
2017). The most popular adaptation is MAML (Finn et al.,
2017). In MAML, the meta model is customized by having
one gradient descent update on the available task training
data. Different from standard meta learning, personalized
federated learning extends meta learning to the distributed
learning scenario.

Personalized federated learning. We focus on customizing
federated learning toward the end user objective, which can
be termed federated meta learning (Chen et al., 2018) or
personalized federated learning (Fallah et al., 2020). This
relatively new concept extends federated learning to the
scenario where the server is required to find a good meta
model in which a simple transformation using device data
leads to a well performing personalized device model. For
instance, Per-FedAvg (Fallah et al., 2020) is proposed where
the MAML meta transformation is used for personalization
and the server model is optimized with FedAvg. Along
the same lines (Jiang et al., 2019) proposes to use FedAvg,
but use SGD with momentum for their updates. Recently,
FedFomo (Zhang et al., 2021) is proposed where there are
n server meta models. Transmitting n models increases the
communication costs of one round. Different from these
methods, we propose PFL as a solution that has one server
meta model, significantly reduces communication costs,
and unlike FedAvg does not require strong constraints on

statistical heterogeneity.

Personalized federated learning is related to online meta
learning (Finn et al., 2019; Zhuang et al., 2020; Acar
et al.,, 2021b). In online meta learning, the learner pre-
dicts on a new task, but has the benefit of past experiences,
which allows for adaptation to the new task. The similarity
stems from considering the large device limit, and when
data/device is small. In this situation, the latency in terms
of revisits to a specific device increases, and we are in the
situation of online meta-learning. Extending personalized
federated learning to online personalized federated learning
is a promising future direction.

2. Method

Our setting consists of one server and m devices. The
server can send and receive models from devices without
sharing data instances. In device ¢, there are N; datapoints
with features € X and labels y € ) which are drawn
from a device specific distribution (x,y) ~ p; denoted as
D; = {(z] 7yf)}§\/:71 Each device customizes a device
specific model from the server model using their dataset.
This transformation for device i is modeled as 7} : R* —
R? where w; = T;(w) corresponds to the personalized
model transformed from meta model w for device 7. We
define our objective as,

arg min
weR

a1 _ _
F(w) & — S fi@)|, Wi =Ti(w)
i€[m)]
(OPT)

where w is the parameter set of the NN used, w; is the per-
sonalized model for device 4, f; = Etg yyp, L ((2,y); w)
is the loss obtained at device ¢ and L is the loss function
with respect to one data tuple.

Transformation function. Our objective is a generic objec-
tive and depends on the transformation function denoted as
T; for device i. There are different proposed transformation
functions within meta learning area. For example, MAML
transformation (Finn et al., 2017) is introduced as,

Ti(w) =w— ani(w)

where 7 is meta learning rate and fi is the em-
pirical loss function of the dateset as f;(w) =
=L ((acf, yl); w). We can summarize MAML as
doing one gradient descent update to personalize the meta
model. Per-FedAvg (Fallah et al., 2020) extends MAML
transformation to personalized federated learning where it

uses MAML meta transformation with FedAvg optimization
(McMabhan et al., 2017).

We propose to use another meta transformation named as
prototypical adaptation (Snell et al., 2017). Prototypical
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Figure 1. Toy example with three devices in a two dimensional
parameter space. Only device 1 is active in the current round. In
Fallah et al. (2020) algorithm, the model is pulled towards device
1’s local minima due to the bias discrepancy. The debiasing and
the correct unbiased directions are needed for convergence.

transformation constructs class representations using the
meta model and the data on the device where a representa-
tion of a feature  with respect to model w is defined as
Tw(x). For each class label k € ), the class representation
is obtained by averaging the representations of this class
instances as,

i 1
o = @ Z 7w ()

mESéC

where S¥ = {(z,y) : y = k,(x,y) € D;} is the set
of training data instances that are labeled as k in device .
Prototypical transformation is a non parametric adaptation
and the customized device model labels the test data with
the closest class representation as,

arg glelg d(chF, rw(z))

where w is the meta model, x is a test point and d(., .) is a
distance function.

Device Bias in Fallah et al. (2020). Fallah et al. (2020)
adapts MAML transformation and applies FedAvg algo-
rithm on transformed local objectives. Namely, in each
communication round, the server sends the current server
meta model to the participating devices. Each active device
runs SGD updates on the server model using gradient of
the device specific meta loss, V f; o T; where T; is MAML
adaptation. Then, the device meta model is transmitted to
the server and the received models are averaged.

Device Bias. As we noted in OPT, we are interested
in solving the average meta loss functions of all devices.
However, devices do not have access to the global loss,
they have access to their meta loss function. This leads

to a misalignment between the local meta losses and the
global loss, because their optimal solutions are different, i.e.,
min,, f; o T;(w) # min,, F'(w). Consequently, local bias
exhibited by device meta losses leads to global convergence
issues. To avoid these issues, Fallah et al. (2020) proposes
to limit the variability among device meta objectives.

A Toy Example. We visualize device biases for a three device
example, where the loss functions are parameterized in a
two dimensional space. Figure 1 shows contour plots of
each device meta functions, f; o T; as well as the global
loss, F'. The corresponding optimal meta models are shown
with circles. We denote the current server model with x
mark. Consider the case where only device 1 is active in the
current round.

According to Fallah et al. (2020), the server sends the current
model to device 1. The model is updated based on the
local gradients, V f1 o T}. As seen in the plot, the gradient
pulls the server model in a different direction of the global
minima. This is an example of the bias discrepancy as
such the correct gradient information, shown as unbiased
direction is different from the device gradient information.
The discrepancy forces Fallah et al. (2020) to control the
distance between device minima and the global minima for
convergence.

We propose the concept of debiasing, where we explicitly
debias the local objectives and orient the local loss towards
the global objective as shown with red arrows in the figure 1.

Debiasing Local Objectives. We debias the local objective
fi o T; to the first-order, and introduce a quadratic regular-
izer. To build intuition, let us consider the following local
objective,

min ;o) (w) — (VfieTi(w") w) + 5w —w | (1)

where « is a hyperparameter and w™ is a stationary point
of OPT. For a solution, w’, we can write the first order
condition as V f; o T;(w’) =V fioT;(w*) + o (w' — w*) =
0. We see that w™* satisfies the condition. As such the
objective is no longer biased towards the device minima. In
particular, (V f; o T;(w*), w) term debiases the loss f; o T;
so that the gradient is not necessarily pointed towards the
device minima. However, this is not strictly feasible, since
this objective would require that the devices have access to
the optimal solution w*.

A Feasible Surrogate. We consider the server meta model
w? in round communication ¢ as a surrogate for w*, which
results in the following objective,

Hgnfi oT;(w) — <Vfi OTi(wt),w> + % Hw - th2

We note that if the server model converges to a stationary
point of OPT, then we recover the modified objective as in 1.
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Algorithm 1 Personalized Federated Learning, PFL

Algorithm 2 PFL Subroutines

Input: 7, w!, g} = g' =0, K, 3, a
fort=1,2,... T do
Sample active device set P, C
for i € P; do
Receive w' from server (& g* in PFLScaf),
R!(w)=Regularizer(w, w’, gt) (& g in PFLScaf),
wit git! = Update(w?, K, 8, D;, RY)
Send w’ ™t back to server (& g“rl in PFLScaf),
end for
Freeze stale devices 'wf“*wz, gf“*gﬁ Vi ¢ Py
Server
PFLDyn: w'*! = Update, ({w}"}icp,).
PFLScaf: w'*!, g**'=Update, ({w!™", g\ ™ }icp,).
end for

[m] of P devices,

Different from the previous objective, devices can construct
the current objective since they receive the server model.
However, the objective does not have the correct direction
for the global loss because we observe that w? is among one
of the stationary points of the objective. This freezes the
update so that device models are stuck at the server model.
To circumvent this issue, we consider,

min f; o Tj(w) — (V fi o Ti(w'), w)

1
i <m ‘Z[Z] ijoTj<wt>,w> + 5 o= @
JEmMm

where the gradient of the global loss, OPT, appears as a
linear term. In Figure 1, the direction of these two terms are
shown in red arrows where the first linear term debiases the
current loss and the second linear term results in the correct
gradient direction.

Devices can construct the first linear term and the quadratic
term with the server model. However, the second linear
term depends on all device losses so that it is still not feasi-
ble. As a surrogate for this term, we transmit the gradient
information of the current server meta model to the server.
The server aggregates the gradient information from all
devices and constructs the second term. Finally, devices
need the server to send the average gradient information,
L > jepm Vio Tj(w"), along with the server model. In
summary, devices and the server communicates two models
to construct this objective.

An Alternative Surrogate. Instead of using w’ model in the
linear terms, we can as well use the recent device models,
wg, to construct them. Then, the objective in Eq. 2 becomes,

<Vf,oT >

« 112
< > Vol (wh), >+2||w—'w (e

JE[mM]

min fz'OTi( )

function Regularizer(w, w’, gt) (& g in PFLScaf):
PFLDyn: R!(w) = — (w,g) + 5 |w — w'|%,
PFLScaf: Ri(w) = (w, —g! + g*),
Return R (w)
end function
function Update(w', K, 3, D;, R!):
Set th w?,
fork=1,2,... K do
Get two minibatches D¥, D¥’ randomly from D;,
Set customized model wt+1 Ti(wit!, DF),

Update meta model
wiid=wtf g (Vi@ D+ IR (w!]))

end for
Setwit! = witl
1, K+1°
PFLDyn.gt'H—gl (w§+1, B &V fioTy(with),
PFLScaf'g —gZ gi— KB (wt“—w ) ~V fioT;(w?),

t+1

Return 'wtﬂ, g,

end function
function Update, ({w!*'}icp,):
9" =g —ag (Liep, wi" -~ w'),
t+1 1 t+1 1 _t+1
w = (W 2iep, Wi ) ~ a9
Return w'*!
end function
function Update, ({w!*", g!*'}icp,):
_ 1 1
gt =g'+ 5 (Ciep, 9 —90)

t+1 [ 1 t+1
wr = (m\ >iep, Wi )
Return w't!, gt+!
end function

We note that if the device models, fwﬁs, converge to the
stationary point of OPT, we still recover the proposed the
modification as in Eq. 1. This seemingly subtle modifica-
tion allows the server to transmit only one model instead
of two models. This extension is further discussed in the
subsequent section.

PFL Algorithms. We propose to use two recent algorithms
as SCAFFOLD and FedDyn to debias the device level meta
optimization.

Learning Structure. The general structure of PFL is given in
Algorithm 1. In the beginning of each communication round,
P devices are selected uniformly at random as active device
set P;. The current server meta model, w?, is sent to each
of these active devices. Devices construct the regularizer
depending on the objectives as in Eq. 2 or 3 where g!
corresponds to the gradient of device level meta loss.

We continue device level optimization with a subroutine
consisting of SGD steps and the constructed regularizer
as described in Update method in Algorithm 2. First, we
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start from the server model wﬁl = w!. To realize unbi-

ased gradient estimates between the personalized model and
the meta loss, we randomly draw two minibatches of data
(D¥, D¥") from device dataset D;. We obtain a customized

device model as w} ' = Ty(w fJ,;l, DF) where the transfor-

mation function personahzes the current meta model 'uJH'1

using the minibatch of D¥. Then, we perform one step SGD
update on the regularized empirical loss with respect to the
second minibatch as,

t+1 __ t+1

wiil =wi =3 (Vi@ DF )+ VRI(w!f)))

where f;(w@ f*,;l,Dk ) is the empirical loss with the cus-

tomized model @" ! on minibatch D¥" and 3 is the learn-

ing rate. After performing K SGD updates, the subroutine

ends and we set the device meta model as w! ™! = 'wf}l 41

By definition, the regularizer, R!(w), depends on the cur-
rent server model and the current gradient information, gﬁ.
We update the gradient information for the next round de-
pending on the objective as in Eq. 2 or 3.

After solving the device level optimization, active devices
transmit the trained model 'w'“rl back to the server for ag-
gregation. On the other hand, mactive devices do not receive
the current model and freeze their local gradients and local
models to be their past values. We note that we communi-
cate the local gradient information along with the trained
model if we use the objective in Eq. 2.

PFLDyn Algorithm. PFLDyn algorithm is based on the local
objective as in Eq. 3 which is an extension of FedDyn to
personalized federated learning.

The server integrates the global gradient information to the
server model as explained in Update;. Since the server
meta model already has the global gradient information, de-
vices do not need extra tranmsmission of the global gradient
and they construct the regularizer as shown in Regularizer
method in Algorithm 2. In PFLDyn, devices communicate
only device models.

PFLScaf Algorithm. Using local objective as in Eq. 2,
we can get to PFLScaf algorithm which is an extension of
SCAFFOLD to personalized federated learning.

The server obtains the device models and device gradients
from the active devices. It then calculates the global gradient
and the server meta model as shown in Update,. The server
meta model and the global gradient are transmitted to the
devices. Devices correct the biased gradient of the local loss
with global gradient information as described in Regularizer
method in Algorithm 2. Different from PFLDyn, PFLScaf
communicates the models as well as gradient information.

Customized Transformations. In passing we point out that
our proposed method allows for arbitrary transformations

at the devices. This is important from the perspective that
it allows for adaptation to new tasks as well as for scaling
complexity of the customized classifier to the amount of
available sample data.

Intuitive Justification. The optimal meta model that solves
OPT satisfies the first order condition as,

vazij =0,

w; = T;(w").

It is important to highlight the fact that the gradient of the
individual device level meta objectives are not necessarily
0 .ie (Vfi(w]) # 0). Indeed, were this to be the case,
it would imply that fully optimizing device meta models
would lead to device specific biases in the meta-model. PFL
proposes to sequentially modify device empirical risk func-
tions to eliminate such data-specific bias. The fact that this

is possible is justified in the following Proposition 1.

Proposition 1. For sufficiently large K, if the device meta
models in Algorithm PFLDyn converge, they converge to
the optimal meta model as,

lim wt = w®

= w;"
t—o0

=w" Vi € [m],
where 3, Vi (W]) = 0, w; = T;(w”).

2.1. Analysis of PFL

In this section, we present convergence guarantees for PFL-
Dyn Algorithm for convex and nonconvex cases. Conver-
gence rate analysis of PFLScaf Algorithm is mainly similar
so we omit it here. In this context, we bound the number of
communication rounds required to achieve ¢ error in OPT
for convex functions and first-order stationarity condition
for nonconvex functions. For simplicity we assume that
the number of SGD steps, K, is sufficiently large such that,
in each round, whenever a device is active, the solution
returned is a stationary point of the operative customized
loss at that time. In particular, say device, i € P; C [m] is
active at time ¢ € [T'], then the operative customized loss is
described by ff(w) = f;(w) + R (w) where w = T;(w),
and in this case we assume that K is sufficiently large to
render, V f!(w!™!)=0. While this assumption may appear
impractical, we note that, uniformly across all of our ex-
periments, for small and large-scale datasets, we found that
the norm of V f}(w!™!) is negligible relative to the size
of w for K =~ 50. Furthermore, note that our proofs can
be extended, and the resulting bounds suffer an additional
variance term, which approaches zero with K.

Centralized Competitor. The centralized meta model w*
minimizes OPT with access to all device datasets. Since
Algorithm 1 does not share data among devices, we charac-
terize its performance with the number of communication
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rounds required to achieve e difference relative to perfor-
mance of centralized learner minimizing OPT, namely,

E[F(wg,)] — F(w*) <, (4)

where wy), is the meta model Algorithm 1 finds after T
communication rounds, w* is the optimal meta model and
expectation is with respect to randomness due to active
device set at each round (P,;) . While the statement 4 is
tractable for convex {f; o T;} functions, for nonconvex
functions, following convention, we state the convergence
as the number of communication rounds required to achieve
a stationary point of OPT with e error as,

E||[VF (w}y)]" <e 5)

Based on convex and nonconvex convergence objectives,
we state our theorem as,

Theorem 1. For a suitably chosen o € R, PFLDyn Algo-
rithm, for sufficiently large K, returns an expected error
less than € in T communication rounds as,

s Convex and L smooth { f; o T; };c[m) functions,

r-o(ty 0+ 1)

* Nonconvex and L smooth { f; o T} }c[m) functions,

T=0 (1 (L%Al + LQAQ)) ,

where D = ||w' | w “=argmin F w),

(
G=0 Zicim IV fi (@) |?, @} ( *),
A=F(w') — F(w*), A2:7 Zle[m] |w! —

1||2

The expected error is defined as in Eq. 4 and in Eq. 5 for
convex and nonvonex functions respectively. The expectation
is over the randomness of device participation.

Theorem 1 shows that with sufficient number of iterations,
Algorithm 1 reaches to an expected e error for convex and
nonconvex device level meta function as in relations Eq.
4 and 5 respectively. We see the number of communica-
tion rounds to achieve expected e error scales with % for
both convex and nonconvex settings. We present results for
strongly convex functions in the supplementary section.

3. Experiments

Our goal in this section is to tabulate the performance of
PFL and its variants against the state-of-art algorithms on
benchmark datasets. We sample device data to synthesize
various degrees of statistical data heterogeneity and task
diversity among devices. We then report performance and

tabulate our results against several metrics including oracle
performance (centralized data), average customization per-
formance, best and worst device customization. For each of
these, we report the number of model transmissions required
by PFL to achieve target accuracy of the competitor.

Methods. We evaluate PFL variants, namely, PFLDyn
(Proto) and PFLScaf (Proto) that use Proto adaptation; PFL-
Dyn (MAML) and PFLScaf (MAML) that use MAML adap-
tation and personalized FedAvg (Proto) that uses proto adap-
tation, P-Avg (Proto). We compare our methods to PerFe-
dAvg (Fallah et al., 2020) as well as their agnostic (no
personalization) counterparts: FedAvg and no PFL variants.
Observe that prior works in this context (Chen et al., 2018;
Jiang et al., 2019) are essentially those that appear in Fallah
et al. (2020), and for this reason we present Fallah et al.
(2020)’s method and the vanilla FedAvg.

We first start with a summary datasets and models used in
this section and we refer to Appendix A.l for details of
the empirical setup. We then continue how we construct
diverse device datasets that reflects heterogeneity among
devices. Then, we explain the metrics and measures we use
to compare the methods. Finally, we present our findings.

Datasets & Models. We use popular datasets with standard
train/test splits such as CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009). As models, we use a CNN architecture that
has two convolutional layers with two max pooling layers
followed by two fully connected layers and a final soft-
max layer. We implement methods in PyTorch framework
(Paszke et al., 2019) and use Higer library (Grefenstette
et al., 2019) for MAML adaptation.

Diverse FL datasets. Since heterogeneous device data dis-
tribution is a key challenge in customized federated learning,
we perform our experiments with highly heterogeneous de-
vice settings. Following Fallah et al. (2020), we model
task and data heterogeneity level of a federated setting in
terms of distributional distance between device dataset joint
distributions p; (x, y) such as total variation (TV) distance.
We propose two different ways of inducing divergent task
dataset constructions across devices.

Active Class Induced Diversity (ACID). In this setting, we
first assign a fixed sized class list to each device in which
the size of the class list is small. After selecting the classes,
train/test data of each device is randomly constructed from
the actual train/test data splits without replacement accord-
ing to the class lists. For instance, in CIFAR-100 dataset,
we investigate a setting with 100 devices where we fix the
number of classes in each device to be 5. Since there are
overall 100 classes and we limit number of classes for each
device to 5, we have many devices where each of them have
strictly different classes. This results in large TV distance
across devices since there is minimal class overlap. We also
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Table 1. The number of model transmissions relative to one round of Fallah et al. (2020) required to reach the target test accuracy for the
average level personalization performance in the Active Class Induced Diversity (ACID) scenario. Target accuracies are selected among
the highest accuracy of our methods and the highest accuracy of Fallah et al. (2020). The methods without personalization are omitted due
to their poor performance levels. The best method is highlighted and the gain with respect to Fallah et al. (2020) method is shown.

[ Dataset | Accuracy | Fallahetal. (2020) [ PFLDyn (Proto) PFLDyn (MAML) PFLScaf (Proto) PFLScaf (MAML) P-Avg (Proto) | Gain |
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experiment with increasing and decreasing the number of
classes per device, and these experiments point to how PFL
handles different levels of task diversity.

Anonymous Label Induced Diversity (ALID). Similar to
ACID, we again choose a fixed number of classes for each
device and construct device datasets. For each device, we
then randomly permute class indices, so that a class index in
one device has no relationship with another device. Clearly
the TV distance even when each device has all of the classes
is large in this situation. Our motivation for this study stems
from practical privacy concerns in federated learning, where
devices may not wish to reveal class information but would
still want to benefit from federated training.

Performance metrics. PFL minimizes the average per-
formance (Eq. OPT) of the personalized models among
devices.

Pointwise Metric. While average performance is important,
an end-user is interested on her own dataset. It is important
to tabulate pointwise device performance. For this reason
we also report the best and worst performing devices.

Relative Target Accuracy. We compare our methods against
competing methods in terms of the required number of trans-
mitted models relative to one communication round of Fal-
lah et al. (2020). This is equal to the number of commu-
nication rounds for all methods except PFLScaf variants.
PFLScaf variants communicate two models in each com-
munication round, so we report 2x of the communication
rounds for PFLScaf variants. In all cases since one of the
PFL variants dominates our competitors, we report the ratio
of the number of transmitted models required between our
method and the baseline as a measure of gain. If a method
can not reach to the target in the allowed rounds, we mark
the number with > sign.

Oracle Accuracy. In Section 2.1 we derived convergence
guarantees with respect to an oracle that has centralized data
access and optimizes Eq. OPT accordingly. In this measure,

we report the number of communication rounds required to
get close to the target accuracy of an oracle.

Fartial Participation. Following federated learning settings,
we tested the methods with 100 devices where 10% of them
are active at each round. For CIFAR-10 and CIFAR-100, we
considered both ACID and ALID with 3, 5 and 7 classes per
device schemes. We refer to Appendix A.1 for additional
experimental details.

Analysis and Discussions. Table 1 shows the gain com-
pared to Fallah et al. (2020) method for various settings of
3,5 and 7 classes per devices for both datasets in the ACID
setting. Similarly, Table 2 demonstrates the device perfor-
mances for the ALID scenario. The convergence curves
as well as the lowest and the highest level personalization
results are given Appendix A.1.

Personalization is needed in both ACID and ALID scenar-
ios. As seen in Figure 4 and 5, no personalization baselines
converge to substantially lower average test accuracy in
the ACID scenario. Furthermore, these methods predict
the classes randomly in the ALID scenario due to the la-
bel anonymity, which in turn indicates the need of person-
alization. Thus, the results of PFL and FedAvg without
personalization are not tabulated in tables due to their non-
comparable performance.

PFLDyn (Proto) leads to significant savings in both ACID
and ALID scenarios. We observe that PFLDyn using Proto
adaptation reaches the target accuracy faster than all the
other methods on the average device performance metric in
Table 1 and 2. For instance, in CIFAR-10, ACID 7 classes
per device setting, PFLDyn (Proto) leads to more than 5 x
communication savings to achieve the same level of perfor-
mance compared to Fallah et al. (2020) method. This effect
is also seen in Figure 2 where PFLDyn (Proto) converges
faster and to a higher point than Fallah et al. (2020).

PFL based optimization outperforms FedAvg based opti-
mization regardless of adaption function (MAML or Proto).
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Table 2. The number of model transmissions relative to one round of Fallah et al. (2020) required to reach the target test accuracy for the
average level personalization performance in the Anonymous Label Induced Diversity (ALID) scenario. Target accuracies are selected
among the highest accuracy of our methods and the highest accuracy of Fallah et al. (2020). The methods without personalization are
omitted due to their poor performance levels. The best method is highlighted and gain with respect to Fallah et al. (2020) method is shown.

[ Dataset | Accuracy | Fallahetal. (2020) [ PFLDyn (Proto) PFLDyn (MAML) PFLScaf (Proto) PFLScaf (MAML) P-Avg (Proto) | Gain |
3 Classes per Device
90.1 >1000 109 970 290 >1000 169 >9.2x
CIFAR-10 87.9 792 73 323 184 520 95 10.8x
89.8 >1000 156 849 406 >1000 390 >6.4x
CIFAR-100 937 085 53 229 118 656 83 18.6x
5 Classes per Device
87.5 >1000 161 846 452 >1000 341 >6.2%
CIFAR-10 0% sS4 54 a3 126 296 64 9.5x
83.9 >1000 203 520 296 >1000 233 >4.9%
CIFAR-100 | 27 083 100 177 146 680 87 11.3x
7 Classes per Device
86.7 >1000 224 911 574 >1000 455 >4.5%
. 76.3 966 57 86 120 292 59 16.9x
71.5 >1000 158 568 228 >1000 170 >6.3%
CIFAR-IO0 | 683 960 58 I51 82 432 58 16.6x

As shown in Table 1 and 2, the PFL based methods con-
verge to the target accuracy with fewer number of model
transmissions in nearly all the experiments. As seen in Fig-
ure 2 and 3, PFL methods achieve a higher test accuracy
compared to Fallah et al. (2020). We can infer that PFL is
capable of debiasing meta-model updates at the server al-
lowing for superior device personalization. Thus, PFL leads
to a faster and robust convergence than FedAvg regardless
of the adaption function.

PFL improves the performance of the lowest level personal-
ization. In addition to the average test accuracy among all
devices, PFL based methods converges faster than Fallah
et al. (2020) even for the lowest level performing devices
in both ACID and ALID scenarios as shown in Table 3 and
4. PFL improves the performance by finding a better meta
model for personalization among all devices. In particu-
larly, the savings of PFL on the average device performance
doesn’t sacrifice the performance of a subset of devices.

PFL achieves centralized performance. The centralized per-
formance for CIFAR-10, 5 classes per device ACID and
ALID using Proto adaptation is 89.8% and 90% respec-
tively. Based on Table 1 and 2 we see that PFLDyn (Proto)
achieves near the centralized performance around 300 com-
munication rounds. Similarly, the centralized performance
for CIFAR-100, 5 classes per device ACID setting using
Proto adaptation is 89.7% . PFLDyn (Proto) achieves near
centralized performance within 400 communication rounds
without actually sharing device data.

Proto adaptation is robust to label anonymity. The Proto-
based adaptation demonstrates similar convergence perfor-
mance in the ALID scenario with anonymous labels com-
pared to the ACID scenario. In contrast, the performance of
the MAML-based adaption (PFLDyn, PFLScaf and (Fallah
et al., 2020)) degrades significantly in the ALID scenario.
According to Figure 2 and 3, the convergence curves of
methods using the Proto adaption are similar in the ACID
and ALID scenarios. However, the MAML-based meth-

ods converge to significantly lower average test accuracy.
In addition, the same observation can be found in Table 1
and 2. For instance, in the CIFAR-10 5 classes setting, the
Proto-based models (PFLDyn, PFLScaf and P-Avg) require
161, 452 and 341 communication rounds respectively to
achieve the average test accuracy 87.5% in the ALID sce-
nario, while similarly require 163, 436 and 286 rounds to
achieve 87.6% in the ACID scenario. But Fallah et al. (2020)
can no longer achieve such an accuracy level within 1000
rounds in the ALID scenario as in the ACID scenario. Thus,
the Proto-based adaption is more robust than the MAML-
based adaption in more strictly privacy-preserving scenario
when the labels are anonymous among devices.

4. Conclusion

We propose a novel method PFL in federated learning with
personalized user objectives. In this setting, a server trains a
meta model in which a small adaptation using available data
leads to a high performance for the corresponding device.
Prior works propose solutions using FedAvg method with
the personalized objective. We point out that non identical
distributions among devices cause different optimal meta
models for devices and this leads to suboptimal results if
FedAvg is used. Different from the recent work, PFL de-
biases the meta-model, so that each device can be effectively
customized towards its objective. We analyse PFL both
theoretically and empirically show that it leads to significant
communication savings compared to the competitors.
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