
Supplementary Material
f -Domain-Adversarial Learning: Theory and Algorithms

A. Divergences between probability measures
As explained above, the difference term between source and target domains is important in bounding the target loss. We now
provide more details about theH∆H-divergence and f -divergences that are used to compare both domains.

H∆H-divergence TheH-divergence is a restriction of total variation. For binary classification, define I(h) := {x ∈ X :
h(x) = 1}, then theH-divergence between two measures µ and ν given the hypothesis classH is (Ben-David et al., 2010a):

dH(µ, ν) = 2 sup
h∈H
|µ(I(h))− ν(I(h))|. (A.1)

Define H∆H := {h ⊕ h′ : h, h′ ∈ H} (⊕: XOR), then dH∆H(µ, ν) can be used to bound the difference between the
source and target errors. H∆H divergence has been extended to general loss functions (Mansour et al., 2009) and marginal
disparity discrepancy (Zhang et al., 2019).

f -divergence Given two measures µ and ν with µ� ν (µ absolute continuous w.r.t. ν), the f -divergence Dφ(µ||ν) is
defined as (Csiszár, 1967; Ali & Silvey, 1966):

Dφ(µ ‖ ν) =

∫
φ

(
dµ

dν

)
dν, (A.2)

where dµ/dν is known as the Radon–Nikodym derivative (e.g. Billingsley, 2008). Assume φ is convex and lower semi-
continuous, then from the Fenchel–Moreau theorem, φ∗∗ = φ, with φ∗ known as the Fenchel conjugate of φ:

φ∗(y) = sup
x∈domφ

〈x,y〉 − φ(x), (A.3)

which is convex since it is a supremum of an affine function. In order for x to take the supremum, it is necessary and
sufficient that y ∈ ∂φ(x) using the stationarity condition. Therefore, with (A.2) and (A.3), Dφ(µ ‖ ν) can be written as:

Dφ(µ ‖ ν) = sup
T∈T

EX∼µ[T (X)]− EZ∼ν [φ∗(T (Z))], (A.4)

where T = {T : T is a measurable function and T : X → domφ∗}. In practice we restrict T to a subset as in Definition 2.
For different choices of φ see Table 8.

(Nguyen et al., 2010) derive a general variational method to estimate f -divergences given only samples. (Nowozin et al.,
2016) extend their method from merely estimating a divergence for a fixed model to estimating model parameters. While
our method builds on this variational formulation, we use it in the context of domain adaptation.

B. Proofs
In this section, we provide the proofs for the different theorems and lemmas:

Theorem 1. If `(x, y) = |h(x)− y| andH is a class of functions, then for any h ∈ H we have:

R`T (h) ≤ R`S(h) +DTV(Ps‖Pt)

+ min{Ex∼Ps [|ft(x)− fs(x)|],Ex∼Pt [|ft(x)− fs(x)|]}. (3.1)



f -Domain-Adversarial Learning: Theory and Algorithms

Divergence φ(x) φ∗(t) φ′(1) g(x)

MDD x log γx
1+γx

+ 1
γ
log 1

1+γx
− log(1− et)/γ log γ

1+γ
log x

Kullback-Leibler (KL) x log x exp(t− 1) 1 x
Reverse KL (KL-rev) - log x -1− log(−t) −1 − expx
Jensen-Shannon (JS) -(x+ 1) log 1+x

2
+ x log x - log(2− et) 0 log 2

1+exp(−x)
Pearson χ2 (x− 1)2 t2/4 + t 0 x
Squared Hellinger (SH) (

√
x− 1)2 t

1−t 0 1− expx

γ-weighted Pearson χ2 (γx− 1)2/γ (t2/4 + t)/γ 0 x

Neynman χ2 (1−x)2
x

2− 2
√
1− t 0 1− expx

γ-weighted total variation 1
2γ
|γx− 1| (t/γ)1−1/2≤t≤1/2 [−1/2, 1/2] 1

2
tanhx

Total Variation (TV) 1
2
|x− 1| 1−1/2≤t≤1/2 [−1/2, 1/2] 1

2
tanhx

Table 8. Popular f -divergences, their conjugate functions and choices of g. We take l̂(a, b) = g(bargmax a).

Proof. Rewriting the target loss we have:

R`T (h) = R`T (h)−R`S(h, ft) +R`S(h, ft)−R`S(h) +R`S(h),

≤ R`S(h) + |R`S(h)−R`S(h, ft)|+ |R`T (h)−R`S(h, ft)|

where:

|R`S(h)−R`S(h, ft)| = |R`S(h, fs)−R`S(h, ft)|
= |Ex∼Ps [|h(x)− ft(x)| − |h(x)− fs(x)|]|
≤ Ex∼Ps [|ft(x)− fs(x)|]

and:

|R`T (h)−R`S(h, ft)| = |R`T (h, ft)−R`S(h, ft)|

≤
∫
|pt(x)− ps(x)| · |h(x)− ft(x)|dx

≤
∫
|
( pt(x)

ps(x)
− 1
)
ps(x)|dx = Dφ(Ps||Pt)

with φ(x) = |x− 1| which represents the total divergence.

Lemma 1 (lower bound). For any two functions h,h′ inH, we have:

|R`S(h, h′)−Rφ
∗◦`
T (h, h′)| ≤ Dφh,H(Ps||Pt) ≤ DφH(Ps||Pt)

≤ Dφ(Ps||Pt).
(3.4)

Proof.

DφH(Ps||Pt) = sup
h∈H

Dφh,H(Ps||Pt) ≥ Dφh,H(Ps||Pt) (B.1)

= sup
h′∈H

|Ex∼Ps [`(h(x), h′(x))]− Ex∼Pt [φ
∗(`(h(x), h′(x)))]| (B.2)

≥ |Ex∼Ps [`(h(x), h′(x))]− Ex∼Pt [φ
∗(`(h(x), h′(x)))]| (B.3)

= |R`S(h, h′)−Rφ
∗◦`
T (h, h′)|. (B.4)

For the rightmost inequality in (3.4), it is well-known that f -divergence Dφ is nonnegative (e.g. Sason & Verdú, 2016), and
thus

Dφ(Ps‖Pt) = sup
T∈T
|Ex∼PsT (x)− Ex∼Ptφ

∗(T (x))|. (B.5)



f -Domain-Adversarial Learning: Theory and Algorithms

Restricting T to T̂ as in Definition 2 we obtain Dφ(Ps‖Pt) ≥ DφH(Ps||Pt).

Lemma 2. Suppose ` : Y × Y → [0, 1], φ∗ L-Lipschitz continuous, and [0, 1] ⊂ domφ∗. Let S and T be two empirical
distributions corresponding to datasets containing n data points sampled i.i.d. from Ps and Pt, respectively. Let us note R
the Rademacher complexity of a given class of functions, and ` ◦ H := {x 7→ `(h(x), h′(x)) : h, h′ ∈ H}. ∀δ ∈ (0, 1), we
have with probability of at least 1− δ:

|Dφh,H(Ps||Pt)− Dφh,H(S||T )| ≤ 2RPs(` ◦ H)

+ 2LRPt(` ◦ H) + 2
√

(− log δ)/(2n).
(3.5)

Proof. For reference, we refer the reader to Chapter 3 of (Mohri et al., 2018). Using the notations of R and R̂ that represent
the true and empirical risks, we have:

Dφh,H(Ps||Pt)− Dφh,H(S||T) = sup
h′∈H
{|R`S(h, h′)−Rφ

∗◦`
T (h, h′)|} (B.6)

− sup
h′∈H
{|R̂`S(h, h′)− R̂φ

∗◦`
T (h, h′)|}

≤ sup
h′∈H

||R`S(h, h′)−Rφ
∗◦`
T (h, h′)| − |R̂`S(h, h′)− R̂φ

∗◦`
T (h, h′)||

≤ sup
h′∈H

|R`S(h, h′)−Rφ
∗◦`
T (h, h′)− R̂`S(h, h′) + R̂φ

∗◦`
T (h, h′)|

= sup
h′∈H

|R`S(h, h′)− R̂`S(h, h′)|+ |Rφ
∗◦`
T (h, h′)− R̂φ

∗◦`
T (h, h′)|

≤ 2RPs(` ◦ H) +

√
log 1

δ

2n
+ 2RPt(φ

∗ ◦ ` ◦ H) +

√
log 1

δ

2n

where: |R`S(h, h′)− R̂`S(h, h′)| ≤ 2RPs(` ◦ H) +

√
log 1

δ

2n (Theorem 3.3 of (Mohri et al., 2018)). Similarly, by Talagrand’s
lemma (Lemma 5.7 and Definition 3.2 of (Mohri et al., 2018)) we have: RPt(φ

∗ ◦ ` ◦H) ≤ LRPt(` ◦H), with φ∗ ◦ ` ◦H :=
{x 7→ φ(`(h(x), h′(x))) : h, h′ ∈ H}.
Theorem 2 (generalization bound). Suppose ` : Y × Y → [0, 1] ⊂ domφ∗. Denote λ∗ := R`S(h∗) + R`T (h∗), and let
h∗ be the ideal joint hypothesis. We have:

R`T (h) ≤ R`S(h) + Dφh,H(Ps||Pt) + λ∗. (3.6)

Proof. We first introduce the following lemma for our proof:

Lemma 3. For any function φ that satisfies φ(1) = 0 we have φ∗(t) ≥ t where φ∗ is the Fenchel conjugate of φ.

Proof. From the definition of Fenchel conjugate, φ∗(t) = supx∈domφ(xt− φ(x)) ≥ t− φ(1) = t.

R`T (h, ft) ≤ R`T (h, h∗) +R`T (h∗, ft) (triangle inequality `) (B.7)

= R`T (h, h∗) +R`T (h∗, ft)−R`S(h, h∗) +R`S(h, h∗) (B.8)

≤ Rφ
∗◦`
T (h, h∗)−R`S(h, h∗) +R`S(h, h∗) +R`T (h∗, ft) (Lemma 3) (B.9)

≤ |Rφ
∗◦`
T (h, h∗)−R`S(h, h∗)|+R`S(h, h∗) +R`T (h∗, ft) (B.10)

≤ Dφh,H(Ps||Pt) +R`S(h, h∗) +R`T (h∗, ft) (Lemma 1) (B.11)

≤ Dφh,H(Ps||Pt) +R`S(h, fs) +R`S(h∗, fs) +R`T (h∗, ft)︸ ︷︷ ︸
λ∗

. (B.12)



f -Domain-Adversarial Learning: Theory and Algorithms

Theorem 3 (generalization bound with Rademacher complexity). Let ` : Y × Y → [0, 1] and φ∗ be L-Lipschitz
continuous. Let S and T be two empirical distributions (i.e. datasets containing n data points sampled i.i.d. from Ps and Pt,
respectively). Denote λ̂∗ := R̂`S(h∗) + R̂`T (h∗). ∀δ ∈ (0, 1), we have with probability of at least 1− δ:

R`T (h) ≤ R̂`S(h) + Dφh,H(S||T) + λ̂∗

+ 6RS(` ◦ H) + 2(1 + L)RT (` ◦ H)

+ 5
√

(− log δ)/(2n). (3.7)

Proof. We show in the following that:

R`T (h) ≤ R̂`S(h) + Dφh,H(S||T) + λ̂∗φ (B.13)

+ 6RS(` ◦ H) + 2(1 + L)RT (` ◦ H) + 5
√

(− log δ)/(2n). (B.14)

This follows from Theorem 2 where: R`T (h) ≤ R`S(h) + Dφh,H(Ps||Pt) + R`S(h∗) + R`T (h∗). We also have: |R`D(h) −
R̂`D(h)| ≤ 2RD(` ◦ H) +

√
log 1

δ

2n (Theorem of 3.3 (Mohri et al., 2018)). From Lemma 2, Dφh,H(Ps||Pt) ≤ 2RPs(` ◦ H) +

2LRPt(` ◦ H) + 2

√
log 1

δ

2n . Plugging in and rearranging gives the desired results.

Proposition 1. Suppose ds,t takes the form shown in (4.2) with ˆ̀(ĥ′(z), ĥ(z)) → domφ∗ and that for any ĥ ∈ Ĥ
(unconstrained), there exists ĥ′ ∈ Ĥ s.t. ˆ̀(ĥ′(z), ĥ(z)) = φ′(p

z
s(z)
pz

t (z)
) for any z ∈ supp(pz

t (z)), with φ′ the derivative of φ.
The optimal ds,t is Dφ(P z

s ||P z
t ), i.e. maxĥ′∈Ĥ ds,t = Dφ(P z

s ||P z
t ).

Proof. We first rewrite from the definition of ds,t in (4.2):

ds,t = Ez∼pz
s
[ˆ̀(ĥ′(z), ĥ(z))]− Ez∼pz

t
[(φ∗ ◦ ˆ̀)(ĥ′(z), ĥ(z))] (B.15)

=

∫
[pz

s(z)
ˆ̀(ĥ′(z), ĥ(z))− pz

t (z)(φ
∗ ◦ ˆ̀)(ĥ′(z), ĥ(z))]dz (B.16)

=

∫
pz

t (z)

[
pz

s(z)

pz
t (z)

ˆ̀(ĥ′(z), ĥ(z))− (φ∗ ◦ ˆ̀)(ĥ′(z), ĥ(z))

]
dz. (B.17)

Maximizing w.r.t h′ and assuming Ĥ is unconstrained we have: p
z
s(z)
pz

t (z)
∈ (∂φ∗)(ˆ̀(ĥ′(z), ĥ(z)) for any z ∈ supp(pz

t ). From
the definition of Fenchel conjugate we have:

x ∈ ∂φ∗(t) ⇐⇒ φ(x) + φ∗(t) = xt ⇐⇒ φ′(x) = t.

Plugging x = pz
s(z)/p

z
t (z) and t = `(ĥ′(z), ĥ(z)) we obtain `(ĥ′(z), ĥ(z)) = φ′(pz

s(z)/p
z
t (z)). Hence, from the definition

of f -divergences (Definition 1) and its variational characterization (eq. 2.2), we write:

max
ĥ′∈Ĥ

ds,t = Dφ(P zs ||P zt ). (B.18)

C. Connection to previous frameworks
In this appendix we show that f -DAL encompasses previous frameworks on domain adaptation, includingH∆H-divergence,
DANN (Ganin et al., 2016) and MDD (Zhang et al., 2019).

C.1.H∆H-divergence

We now show that Theorem 2 generalizes the bound proposed in (Ben-David et al., 2010a). Let the pair {φ(x), φ∗(t)} =

{ 1
2 |x − 1|, t} for t ∈ [0, 1], such that Dφh,H = DTV

h,H and suph∈H DTV
h,H = DTV

H = 1
2dH∆H, with dH∆H defined in (Ben-

David et al., 2010a) (see also (A.1)). Theorem 2 gives us that R`T (h) ≤ R`S(h) + 1
2dH∆H + λ∗, recovering Theorem 2 of

(Ben-David et al., 2010a).



f -Domain-Adversarial Learning: Theory and Algorithms

C.2. DANN formulation and JS divergence

The DANN formulation by Ganin & Lempitsky (2015) can also be incorporated in our framework if one takes ˆ̀(ĥ′ ◦
g(x), e1) = log σ(e1 · ĥ′ ◦ g(x)) and φ∗(t) = − log(1 − et), where σ(x) := 1

1+exp(−x) is the sigmoid function, and e1

corresponds to the standard basis vector. Reinterpreting ĥ′ := e1 · ĥ′, sustituting and computing ds,t we obtain:

ds,t = Exs∼ps log σ ◦ ĥ′ ◦ g(xs) + Ext∼pt log
(

1− σ ◦ ĥ′ ◦ g(xt)
)

(C.1)

= −
[
Exs∼ps log

1

σ ◦ ĥ′ ◦ g(xs)
+ Ext∼pt log

1

1− σ ◦ ĥ′ ◦ g(xt)

]
, (C.2)

which is equivalent with the second part of the expression show in equation 9 in (Ganin et al., 2016).

Effectively, this formulation ignores the contribution of the source classifier ĥ′. In fact, it assumes the output of the
source classifier is always constant (e.g ĥ = e1). Notice that this is corrected in f -DAL where ˆ̀(a, b) = g(bargmax a). We
experimentally also observed that this formulation leads to an inferior performance. Nonetheless, the following proposition
shows that under the assumption of an optimal domain classifier ĥ′, ds,t achieves JS-divergence (up to a constant shift),
which upper bounds the DJS

h,H.

Proposition 2. Suppose ds,t follows the form of eq. C.1 and ĥ is the optimal domain classifier which is unconstrained, then
maxĥ′ ds,t = DJS(S||T )− 2 log 2.

Proof. For simplicity in the notation let ĥ′ := σ ◦ (e1 · ĥ′), rewritting eq. C.1 we have:

ds,t(ĥ
′, g) =

∫
Z
pz

s(z) log ĥ′(z) + pz
t (z) log(1− ĥ′(z))dz. (C.3)

By taking derivatives and finding the optimal ĥ∗(z), we get : h∗(z) =
pz

s(z)
pz

s(z)+p
z
t (z)

.

By plugging ĥ∗(z) into (C.1), rearranging, and using the definition of the Jensen-Shanon (JS) divergence, we get the desired
result.

It is worth noting that the additional negative constant −2 log 2 does not affect the optimization.

C.3. MDD formulation and γ-weighted JS divergence

Now let us demonstrate how our f -DAL framework incorporates MDD naturally. Suppose φ∗(t) = − 1
γ log(1− et) and

ˆ̀(ĥ(z), ĥ′(z)) = log ĥ′(z)argmax ĥ(z). We retrieve the following result as in Zhang et al. (2019):
Proposition 3 (Zhang et al. (2019)). Suppose ds,t takes the form of MDD, i.e,

γds,t = γEz∼pz
s
log ĥ′(z)argmax ĥ(z) + Ez∼pz

t
ĥ(z) · log(1− ĥ′(z)argmax ĥ(z)). (C.4)

With unconstrained function class Ĥ, the optimal ds,t satisfies:

max
ĥ′

γds,t = (γ + 1)JSγ(pz
s‖pz

t ) + γ log γ − (γ + 1) log(γ + 1), (C.5)

where JSγ(pz
s‖pz

t ) is γ-weighted Jensen–Shannon divergence (Huszár, 2015; Nowozin et al., 2016):

JSγ(pz
s‖pz

t ) =
γ

γ + 1
KL(pz

s‖
γpz

s + pz
t

γ + 1
) +

1

γ + 1
KL(pz

t‖
γpz

s + pz
t

γ + 1
). (C.6)

We remark that when γ = 1, JSγ(pz
s‖pz

t ) is the original Jensen–Shannon divergence. One should also note the the additional
negative constant γ log γ − (γ + 1) log(γ + 1), which attributes to the negativity of MDD, does not affect the optimization.

φ∗(t) = − 1
γ log(1− et) can be considered by rescaling the φ∗ for the usual JS divergence (see Table 8). In general we can

rescale φ∗ for any f -divergence with the following lemma:
Lemma 4 (Boyd & Vandenberghe (2004)). For any λ > 0, the Fenchel conjugate of λφ is (λφ)∗(t) = λφ∗(t/λ), with
dom(λφ)∗ = λdomφ∗.



f -Domain-Adversarial Learning: Theory and Algorithms

C.4. Revisiting MCD (Saito et al., 2018)

Let’s now use f -DAL to revisit MCD. This will allow us to understand the cause of the performance gap. For example,
MCD(86.5) vs Ours (89.5) on Office-31. Moreover, it will show us how to improve MCD. Let ˆ̀(c, b) = |c − b| in
Equation (4.3), and choose φ to be the TV (Table 1). We have:

min
ĥ∈Ĥ,g∈G

max
ĥ′∈Ĥ

Rs[ĥ ◦ g] + Eps [|ĥ′ ◦ g − ĥ ◦ g|]− Ept [|ĥ′ ◦ g − ĥ ◦ g|] (C.7)

where ˆ̀ should be in [−0.5, 0.5] to satisfy requirements on φ∗ (Table 1). Comparing this with MCD we can see 3 key
differences. 1) MCD ignores the second term based on assumptions, further requires careful initialization for ĥ, ĥ′. 2) The
max operator in their case goes over ĥ and ĥ′. This makes optimization harder (see Zhang et al. (2019)). We do not need this
because our bounds are based on Dφ

h,H ≤ D
φ
H (definitions 2 and 3, Lemma 1). 3) The restriction on the ˆ̀(c, b) is not taken

into account (should be re-weighted or the act. function follow Tab 1). As mentioned in MCD (Eq. 9), I[c 6= b] is similar,
but in this context not the same as |c− b|. Thus, 1,2,3 could explain the difference in performance 86.5 vs Ours (89.5). We
believe using these recommendations on MCD could lead to a powerful algorithm but we defer that to further work.

D. Additional Experimental Results

Table 9. Accuracy represented in (%) with average and standard deviation on the Office-31 benchmark.
Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet-50 (He et al., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN (Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN (Long et al., 2017) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA (Sankaranarayanan et al., 2018) 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD (Saito et al., 2018) 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN (Long et al., 2018) 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

f -DAL (γ-JS) / MDD (Zhang et al., 2019) 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
f -DAL (JS) 93.0±1.4 98.8±0.1 100.0±.0 92.8±0.4 74.9±1.5 73.3±0.1 88.8
f -DAL (Pearson χ2) 95.4±0.7 98.4±0.2 100.0±.0 93.8±0.4 73.5±1.1 74.2±0.5 89.2

f -DAL(γ-JS) / MDD + Alignment (Jiang et al., 2020) 90.3±0.2 98.7±0.1 99.8±.0 92.1±0.5 75.3±0.2 74.9±0.3 88.8
f -DAL (Pearson χ2) + Alignment 93.4±0.4 99.0±0.1 100.0±.0 94.8±0.6 73.6±0.2 74.6±0.4 89.2

Table 10. Accuracy (%) on the Office-Home benchmark.
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN (Long et al., 2017) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN (Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

f -DAL (γ-JS) / MDD (Zhang et al., 2019) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
f -DAL (JS) 53.7 71.7 76.3 60.2 68.4 69.0 60.2 52.6 76.9 71.4 59.0 81.8 66.8
f -DAL (Pearson χ2) 54.7 69.4 77.8 61.0 72.6 72.2 60.8 53.4 80.0 73.3 60.6 83.8 68.3

f -DAL(γ-JS) / MDD + Alignment (Jiang et al., 2020) 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
f -DAL (Pearson χ2) + Alignment 56.7 77.0 81.1 63.1 72.2 75.9 64.5 54.4 81.0 72.3 58.4 83.7 70.0

Table 11. Accuracy on the Amazon Reviews data sets
Method B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E Avg

JDOTNN (Courty et al., 2017) 79.5 78.1 79.4 76.3 78.8 82.1 74.9 73.7 87.2 72.8 76.5 84.5 78.7
MADAOT (Dhouib et al., 2020) 82.4 75 80.4 80.9 73.5 81.5 77.2 78.1 88.1 75.6 75.9 87.1 79.6

DANN (Dhouib et al., 2020; Ganin et al., 2016) 80.6 74.7 76.7 74.7 73.8 76.5 71.8 72.6 85.0 71.8 73.0 84.7 76.3

f -DAL (JS) 83.2 78.8 80.4 80.2 79.4 82.9 72.3 76.3 87.8 74.7 78.5 87.0 80.1
f -DAL (Pearson χ2) 84.0 80.9 81.4 80.6 81.8 83.9 76.7 78.3 87.9 76.5 79.5 87.5 81.6

D.1. Experimental results with others γ-shifted divergences

In this section, we show experiments on the Digits Benchmark (Avg on 3 runs) for a shifted γ-Pearson χ2. We follow
Section 4.3 and let φ̂(x) = φ(x)− γx. Results shown in Table 14 are similar to those obtained for the γ-JS (Table 3), for



f -Domain-Adversarial Learning: Theory and Algorithms

Table 12. Accuracy on the Digits datasets

Method M→U U→M Avg

DANN (Ganin et al., 2016) 91.8 94.7 93.3
CDAN (Long et al., 2018) 93.9 96.9 95.4

f -DAL (JS) 95.3 98.0 96.6
f -DAL (Pearson χ2) 95.3 97.3 96.3

Table 13. p-values Significance Test (Wilcoxon signed rank test)

Digits NLP Office-31 Office-Home

Avg DANN 93.3 76.3 82.2 57.6
Avg f -DAL JS 96.6 80.1 88.8 66.8
p-val 0.5 0.0025 0.031 0.0025

which our test showed no significance to have γ. We also conducted experiments for the other modality, e.g. NLP data, with
γ-JS. Similarly, we observed results are not significant wrt JS(γ=3, Avg=80.4) and slightly worse than Pearson.

Table 14. γ-shifted Pearson χ2 Digits Benchmark.

γ Avg Digits

- 96.3

2 96.2
3 96.4
4 96.3

D.2. Robustness to Label Shift

In this section, we compare the robustness to label-shift of f -DAL-JS vs DANN on the digits benchmark. Specifically,
we consider the task M→ U and artificially generate different version of the target dataset where data-points are re-
sampled in terms of its classes. This way we can have control over the JS divergence between the label distribution (i.e
JS(Ps(y)||Pt(y))) and compare at different levels. Figure 7 shows the results. Firstly, we can observe that both methods
performance degrades as the distance between label distributions increases. This is an expected behavior in DA, and can also
be explained with our theory. For example, as this distance increases, the term λ∗ in Theorem 2 simply increases, and thus
this cannot be assumed to be negligible. To explicitly see why, we refer the reader to Zhao et al. (2019) where the authors
derived a lower bound for joint risk. It is important to also have in mind that λ∗ incorporates the notion of adaptability. That
is, if the optimal hypothesis performs poorly in either domain, adaptation is simply not possible and thus assumptions are
need it. Secondly, from the figure, we can also see our method is more robust to label-shift than DANN. Indeed, we fit
linear regression models to highlight the trend and show the value of the slope in each case. The performance comparison is
noticeable. We emphasize the aim of this experiment is to showcase the robustness of f -DAL-JS vs DANN when label-shift
exists. Our method does not propose any additional correction or term to deal with this and doing so (i.e dealing explicitly
with label-shift) is out-of-the-scope of this work. Our algorithm follows the common assumption stated on adversarial DA
methods and let λ∗ to be negligible. We believe the better performance of f -DAL-JS vs DANN under label-shift is just a
consequence of directly connecting theory and algorithm. We additionally show f -DAL can be perfectly combined with
methods that deal with label shift such as Implicit Alignment (i.e Jiang et al. (2020)) (Tables 9 and 10). Indeed, doing so
leads to SoTA results on the Office-Home dataset (Table 10). This again showcases the versatility of f -DAL.



f -Domain-Adversarial Learning: Theory and Algorithms

Figure 6. Domain Adaptation. A learner trained on abundant labeled data (marked as squares, colors are categories) is expected to perform
well in the target domain (marked as +). Decision boundaries correspond to a 2-layers neural net trained using f -DAL.

Figure 7. Robustness to Label Shift f -DAL-JS vs DANN. The x-axis represents the Jensen-Shanon distance between the label distributions.
We can observe that f -DAL-JS is more robust to label shift than DANN. Linear regression models are fit to highlight the trend(slope is
also shown). (Dataset M→ U).

E. More Details on Experimental Setup
Our algorithm is implemented in PyTorch. For the Digits datasets, the implementation details follows Long et al. (2018).
Thus, the backbone network is LeNet (LeCun et al., 1998). The main classifier (ĥ) and auxiliary classifier (ĥ′) are both 2
linear layers with Relu non-linearities and Dropout (0.5) in the last layer. We train for 30 epochs, the optimizer is SGD with
Nesterov Momentum (momentum 0.9, batch size 128), the learning rate is 0.01. The regularization term for the discrepancy
is set to 0.5 and the GRL coefficient set to 0.6. We use a weight decay coefficient of 0.002. Hyperparameters follow closely
the ones used by Long et al. (2018), if some differ slightly, they were determined in a subset(10%) of the training set of the
task M→U and kept constant for the other task. We use three different seeds (i.e 1,2,3) and report the average over the runs.

For the NLP task, we follow the standard protocol from Courty et al. (2017); Ganin et al. (2016) and use simple 2-layer
model with sigmoid activation function. Thus, the main classifier (ĥ) and auxiliary classifier (ĥ′) are a simple linear layer
with BN. We train for 10 epochs, the optimizer is SGD with Nesterov Momentum (momentum 0.9, batch size 16), the
learning rate is 0.001. We use three different seeds (i.e 1,2,3) and report the average over the runs. The regularization term for
the discrepancy is set to 1 and the GRL coefficient set to 0.1. We use a weight decay coefficient of 0.002. Hyper-parameters
are empirically determined in a subset(10%) of the training set of the task (B→ D ) and kept constant for the others.

For the visual datasets, we use ResNet-50 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) as the backbone
network. The main classifier (ĥ) and auxiliary classifier (ĥ′) are both 2 layers neural nets with Leaky-Relu activation
functions. We use spectral normalization (SN) as in (Miyato et al., 2018) only for these two (i.e ĥ and ĥ′ ). We did not see
any transfer improvement by using it. The reason for this was to avoid gradient issues and instabilities during training for
some divergences in the first epochs. We use the hyperparams and same training protocol from MDD (Zhang et al. (2019)
and CDAN (Long et al. (2018)). We report the average accuracies over 3 experiments.

Experiments are conducted on NVIDIA Titan V (Digits, NLP) and V100 (Visual Tasks) GPU cards.


