
Acceleration via Fractal Learning Rate Schedules

Naman Agarwal 1 Surbhi Goel 2 Cyril Zhang 2

Abstract
In practical applications of iterative first-order
optimization, the learning rate schedule remains
notoriously difficult to understand and expensive
to tune. We demonstrate the presence of these
subtleties even in the innocuous case when the
objective is a convex quadratic. We reinterpret an
iterative algorithm from the numerical analysis
literature as what we call the Chebyshev learn-
ing rate schedule for accelerating vanilla gradient
descent, and show that the problem of mitigat-
ing instability leads to a fractal ordering of step
sizes. We provide some experiments to challenge
conventional beliefs about stable learning rates
in deep learning: the fractal schedule enables
training to converge with locally unstable updates
which make negative progress on the objective.

1. Introduction
In the current era of large-scale machine learning models,
a single deep neural network can cost millions of dollars
to train. Despite the sensitivity of gradient-based training
to the choice of learning rate schedule, no clear consensus
has emerged on how to select this high-dimensional hyper-
parameter, other than expensive end-to-end model training
and evaluation. Prior literature indirectly sheds some light
on this mystery, showing that the learning rate schedule gov-
erns tradeoffs between accelerated convergence and various
forms of algorithmic stability.

In this work, we highlight the surprising consequences of
these tradeoffs in a very simple setting: first-order optimiza-
tion of a convex quadratic function. We start by pointing out
the existence of a non-adaptive step size schedule, derived
from the roots of Chebyshev polynomials, which allows
plain gradient descent to obtain accelerated convergence
rates without momentum. These learning rates overshoot
the region of guaranteed local progress, resulting in unsta-

*Equal contribution 1Google AI Princeton, Princeton, NJ, USA
2Microsoft Research, New York, NY, USA. Correspondence to:
Cyril Zhang <cyrilzhang@microsoft.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Chebyshev nodes γt step sizes γ−1
t fractal schedule ηt

Figure 1: Visualization of the Chebyshev nodes γt, their
corresponding step sizes γ−1

t , and the fractal permutation
(Lebedev & Finogenov, 1971) studied in this paper.

ble optimization trajectories. Extending a relatively obscure
line of work motivated by numerical imprecision in PDE
solvers (Lebedev & Finogenov, 1971), we show that stable
acceleration is achieved by selecting a fractal permutation
of the Chebyshev step sizes.

Acceleration via large step sizes may provide an useful al-
ternative to momentum: it is less stable according to our
worst-case bounds, but inherits the memory-efficiency and
statelessness of vanilla gradient descent. More broadly,
we discuss how this form of acceleration might implicitly
present itself in settings like deep learning, introducing hid-
den entanglements and experimental confounds. We hope
that these ideas will lead to new adaptive algorithms which
overstep the “edge of stability” (the largest constant learning
rate at which model training converges) (Giladi et al., 2019;
Cohen et al., 2021), and accelerate training via carefully
scheduled negative progress. We provide some supporting
experiments towards bridging the theory-practice gap, as
well as open questions for future investigation.

1.1. Our contributions

Provably stable acceleration without momentum. We
revisit an oft-neglected variant of the Chebyshev iteration
method for accelerating gradient descent on convex quadrat-
ics. In lieu of momentum, it uses a recursively-defined
sequence of large step sizes derived from Chebyshev poly-
nomials, which we call the fractal Chebyshev schedule. We
prove a new stability guarantee for this algorithm: under
bounded perturbations to all the gradients, no iterate changes
by more than O(poly(κ)), where κ is the condition num-
ber of the problem. We also some provide theoretically-
grounded practical variants of the schedule, and negative
results for function classes beyond convex quadratics.

Acceleration via Fractal Learning Rate Schedules

Empirical insights on stable oscillating schedules. We
demonstrate empirically that the fractal Chebyshev sched-
ule stabilizes gradient descent on objectives beyond con-
vex quadratics. We observe accelerated convergence on an
instance of multiclass logistic regression, and convergent
training of deep neural networks at unstable learning rates.
These experiments highlight the power of optimizing the
“microstructure” of the learning rate schedule (as opposed
to global features like warmup and decay). We discuss how
these findings connect to other implicit behaviors of SGD
and learning rate schedules.

1.2. Related work

The predominant algorithms for accelerated first-order op-
timization are the momentum methods of Polyak (1964b)
and Nesterov (1983). The former, known as the heavy-ball
method, only achieves provable acceleration on quadratic
objectives. The latter achieves minimax optimal conver-
gence rates for general smooth convex objectives. Both are
widely used in practice, far beyond their theoretical scope;
for instance, they are the standard options available in deep
learning frameworks.

Empirical challenges and tradeoffs. (Bottou & Bous-
quet, 2007) discuss the competing objectives of stability,
acceleration, and computation in large-scale settings, where
one cannot afford to consider a single asymptotically domi-
nant term. Devolder et al. (2014); Chen et al. (2018); Agar-
wal et al. (2020b) study this specifically for acceleration.
Optimizing the learning rate schedule remains a ubiquitous
challenge; see Section 6.2 and Appendix G.2 for references.

Numerical methods and extremal polynomials. There
are many connections between algorithm design and ap-
proximation theory (Vishnoi, 2012; Sachdeva & Vishnoi,
2013). We emphasize that the beautiful idea of the fractal
permutation of Chebyshev nodes is an innovation by Lebe-
dev & Finogenov (1971; 1973; 1976); our technical results
are generalizations and refinements of the ideas therein. We
give an overview of this line of work in Appendix G.1.

Learning rate schedules in stochastic optimization.
Bias-variance tradeoffs in optimization are studied in vari-
ous theoretical settings, including quadratics with additive
and multiplicative noise (Lan, 2012; Ge et al., 2019; Gor-
bunov et al., 2020). Many of them also arrive at theoretically
principled learning rate schedules; see Appendix G.3. On
the more empirical side, Zhang et al. (2019) use a noisy
quadratic model to make coarse predictions about the dy-
namics of large-scale neural net training. Cyclic learning
rate schedules have been employed in deep learning, with
various heuristic justifications (Loshchilov & Hutter, 2016;
Smith, 2017; Fu et al., 2019). In parallel work, (Oymak,

2021) considers a cyclic “1 high, n low” schedule, which
gives log(κ) convergence rates in the special case of convex
quadratics whose Hessians have bimodal spectra. We dis-
cuss in Appendix E.5 why this approach does not provide
acceleration in the general case; the MNIST experiments in
Appendix F.4 include a comparison with this schedule.

2. Preliminaries
2.1. Gradient descent

We consider the problem of iterative optimization of a dif-
ferentiable function f : Rd → R, with a first-order oracle
∇f : Rd → Rd which computes the gradient of f at a query
point. The simplest algorithm in this setting is gradient de-
scent, which takes an arbitrary initial iterate x1 ∈ Rd and
executes T update steps

{xt+1 ← xt − ηt∇f(xt)}Tt=1 (1)

according to a learning rate schedule (η1, . . . , ηT), produc-
ing a final iterate xout := xT+1. When the {ηt} do not
depend on T , an analogous infinite sequence of iterates
{xt}t∈N can be defined.

There are many ways to choose the learning rate sched-
ule, depending on the structure of f and uncertainty in the
gradient oracle. Some schedules are static (non-adaptive):
(η1, . . . , ηT) are chosen before the execution of the algo-
rithm. For instance, when f is an M -smooth convex func-
tion, ηt = 1/M achieves the classical convergence rates.

Adaptive choices of ηt are allowed to depend on the ob-
served feedback from the current execution (including xt
and∇f(xt)), and are considerably more expressive. For ex-
ample, ηt can be chosen adaptively via line search, adaptive
regularization, or curvature estimation.

2.2. The special case of quadratics

Consider the case where the objective is of the form

f(x) =
1

2
x>Ax− b>x,

where A ∈ Rd×d is symmetric and positive definite, and
b ∈ Rd, so that∇f(x) = Ax− b is an affine function of the
query point x. Then, the mapping G : xt 7→ xt+1 induced
by gradient descent is also affine. Let x∗ := min f (a fixed
point of G). Then,

xt+1 − x∗ = G(xt)− x∗ = G(xt)− G(x∗)

= (I − ηtA)(xt − x∗).

By induction, we conclude that

xout − x∗ =

[
T∏
t=1

(I − ηtA)

]
(x1 − x∗).

Acceleration via Fractal Learning Rate Schedules

Thus, the residual after T steps of gradient descent is given
by a degree-T matrix polynomial times the initial residual:

Definition 1 (Residual polynomial). Fix a choice of non-
adaptive (η1, . . . , ηT). Then, define the residual polynomial
p : Rd×d → Rd×d as

p(A) :=

T∏
t=1

(I − ηtA).

When clear, we will interchange to denote scalar and matrix
polynomials with the same coefficients. Thus, overloading
p : R→ R, we have p(0) = 1, and p(1/ηt) = 0 for each t.

Remark 2. The matrices in the above product all commute.
Thus, when f is quadratic, p(A) (and thus xout given x1)
does not depend on the permutation of (η1, . . . , ηT).

2.3. Chebyshev polynomials and Chebyshev methods

The problem of choosing p(A) to optimize convergence
for least-squares has roots in numerical methods for dif-
ferential equations (Richardson, 1911). The Chebyshev
polynomials, which appear ubiquitously in numerical meth-
ods and approximation theory (Chebyshev, 1853; Mason
& Handscomb, 2002), provide a minimax-optimal solution
(Flanders & Shortley, 1950; Gavurin, 1950; Young, 1953)1:
choose positive real numbers m ≤ M , and set

p(λ) =
TT (z)

TT (θ)
,

where z := M+m−2λ
M−m , θ := M+m

M−m = 1 + 2m
M−m , and Tn(·)

is the degree-n Chebyshev polynomial of the first kind. One
of many equivalent definitions is Tn(z) = cos(n arccos z)
for |z| ≤ 1. From this definition it follows that the roots of
p occur at the Chebyshev nodes

γt :=
M +m

2
− M −m

2
cos

(t− 1
2)π

T
, t = 1, . . . , T.

Setting {ηt} to be any permutation of {1/γt} suffices to
realize this choice of p. Note that 1/γt is decreasing in
t. The limiting case m = M is gradient descent with a
constant learning rate, and p(λ) = (1− λ/m)T .

Let λmin, λmax denote the smallest and largest eigenvalues
of A, so that the condition number of A is κ := λmax/λmin.
Viewing m,M as estimates for the spectrum, we define

κ̂ :=
M

m
≥ λmax

λmin
= κ.

We state a classic end-to-end convergence rate for Cheby-
shev iteration (proven in Appendix B for completeness):

1For a modern exposition, see the blogpost http://fa.
bianp.net/blog/2021/no-momentum/.

Theorem 3 (Convergence rate of Chebyshev iteration).
Choose spectral estimates m ≤ M such that 0 <
m ≤ λmin ≤ λmax ≤ M . Then, setting {ηt} to
be any permutation of {1/γt}, the final iterate of gradient
descent xout satisfies the following:

‖xout − x∗‖ ≤
2ρT

1 + ρ2T
‖x1 − x∗‖

≤ e−Ω(T)/
√
κ̂ ‖x1 − x∗‖ ,

where ρ :=
√
M−
√
m√

M+
√
m
≤ 1− Ω

(
1√
κ̂

)
.

Thus, accelerated methods like Chebyshev iteration get
ε-close to the minimizer in O(

√
κ̂ log(1/ε)) iterations, a

quadratic improvement over the O(κ̂ log(1/ε)) rate of gra-
dient descent with a constant learning rate. Theorem 3 is
proven using approximation theory: show that |p(λ)| is
small on an interval containing the spectrum of A.

Definition 4 (Uniform norm on an interval). Let p : R→ R,
and m ≤ M ∈ R. Define the norm

‖p‖[m,M] := ‖p‖L∞([m,M]) = max
λ∈[m,M]

|p(λ)|.

Then, any upper bound on this norm gives rise to a conver-
gence rate like Theorem 3:

‖xout − x∗‖ ≤ ‖p‖[m,M] · ‖x1 − x∗‖ .

These can be converted into optimality gaps on f by consid-
ering the polynomial λ p2(λ).

Moving beyond infinite-precision arithmetic, the optimiza-
tion literature typically takes the route of Stiefel (1958), es-
tablishing a higher-order recurrence which “semi-iteratively”
(iteratively, but keeping some auxiliary state) constructs the
same final polynomial p. This is the usual meaning of the
Chebyshev iteration method, and coincides with Polyak’s
momentum on quadratics.

This is where we depart from the conventional approach.2

We revisit the idea of working directly with the Chebyshev
step sizes, giving a different class of algorithms with differ-
ent trajectories and stability properties.

3. The fractal Chebyshev schedule
In this section, we work in the strongly3 convex quadratic
setting from Section 2.2. Our new contributions on top of
the existing theory address the following questions:

2For instance, this is not found in references on acceleration
(Bubeck, 2017; d’Aspremont et al., 2021), or in textbooks on
Chebyshev methods (Gottlieb & Orszag, 1977; Higham, 2002).

3Accelerated rates in this paper haveO(1/T 2) analogues when
λmin = 0 (Allen-Zhu & Hazan, 2016).

http://fa.bianp.net/blog/2021/no-momentum/
http://fa.bianp.net/blog/2021/no-momentum/

Acceleration via Fractal Learning Rate Schedules

0 32 64 96 128
t

0

10

20

step sizes γ−1
t

0 32 64 96 128
t

0

10

20
fractal schedule ηt

Figure 2: Shapes of the Chebyshev step sizes and fractal per-
mutations. Left: Step sizes in sorted order for M = 1, and
m = 1, 1

2 , . . . ,
1
20 (black to blue). Right: Permuted sched-

ule with M = 1,m = 1
20 , T = 128 (red). Subsequences

with strides {1, 4, 16, 64} are overlaid, demonstrating self-
similarity arising from the interlacing construction.

(1) How noise-tolerant is gradient descent with Chebyshev
learning rates, beyond numerical imprecision?

(2) How do we choose the ordering of steps?

We first introduce the construction originally motivated by
numerical error, which provides an initial answer to (2).
Then, our extended robustness analysis provides an answer
to (1), and subsequently a more refined answer to (2).

3.1. Construction

We begin with the construction from (Lebedev & Finogenov,
1971), defined below and visualized in Figure 2.

Definition 5 (Fractal Chebyshev schedule). Let σ1 := [1],
and for each T ≥ 1 a power of 2, define

σ2T := interlace(σT , 2T + 1− σT),

where

interlace([a1 . . . an], [b1 . . . bn]) := [a1 b1 a2 b2 . . . an bn].

Then, for given m ≤ M , and T a power of 2, the fractal
Chebyshev schedule is the sequence of learning rates

ηt := 1/γσT (t), t = 1, . . . , T.

Below are the first few nontrivial permutations σT :

σ2 = [1 2],

σ4 = [1 4 2 3],

σ8 = [1 8 4 5 2 7 3 6],

σ16 = [1 16 8 9 4 13 5 12 2 15 7 10 3 14 6 11].

3.2. Basic properties

We first list some basic facts about the unordered step sizes:

Proposition 6. For all m < M and T , the fractal Cheby-
shev step sizes {γ−1

t } satisfy the following:

(i) 1
M < γ−1

t < 1
m = κ̂

M .

(ii) The number of step sizes greater than 2
M is

(
1
2 − ε

)
T ,

where 0 ≤ ε ≤ O(1/κ̂) as κ̂→∞.

(iii) For t ≤ T
2 , we have γ−1

t < 1

m+
2(M−m)t2

T2

, and

1
T

∑T
t=1 γ

−1
t =

tanh(T acosh(2m
M−m))√

Mm
< 1√

Mm
=
√
κ̂
M .

Interpreting m,M as estimates for λmin, λmax:

(i) Every step size in the schedule exceeds the classic fixed
learning rate of 1/λmax. As T gets large, the largest
step approaches 1/λmin, a factor of κ larger.

(ii) For large κ, close to half of the step sizes overshoot the
stable regime η ∈ [0, 2/λmax], where local progress
on f is guaranteed.

(iii) The large steps are neither highly clustered nor dis-
persed. The largest γ−1

t overshoots the stable regime
by a factor of Θ(κ), but the average factor is only
O(
√
κ).

Next, some basic observations about the fractal schedule:

Proposition 7 (Hierarchy and self-similarity). For all
m,M, T and 0 ≤ i ≤ log2 T :

(i) The largest T2i steps ηt in the fractal Chebyshev sched-
ule occur when t = 1 + 2i(τ − 1), with τ = 1, . . . , T2i .

(ii) The subsampled sequence {η1+2i(τ−1)} has the same
ordering as the fractal permutation of the same length:

η1+2iτ = γ−1
1+2i(τ ′−1), where τ ′ = σT/2i(τ).

Figure 2 visualizes these observations, while Appendix D.1
contains formal statements and proofs.

3.3. Self-stabilization via infix polynomial bounds

Now, let us examine why the fractal ordering is needed.
As discussed, in the noiseless infinite-precision setting, the
final iterate xout is invariant to the permutation of {ηt}.
However, the intermediate iterates xt depend on a sequence
of partial products, which depend very sensitively on the
permutation; Figure 3 illustrates these tradeoffs; details are
found in Appendix F.1.

Acceleration via Fractal Learning Rate Schedules

0 8 16 24 32
t

100

104

108

‖x
t+

1
−
x
∗ ‖

noiseless quadratic
γ−1

1:T

γ−1
T :1

1/M

fractal η1:T

fractal ηT :1

0 8 16 24 32
t

noisy quadratic

Figure 3: The optimization trajectories of various permuta-
tions of the Chebyshev step sizes. Left: In the noiseless case,
the final iterates coincide, but xt can wander exponentially
far away. Right: With (i.i.d. Gaussian) noise, there is a
tradeoff between ‖xt‖ and the stability of xout.

We motivate our first new results using an additive noise
model; this is a refinement of (Lebedev & Finogenov, 1971;
1973; 1976), which are only concerned with preventing
exponential blowup of negligible perturbations at the nu-
merical noise floor. We consider adding a sequence of
perturbations (ξ1, . . . , ξT) to gradient descent (Equation 1):

{xt+1 ← xt − ηt∇f(xt) + ξt}Tt=1. (2)

Note that this captures an inexact (e.g. stochastic) gradient
oracle ∇̃f(·), in which case

ξt = ηt(∇f(xt)− ∇̃f(xt)). (3)

Unrolling the recursion, we get:

x2 − x∗ = (I − η1A)(x1 − x∗) + ξ1,

x3 − x∗ = (I − η2A) [(I − η1A)(x1 − x∗) + ξ1] + ξ2,

· · ·

xt − x∗ = p1:t−1(A)(x1 − x∗) +

t∑
t′=2

pt′:t−1(A)ξt′−1,

where we have defined the infix polynomial as the (possibly
empty) product

ps:t(A) :=

t∏
τ=s

(I − ητA).

Lebedev & Finogenov (1971) give bounds on the norms of
the prefix polynomials p1:t and suffix polynomials ps:T :

Theorem 8 (Prefix and suffix bounds). For a fractal Cheby-
shev schedule with m,M, T , and all 1 ≤ s ≤ t ≤ T :

(i) ‖p1:t‖[m,M] ≤ κ̂−1
4min(bits(t))

∏
j∈bits′(t)

2
1+T2j (θ) ;

(ii) ‖ps:T ‖[m,M] ≤
∏
j∈bits(T+1−s)

2
1+T2j (θ) ,

where bits(n) denotes the sequence j1 > j2 > . . . > jk
of indices in the binary expansion of n, and bits′(n) :=

bits(n)\jk. For example, when n = 6 = 22+21, bits(n) =
{2, 1}, and bits′(n) = {2}.

Let V(·),V ′(·) denote the bounds from Theorem 8, so that
‖p1:t‖[m,M] ≤ V ′(t), and ‖ps:T ‖[m,M] ≤ V(T + 1− s).

Notice that V(t) ≤ 2
1+Tbt/2c(θ)

≤ e−Ω(t)/
√
κ̂ for all

t ≥ 1, and V ′(t) ≤ κ̂V(t).

To fully understand the propagation of ξt through Equa-
tion 2, we provide bounds on the infix polynomial norms:

Theorem 9 (Infix polynomial bounds). For the
fractal Chebyshev schedule with m,M, T , and all
1 ≤ s ≤ t ≤ T :

‖ps:t‖[m,M] ≤ V(ζ + 1− s) · V ′(t− ζ),

where ζ is the index such that s− 1 ≤ ζ ≤ t and ζ, ζ + 1
differ at the most significant bit.

Then, analyzing the decay of V,V ′, we derive cumulative
error bounds:

Theorem 10 (Infix series bounds). For a fractal Chebyshev
schedule with m,M, T , and all 1 ≤ s ≤ t ≤ T :

t∑
t′=s

‖pt′:t‖[m,M] ≤ O(κ̂1+ 1
ln 4 log κ̂) = o

(
κ̂1.73

)
.

This bound, a sum of up to T terms, is independent of T .

These require generalizations of the combinatorial proofs for
Theorem 8, presented (along with more precise statements)
in Appendices D.2 and D.3.

3.4. Implications for gradient descent

Theorem 10 translates to the following end-to-end statement
about gradient descent with the fractal schedule:

Corollary 11. Suppose 0 < m ≤ λmin ≤ λmax ≤ M .
Then, gradient descent with the fractal Chebyshev schedule
of length T , and perturbations (as in Equation 2) such that
‖ξt‖ ≤ ε, outputs iterates xt satisfying

‖xt+1 − x∗‖ ≤ ‖p1:t‖[m,M] · ‖x1 − x∗‖+ o(κ̂1.73) · ε.

Recall that Theorems 8 and 3 guarantee

‖p1:t‖[m,M] ≤ e−Ω(T)·log(κ̂)/
√
κ̂ ;

‖p1:T ‖[m,M] ≤ e−Ω(T)/
√
κ̂.

The fractal schedule allows the stability factor to be inde-
pendent of T . When the perturbations arise from noisy
gradients (as in Equation 3), so that each ξt is ηtε-bounded,
this factor becomes o(κ̂2.73).

Acceleration via Fractal Learning Rate Schedules

Provable benefit of negative progress. A striking fact
about the fractal Chebyshev schedule is that this non-
adaptive method provably beats the minimax convergence
rate of line search, the most fundamental adaptive algorithm
in this setting (Boyd & Vandenberghe, 2004):

η
(ls)
t := arg min

η ≥ 0
f(xt − η∇f(xt)). (4)

Proposition 12 (No acceleration from line search). On a
strongly convex quadratic objective f(x) = 1

2x
>Ax+ b>x,

let {xt} be the sequence of iterates of gradient descent with
the adaptive learning rate schedule η(ls)

t from Equation 4.
Then, for each A, b, there exists a setting of x1 such that

‖xt+1 − x∗‖ ≥
(

1− 1

Ω(κ)

)T
· ‖x1 − x∗‖ , ∀t ≥ 1.

This is a classic fact; for a complete treatment, see Sec-
tion 3.2.2 of (Kelley, 1999). In the context of our results, it
shows that greedily selecting the locally optimal learning
rates is provably suboptimal, even compared to a feedback-
independent policy.

Adaptive estimation of the local loss curvature is an oft-
attempted approach, amounting to finding the best conserva-
tive step size 1

M . Proposition 12 suggests that although such
methods have numerous advantages, greedy local methods
can miss out on acceleration. The fact that acceleration
can be obtained from carefully scheduled overshooting is
reminiscent of simulated annealing (Aarts & Korst, 1989),
though we could not find any rigorous connections.

Comparison with momentum. We stress that this form
of acceleration does not replace or dominate momentum.
The dependence of the stability term on κ̂ is suboptimal
(Devolder et al., 2014). In exchange, we get a memory-
less acceleration algorithm: gradient descent has no aux-
iliary variables or multi-term recurrences, so that xt fully
specifies the state. This bypasses the subtleties inherent in
restarting stateful optimizers (O’Donoghue & Candes, 2015;
Loshchilov & Hutter, 2016).

Finally, our theory (especially Theorem 14) implies that
experiments attempting to probe the acceleration benefits
of momentum might be confounded by the learning rate
schedule, even in the simplest of settings (thus, certainly
also in more complicated settings, like deep learning).

3.5. Brief overview of proof ideas

Figure 3 suggests that there is a tradeoff between taking
large Ω(1/m) steps for acceleration vs. small O(1/M)
steps for stability. To get acceleration, we must take all of
the large steps in the schedule. However, we must space
them out: taking k = o(T) of the largest steps consecutively

incurs an exponential blowup in the infix polynomial:

k∏
i=1

∥∥∥∥(1− λ

γi

)∥∥∥∥
[m,M]

≈
∥∥∥∥∥
(

1− λ

m

)k∥∥∥∥∥
[m,M]

= (κ̂− 1)
k
.

The difficulty arises from the fact that there are not enough
small steps in the schedule, so that a large step will need
to be stabilized by internal copies of Chebyshev iteration.
This is why the fractal schedule is necessary. Theorem 9
shows that this is surprisingly possible: the fractal schedule
is only as unstable as the largest single step.

This intuition does not get us very far towards an actual
proof: the internal copies of Chebyshev iteration, which
form a complete binary tree, are “skewed” in a way that is
sometimes better, sometimes worse. Isolating a combina-
torial tree exchange lemma used to prove Theorem 8, we
can iteratively swap two special infix polynomials with two
others, and localize “bad skewness” to only one large step.
Theorem 9 follows from decomposing each infix into two
infixes amenable to the tree exchange procedure. Theo-
rem 10 follows by combining Theorem 9 with sharpened
generalizations of the original paper’s series bounds.

The proofs involve delicate trigonometric inequalities and
various interesting facts about the geometry of polynomials.
Appendices B, C, and D build up to self-contained proofs.

4. Extensions and variants
Next, we explore some theoretically justified variants.

4.1. Useful transformations of the fractal schedule

Reversing the schedule. Notice that the first step η1 is
the largest step in the schedule. This might not be desirable
when ξt is proportional to ‖x− x∗‖ (like in linear regression
with minibatch SGD noise). It is a simple consequence of
the symmetries in the main theorems that reversing the
fractal Chebyshev schedule produces a contractive variant:

Proposition 13. Suppose we run gradient descent with the
reversed fractal Chebyshev schedule σT (T + 1− t). Then:

(i) For any 1 ≤ t < t′ ≤ T , we have

‖p1:t‖[m,M] ≤ ‖p1:t′‖[m,M] ≤ 1,

where ‖·‖ denotes the corresponding suffix norm bound
from Theorem 8 (ii).

(ii) The bounds from Theorem 8 are swapped: replace
(p1:t, ps:T)→ (pT+1−t:T , p1:T+1−s).

(iii) Theorem 9 holds, swapping V ↔ V ′. Theorem 10
holds.

Acceleration via Fractal Learning Rate Schedules

Concatenating schedules. One can also repeat the fractal
Chebyshev schedule indefinitely.4 Note that each infix poly-
nomial of a repeated schedule can be written as a product
of one prefix p1:t, one suffix ps:T , and a power of p1:T , so
stability bounds analogous to Theorems 9 and 10 follow
straightforwardly. It is also possible to concatenate sched-
ules with different lengths T . Choosing T to be successive
powers of 2, one obtains an infinitely long schedule suitable
for unknown time horizons.

4.2. Conservative overstepping and partial acceleration

In this section, we decouple the eigenvalue range
[λmin, λmax] from the Chebyshev node range [m,M] used
in constructing the schedule. This can simply arise from
an incorrect estimation of the eigenvalue range. However,
more interestingly, if we think of [m,M] as purposefully
omitting the lower spectrum of A (and thus taking smaller
large steps), this allows us to interpolate between the fractal
Chebyshev schedule and the vanilla constant learning rate.

Easy cases. If m < λmin or M > λmax, then [m,M] is
still an interval containing the spectrum of A; it is simply
the case that convergence rates and stability bounds will
depend on a worse κ̂ > κ. On the other hand, if M < λmax,
the residual blows up exponentially.

The subtle case is when m > λmin, when we are over-
stepping with restraint, trading off acceleration for stability
via more conservative step sizes. This requires us to rea-
son about ‖p‖[λmin,M] when p was constructed to shrink
‖p‖[m,M]. Analyzing this case, we get partial acceleration:

Theorem 14. Given a quadratic objective with matrix A
and 0 < λmin ≤ m ≤ λmax ≤ M , gradient descent with
the Chebyshev step sizes results in the following convergence
guarantee:

‖xout − x∗‖ ≤ 2
(
1− φ−1(λmin,m,M)

)T · ‖x1 − x∗‖,

with

φ−1(λmin,m,M)

:= 2 · λmin +
√
Mm−

√
(M − λmin)(m− λmin)

(
√
M +

√
m)2

.

This is an interpolation between the standard and accelerated
convergence rates of O(κ log(1/ε)) and O(

√
κ log(1/ε)).

Figure 4 shows the shape of φ for m ∈ [λmin,M], as it
ranges from ∼ √κ→ κ.

4This is known as a cyclic iterative method, and was in fact the
original motivation for (Lebedev & Finogenov, 1971).

0.00 0.01 0.25 0.50 0.75 1.00
lower spectral estimate m

0

50

100

decay time φ

0 32 64 96 128
t

0

50

100

150
step sizes γ−1

t

m < λmin

m = λmin

m = M

Figure 4: Summary of the discussion in Section 4.2. Subop-
timal decay times φ(λmin = 0.01,m,M = 1) interpolate
between the standard and accelerated rates. Green curves
correspond to settings of m < λmin where Theorem 3 ap-
plies; notice the distorted horizontal scale.

4.3. Existence of clairvoyant non-adaptive schedules

Finally, we present one more view on the provable power of
tuning (i.e. searching globally for) a learning rate schedule
on a fixed problem instance. An ambitious benchmark is
the conjugate gradient method (Hestenes & Stiefel, 1952),
which is optimal for every (rather than the worst-case)
choice of A, b. That is, at iteration t, it outputs

xt+1 := arg min
deg p ≤ t
p(0)=1

‖p(A)(x1 − x∗)‖A ,

where ‖x‖A :=
√
x>Ax. This can be much stronger than

the guarantee from Theorem 3 (e.g. when the eigenvalues of
A are clustered). In Appendix E.3, we prove that there are
non-adaptive (but instance-dependent) learning rate sched-
ules that compete with conjugate gradient:

Theorem 15 (Conjugate gradient schedule; informal). For
every problem instance (A, b), there is a learning rate sched-
ule {ηt} for gradient descent, with each ηt ∈ [1

λmax
, 1
λmin

],
such that xout is the output of conjugate gradient.

5. Beyond convex quadratics
5.1. General convex objectives: a counterexample

A mysterious fact about acceleration is that some algorithms
and analyses transfer from the quadratic case to general
convex functions, while others do not. (Lessard et al., 2016)
exhibit a smooth and strongly convex non-quadratic f for
which Polyak’s momentum gets stuck in a limit cycle.

For us, f(x) = log cosh(x) + 0.01x2 serves as a one-
dimensional “proof by simulation” that gradient descent
with the fractal Chebyshev schedule can fail to converge.
This is shown in Appendix F.2; note that this is a tiny in-
stance of ridge logistic regression.

Acceleration via Fractal Learning Rate Schedules

5.2. Non-convex objectives: a no-go

None of this theory carries over to worst-case non-convex f :
the analogue of Theorem 15 is vacuously strong. We point
out that global optimization of the learning rate schedule is
information-theoretically intractable.

Proposition 16 (Non-convex combination lock; informal).
For every “passcode” {η∗1 , . . . , η∗T } and δ > 0, there is a
smooth non-convex optimization problem instance (f(·), x1)
for which the final iterate xout of gradient descent is an 1-
approximate global minimum only if

|ηt − η∗t | ≤ δ, ∀t = 1, . . . , T.

A formal statement and proof are given in Appendix E.4.

5.3. More heuristic building blocks

With Polyak momentum as the most illustrious example, an
optimizer can be very useful beyond its original theoretical
scope. We present some more ideas for heuristic variants
(unlike the theoretically justified ones from Section 4):

Cheap surrogates for the fractal schedule. The worst-
case guarantees for Chebyshev methods depend sensitively
on the choice of nodes. However, beyond worst-case objec-
tives, it might suffice to replace {γ−1

t } with any similarly-
shaped distribution (like the triangular one considered by
(Smith, 2017)), and σ with any sequence that sufficiently
disperses the large steps. We show in Appendix E.5 that ac-
celeration cannot arise from the simple cyclic schedule from
(Oymak, 2021). An intriguing question is whether adap-
tive gradient methods or the randomness of SGD implicitly
causes partial acceleration, alongside other proposed “side
effect” mechanisms (Keskar et al., 2016; Jin et al., 2017;
Staib et al., 2019).

Inserting slow steps. We can insert any number of steps
η ∈ [0, 2

M] at any point in a schedule without worsening
stability or convergence, because ‖(1− ηλ)‖[m,M] ≤ 1.
That is, ‖ps′:t′‖ in the supersequence is bounded by the cor-
responding ‖ps:t‖ in the original schedule, and Theorems 9
and 10 apply. A special case of this is warmup or burn-in:
take any number of small steps at the beginning.

Another option is to insert the small steps cyclically: notice
from Propositions 6 (ii) and 7 (i) that the steps {ηt} come
in “fast-slow” pairs: an odd step overshoots, and an even
step corrects it. This suggests further heuristics, like the
following “Chebyshevian waltz”: in minibatch SGD, run
triplets of iterations with step sizes (η2t−1, η2t,

1
M).5 In

5In non-GPU-bound regimes (Choi et al., 2019; Agarwal et al.,
2020a) and deep RL, one can sometimes take these steps for free,
without causing a time bottleneck.

0 128 256 384 512
iteration t

10−7

10−4

10−1

lo
gi

st
ic

lo
ss

constant lr

GD

Nesterov

0 128 256 384 512
iteration t

fractal ηt

GD(ηT :1)

Figure 5: Logistic regression/MNIST training loss curves.
Left: Standard algorithms, with constant (more opaque =
larger) learning rates. Right: A fractal Chebyshev schedule.

0 50 100 150 200
epoch

10−1

100

101

training loss

const lr
fractal ηt

0 16 32 48 64
iteration t

0.0

0.1

0.2

learning rates

Figure 6: ResNet-18/CIFAR-10 training with batch size
8192 and a repeated T = 8 fractal Chebyshev schedule.
Left: Training loss curves. Right: Learning rates; the sched-
ule pokes through the edge of stability (magenta and red)
without destabilizing training.

theory, this degrades the worst-case convergence rate by a
constant factor, but improves stability by a constant factor.

6. Experiments
6.1. Convex problems and non-local progress

In spite of the simple negative result in Section 5.1, we find
that the fractal Chebyshev schedule can exhibit accelerated
convergence beyond quadratic objectives. Figure 5 shows
training curves for logistic regression for MNIST classifi-
cation; details are in Appendix F.3. We leave a theoretical
characterization of the schedule’s acceleration properties on
general convex functions to future work; this may require
further assumptions on “natural” problem instances beyond
minimax bounds.

6.2. Beyond the edge of stability in deep learning

We provide a small set of deep learning experiments, finding
that the fractal Chebyshev schedule can overstep the empir-
ical “edge of stability” (i.e. the largest constant multiplier
on the learning rate for which training does not diverge).
Figure 6 gives an overview of these findings; details are in
Appendix F.4.

Estimating the scale of λmax(∇2f) is an old paradigm for
selecting learning rates (LeCun et al., 1992; Schaul et al.,

Acceleration via Fractal Learning Rate Schedules

2013); there are many proposed mechanisms for the success
of larger learning rates. Our theory (especially Theorem 14)
and experiments point to the possibility of time-varying
schedules to enable larger learning rates, on a much finer
scale than cyclic restarts (Loshchilov & Hutter, 2016; Smith,
2017; Fu et al., 2019). A nascent line of work also chal-
lenges the classical ηt ∼ 1/λmax wisdom from an empirical
angle (Cohen et al., 2021), finding a phenomenon dubbed
progressive sharpening during normal (smooth ηt) training.

End-to-end improvements on training benchmarks are out-
side the scope of this work: the learning rate schedule in-
teracts with generalization (Jiang et al., 2020), batch nor-
malization + weight decay (Li & Arora, 2019), batch size
(Smith et al., 2018), adaptive preconditioners (Agarwal et al.,
2020a) and now (from this work) acceleration. This adds
yet one more perspective on why it is so difficult to stan-
dardize experimental controls and ablations in this space.
Analogously, it has been proposed that momentum acts as a
variance reduction mechanism (Li et al., 2017; Cutkosky &
Orabona, 2019), alongside its classical role in acceleration.

As an invitation to try these ideas in various experimental
settings, we provide in Appendix A some Python code to
generate Chebyshev learning rates and fractal schedules.

7. Conclusion
We have revisited a lesser-known acceleration algorithm
which uses a fractal learning rate schedule of reciprocal
Chebyshev nodes, proved a stronger stability guarantee for
its iterates, and developed some practical variants. Our ex-
periments demonstrate promising empirical behaviors of the
schedule beyond low-noise quadratics. We hope that this
work provides new foundations towards investigating lo-
cal optimization algorithms which take carefully scheduled
“leaps of faith”.

Open questions. We conclude with some natural follow-
up questions for future work:

• Find “reasonable”6 (computationally efficient, oracle-
efficient, and perturbation-stable) adaptive learning
rate schedulers with accelerated convergence rates.
What are the acceleration properties of commonly-
used adaptive step size heuristics (Duchi et al., 2011;
Kingma & Ba, 2014; Ward et al., 2019)?

• Do there exist learning rate schedules (adaptive or non-
adaptive) which obtain the accelerated rate for general
strongly convex f , as opposed to only quadratics?

6One example which is unreasonable in every way: run conju-
gate gradient ahead of time, maintaining monomial-basis expan-
sions of the A-orthogonal basis. Compute the roots of the final
polynomial, and use their inverses as a learning rate schedule.

Acknowledgments
We are grateful to Sham Kakade for helpful discussions
and pointers to prior literature. Special thanks go to Maria
Ratskevich for helping with the translation of (Lebedev &
Finogenov, 1971).

References
Aarts, E. and Korst, J. Simulated annealing and Boltzmann

machines: a stochastic approach to combinatorial opti-
mization and neural computing. John Wiley & Sons, Inc.,
1989.

Agarwal, N., Anil, R., Hazan, E., Koren, T., and Zhang, C.
Disentangling adaptive gradient methods from learning
rates. arXiv preprint arXiv:2002.11803, 2020a.

Agarwal, N., Anil, R., Koren, T., Talwar, K., and Zhang,
C. Stochastic optimization with laggard data pipelines.
In Advances in Neural Information Processing Systems,
volume 33, 2020b.

Aitken, A. C. XXV.—On Bernoulli’s numerical solution of
algebraic equations. Proceedings of the Royal Society of
Edinburgh, 46:289–305, 1927.

Allen-Zhu, Z. and Hazan, E. Optimal black-box reduc-
tions between optimization objectives. arXiv preprint
arXiv:1603.05642, 2016.

Allen-Zhu, Z. and Orecchia, L. Linear coupling: An ulti-
mate unification of gradient and mirror descent. arXiv
preprint arXiv:1407.1537, 2014.

Anderson, D. G. Iterative procedures for nonlinear integral
equations. Journal of the ACM (JACM), 12(4):547–560,
1965.

Bach, F. Machine learning research blog,
2020. URL https://francisbach.com/
acceleration-without-pain/.

Barré, M., Taylor, A., and d’Aspremont, A. Complexity
guarantees for polyak steps with momentum. In Confer-
ence on Learning Theory, pp. 452–478. PMLR, 2020.

Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. Neural
optimizer search with reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 459–468.
PMLR, 2017.

Bottou, L. and Bousquet, O. The tradeoffs of large scale
learning. In Proceedings of the 20th International Con-
ference on Neural Information Processing Systems, pp.
161–168, 2007.

https://francisbach.com/acceleration-without-pain/
https://francisbach.com/acceleration-without-pain/

Acceleration via Fractal Learning Rate Schedules

Bousquet, O. and Elisseeff, A. Stability and generalization.
The Journal of Machine Learning Research, 2:499–526,
2002.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge University Press, 2004.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Bubeck, S. Convex optimization: Algorithms and com-
plexity. Foundations and Trends in Machine Learning, 8,
2017.

Bubeck, S. Nemirovski’s acceleration (blog
post), 2019. URL https://blogs.
princeton.edu/imabandit/2019/01/09/
nemirovskis-acceleration/.

Bubeck, S., Lee, Y. T., and Singh, M. A geometric alter-
native to nesterov’s accelerated gradient descent. arXiv
preprint arXiv:1506.08187, 2015.

Bubeck, S., Jiang, Q., Lee, Y. T., Li, Y., and Sidford, A.
Near-optimal method for highly smooth convex optimiza-
tion. In Conference on Learning Theory, pp. 492–507.
PMLR, 2019.

Chebyshev, P. L. Théorie des mécanismes connus sous le
nom de parallélogrammes. Imprimerie de l’Académie
impériale des sciences, 1853.

Chen, Y., Jin, C., and Yu, B. Stability and convergence trade-
off of iterative optimization algorithms. arXiv preprint
arXiv:1804.01619, 2018.

Choi, D., Passos, A., Shallue, C. J., and Dahl, G. E. Faster
neural network training with data echoing. arXiv preprint
arXiv:1907.05550, 2019.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar,
A. Gradient descent on neural networks typically oc-
curs at the edge of stability. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=jh-rTtvkGeM.

Cutkosky, A. and Orabona, F. Black-box reductions for
parameter-free online learning in banach spaces. In Con-
ference On Learning Theory, pp. 1493–1529. PMLR,
2018.

Cutkosky, A. and Orabona, F. Momentum-based vari-
ance reduction in non-convex sgd. arXiv preprint
arXiv:1905.10018, 2019.

d’Aspremont, A., Scieur, D., and Taylor, A. Acceleration
methods. arXiv preprint arXiv:2101.09545, 2021.

Devolder, O., Glineur, F., and Nesterov, Y. First-order
methods of smooth convex optimization with inexact
oracle. Mathematical Programming, 146(1):37–75, 2014.

Dozat, T. Incorporating nesterov momentum into adam.
2016.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Flanders, D. A. and Shortley, G. Numerical determination
of fundamental modes. Journal of Applied Physics, 21
(12):1326–1332, 1950.

Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., and Carin,
L. Cyclical annealing schedule: A simple approach to
mitigating kl vanishing. arXiv preprint arXiv:1903.10145,
2019.

Gavurin, M. K. The use of polynomials of best approxima-
tion for improving the convergence of iterative processes.
Uspekhi Matematicheskikh Nauk, 5(3):156–160, 1950.

Ge, R., Kakade, S. M., Kidambi, R., and Netrapalli, P. The
step decay schedule: A near optimal, geometrically de-
caying learning rate procedure for least squares. Ad-
vances in Neural Information Processing Systems, 32:
14977–14988, 2019.

Giladi, N., Nacson, M. S., Hoffer, E., and Soudry, D. At
stability’s edge: How to adjust hyperparameters to pre-
serve minima selection in asynchronous training of neural
networks? In International Conference on Learning Rep-
resentations, 2019.

Gorbunov, E., Hanzely, F., and Richtárik, P. A unified
theory of sgd: Variance reduction, sampling, quantization
and coordinate descent. In International Conference on
Artificial Intelligence and Statistics, pp. 680–690. PMLR,
2020.

Gottlieb, D. and Orszag, S. A. Numerical analysis of spec-
tral methods: theory and applications. SIAM, 1977.

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize
better: Stability of stochastic gradient descent. In Interna-
tional Conference on Machine Learning, pp. 1225–1234.
PMLR, 2016.

Hazan, E. and Kakade, S. Revisiting the polyak step size.
arXiv preprint arXiv:1905.00313, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016.

https://blogs.princeton.edu/imabandit/2019/01/09/nemirovskis-acceleration/
https://blogs.princeton.edu/imabandit/2019/01/09/nemirovskis-acceleration/
https://blogs.princeton.edu/imabandit/2019/01/09/nemirovskis-acceleration/
https://openreview.net/forum?id=jh-rTtvkGeM
https://openreview.net/forum?id=jh-rTtvkGeM

Acceleration via Fractal Learning Rate Schedules

Hestenes, M. R. and Stiefel, E. Methods of conjugate gra-
dients for solving linear systems. Journal cf Research of
the National Bureau of Standards, 49(6), 1952.

Higham, N. J. Accuracy and stability of numerical algo-
rithms. SIAM, 2002.

Jiang, Z., Zhang, C., Talwar, K., and Mozer, M. C. Char-
acterizing structural regularities of labeled data in over-
parameterized models. arXiv e-prints, pp. arXiv–2002,
2020.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Interna-
tional Conference on Machine Learning, pp. 1724–1732.
PMLR, 2017.

Kelley, C. T. Iterative methods for optimization. SIAM,
1999.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lan, G. An optimal method for stochastic composite op-
timization. Mathematical Programming, 133(1-2):365–
397, 2012.

Lebedev, V. and Finogenov, S. Solution of the parameter
ordering problem in chebyshev iterative methods. USSR
Computational Mathematics and Mathematical Physics,
13(1):21–41, 1973.

Lebedev, V. and Finogenov, S. Utilization of ordered cheby-
shev parameters in iterative methods. USSR Computa-
tional Mathematics and Mathematical Physics, 16(4):
70–83, 1976.

Lebedev, V. and Finogenov, S. On construction of the stable
permutations of parameters for the chebyshev iterative
methods. part i. Russian Journal of Numerical Analysis
and Mathematical Modelling, 17(5):437–456, 2002.

Lebedev, V. and Finogenov, S. On construction of the stable
permutations of parameters for the chebyshev iterative
methods. part ii. Russian Journal of Numerical Analysis
and Mathematical Modelling, 19(3):251–263, 2004.

Lebedev, V. I. and Finogenov, S. The order of choice of
the iteration parameters in the cyclic Chebyshev iteration
method. Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki, 11(2):425–438, 1971.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

LeCun, Y., Simard, P. Y., and Pearlmutter, B. Automatic
learning rate maximization by on-line estimation of the
hessian’s eigenvectors. In Proceedings of the 5th Inter-
national Conference on Neural Information Processing
Systems, pp. 156–163, 1992.

Lessard, L., Recht, B., and Packard, A. Analysis and de-
sign of optimization algorithms via integral quadratic
constraints. SIAM Journal on Optimization, 26(1):57–95,
2016.

Li, Q., Tai, C., and Weinan, E. Stochastic modified equations
and adaptive stochastic gradient algorithms. In Interna-
tional Conference on Machine Learning, pp. 2101–2110.
PMLR, 2017.

Li, Y., Wei, C., and Ma, T. Towards explaining the regu-
larization effect of initial large learning rate in training
neural networks. arXiv preprint arXiv:1907.04595, 2019.

Li, Z. and Arora, S. An exponential learning rate sched-
ule for deep learning. arXiv preprint arXiv:1910.07454,
2019.

Li, Z. and Li, J. A fast anderson-chebyshev acceleration
for nonlinear optimization. In International Conference
on Artificial Intelligence and Statistics, pp. 1047–1057.
PMLR, 2020.

Li, Z., Lyu, K., and Arora, S. Reconciling modern deep
learning with traditional optimization analyses: The in-
trinsic learning rate. arXiv preprint arXiv:2010.02916,
2020.

Lin, H., Mairal, J., and Harchaoui, Z. Catalyst accelera-
tion for first-order convex optimization: from theory to
practice. Journal of Machine Learning Research, 18(1):
7854–7907, 2018.

Liu, D. C. and Nocedal, J. On the limited memory bfgs
method for large scale optimization. Mathematical pro-
gramming, 45(1):503–528, 1989.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Mason, J. C. and Handscomb, D. C. Chebyshev polynomials.
CRC press, 2002.

Monteiro, R. D. and Svaiter, B. F. An accelerated hybrid
proximal extragradient method for convex optimization
and its implications to second-order methods. SIAM Jour-
nal on Optimization, 23(2):1092–1125, 2013.

Acceleration via Fractal Learning Rate Schedules

Nesterov, Y. Accelerating the cubic regularization of new-
ton’s method on convex problems. Mathematical Pro-
gramming, 112(1):159–181, 2008.

Nesterov, Y. E. A method of solving a convex program-
ming problem with convergence rate o(kˆ2). In Dok-
lady Akademii Nauk, volume 269, pp. 543–547. Russian
Academy of Sciences, 1983.

Orabona, F. and Tommasi, T. Training deep networks with-
out learning rates through coin betting. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 2157–2167, 2017.

Oymak, S. Super-convergence with an unstable learning
rate. arXiv preprint arXiv:2102.10734, 2021.

O’Donoghue, B. and Candes, E. Adaptive restart for accel-
erated gradient schemes. Foundations of computational
mathematics, 15(3):715–732, 2015.

Pedregosa, F. and Scieur, D. Acceleration through spectral
density estimation. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 7553–7562. PMLR, 13–18 Jul
2020. URL http://proceedings.mlr.press/
v119/pedregosa20a.html.

Polyak, B. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964a. ISSN 0041-
5553.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964b.

Polyak, B. T. Introduction to optimization. optimization
software. Inc., Publications Division, New York, 1, 1987.

Richardson, L. F. The approximate arithmetical solution
by finite differences of physical problems involving dif-
ferential equations, with an application to the stresses
in a masonry dam. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 210(459-470):
307–357, 1911.

Sachdeva, S. and Vishnoi, N. K. Faster algorithms via
approximation theory. Theoretical Computer Science, 9
(2):125–210, 2013.

Schaul, T., Zhang, S., and LeCun, Y. No more pesky learn-
ing rates. In International Conference on Machine Learn-
ing, pp. 343–351. PMLR, 2013.

Scieur, D. and Pedregosa, F. Universal asymptotic opti-
mality of polyak momentum. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 8565–8572. PMLR,
13–18 Jul 2020. URL http://proceedings.mlr.
press/v119/scieur20a.html.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of
data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Sidi, A., Ford, W. F., and Smith, D. A. Acceleration of
convergence of vector sequences. SIAM Journal on Nu-
merical Analysis, 23(1):178–196, 1986.

Smith, L. N. Cyclical learning rates for training neural net-
works. In 2017 IEEE winter conference on applications
of computer vision (WACV), pp. 464–472. IEEE, 2017.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V.
Don’t decay the learning rate, increase the batch size. In
International Conference on Learning Representations,
2018.

Staib, M., Reddi, S., Kale, S., Kumar, S., and Sra, S. Es-
caping saddle points with adaptive gradient methods. In
International Conference on Machine Learning, pp. 5956–
5965. PMLR, 2019.

Stiefel, E. L. Kernel polynomial in linear algebra and their
numerical applications. NBS Applied Math. Ser., 49:1–22,
1958.

Su, W., Boyd, S. P., and Candes, E. J. A differential equa-
tion for modeling nesterov’s accelerated gradient method:
Theory and insights. In NIPS, volume 14, pp. 2510–2518,
2014.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Vishnoi, N. K. Laplacian solvers and their algorithmic
applications. Theoretical Computer Science, 8(1-2):1–
141, 2012.

Ward, R., Wu, X., and Bottou, L. Adagrad stepsizes: Sharp
convergence over nonconvex landscapes. In Interna-
tional Conference on Machine Learning, pp. 6677–6686.
PMLR, 2019.

Wibisono, A. and Wilson, A. C. On accelerated methods in
optimization. arXiv preprint arXiv:1509.03616, 2015.

http://proceedings.mlr.press/v119/pedregosa20a.html
http://proceedings.mlr.press/v119/pedregosa20a.html
http://proceedings.mlr.press/v119/scieur20a.html
http://proceedings.mlr.press/v119/scieur20a.html

Acceleration via Fractal Learning Rate Schedules

Wynn, P. On a device for computing the e m (s n) transfor-
mation. Mathematical Tables and Other Aids to Compu-
tation, pp. 91–96, 1956.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Young, D. On richardson’s method for solving linear sys-
tems with positive definite matrices. Journal of Mathe-
matics and Physics, 32(1-4):243–255, 1953.

Zhang, G., Li, L., Nado, Z., Martens, J., Sachdeva, S., Dahl,
G. E., Shallue, C. J., and Grosse, R. Which algorithmic
choices matter at which batch sizes? Insights from a noisy
quadratic model. arXiv preprint arXiv:1907.04164, 2019.

Acceleration via Fractal Learning Rate Schedules

A. Code snippets
Below, we provide some Python code to compute the Chebyshev step sizes {1/γt}, and the permutation σT that generates
the fractal Chebyshev schedule {ηt}.

import numpy as np

def cheb_steps(m, M, T):
C, R = (M+m)/2., (M-m)/2.
thetas = (np.arange(T)+0.5)/T * np.pi
return 1./(C - R*np.cos(thetas))

def cheb_perm(T):
perm = np.array([0])
while len(perm) < T:

perm = np.vstack([perm, 2*len(perm)-1-perm]).T.flatten()
return perm

steps = cheb_steps(0.1, 1, 8) # [9.20, 5.69 ... 1.01]
perm = cheb_perm(8) # [0, 7, 3, 4, 1, 6, 2, 5]
steps[perm] # [9.20, 1.01 ... 1.25]

B. Notation and background on Chebyshev polynomials
First, we gather the notation and classic results on Chebyshev polynomials that will be useful for the proofs in Appendices C,
D, and E.

B.1. Definitions

To review the notation in Section 2.3, for given values of m,M, T , we have defined the following:

• The shifted and scaled Chebyshev polynomial construction: set

p(λ) :=
TT (z)

TT (θ)
where z :=

M +m− 2λ

M −m , θ :=
M +m

M −m = 1 +
2m

M −m.

We will keep using the auxiliary notation from above, which is useful in switching between different coordinate systems
using the bijection λ↔ z which allows us to switch between the horizontal scales of p(λ) and its corresponding T (z).
This bijection maps λ ∈ [m,M] to z ∈ [−1, 1]. Note that θ is the value of z corresponding to applying the above
bijection to λ = 0.

• A characterization of p by its roots:

γt :=
M +m

2
− M −m

2
cos

(t− 1
2)π

T
, t = 1, . . . , T.

If m = λmin(A) and M = λmax(A), then M/m coincides with κ := λmax(A)/λmin(A), the condition number of the
matrix A. Then, we can think of θ = 1 + 2

κ−1 .

Next, we review some well-known facts about Chebyshev polynomials beginning with the definition.

Definition 17 (Chebyshev polynomials (Chebyshev, 1853)). For each n ≥ 0, the Chebyshev polynomials of the first kind
Tn(z) are defined by the following recurrence:

• T0(z) = 1.

• T1(z) = z.

Acceleration via Fractal Learning Rate Schedules

• Tn(z) = 2zTn−1(z)− Tn−2(z), for all n ≥ 2.

The equivalence of the above with the alternate definition (Tn(z) = cos(n arccos z) for |z| ≤ 1) follows by verifying the
base cases and applying the cosine sum-of-angles formula.

B.2. Basic lemmas

We gather some basic lemmas used to prove the results in (Lebedev & Finogenov, 1971), which are classic.
Lemma 18 (Alternative characterizations of the Chebyshev polynomials). The following are true for all non-negative
integers n and |z| ≥ 1:

(i) Tn(z) = ± cosh(n acosh(z)). The sign is +1 when z is positive, and (−1)n when z is negative.

(ii) We have

T (z) =

(
z −
√
z2 − 1

)n
+
(
z +
√
z2 − 1

)n
2

.

Proof. (i) follows from recursively applying the identities cosh(a+b) = sinh(a) sinh(b)+cosh(a) cosh(b) and sinh2(a) =
cosh2(a) − 1. (ii) follows from (i), performing the hyperbolic substitution z = cosh(a), noticing that all odd-powered
sinh(a) terms cancel, and verifying the base cases and recurrence relation.

Combining the cos and cosh characterizations of Tn(z), we obtain the composition property: for all integers k, n ≥ 0 and
all z ∈ R,

Tkn(z) = Tk(Tn(z)).

The half-angle cosine formulas will be useful: for any α, z ∈ R, and positive even n,

cos(θ) = 2 cos2(θ/2)− 1 = 1− 2 sin2(θ/2); Tn(z) = 2T 2
n/2(z)− 1.

The third statement is true for all z, since it is the composition property with k = 2.

The key reason why we are interested in the Chebyshev polynomials is their extremal property: outside the range of their
roots, they expand faster than any other polynomial of the same degree. There are various ways to formalize this. We will
only need the following:
Lemma 19 (Expansion lower bounds). For all δ ≥ 0, each Tn satisfies the following:

(i) Tn(1 + δ) = (1+δ+
√

2δ+δ2)2n+1

2(1+δ+
√

2δ+δ2)n
≥ (1+

√
2δ)n

2 .

(ii) Tn(1 + δ) ≥ 1 + n2δ.

Proof. To prove (i) note that, using Lemma 18(ii), we have that

Tn(1 + δ) =
(1 + δ +

√
2δ + δ2)n + (1 + δ −

√
2δ + δ2)n

2
=

(1 + δ +
√

2δ + δ2)2n + 1

2(1 + δ +
√

2δ + δ2)n
,

where the last equality follows by noticing that (1 + δ −
√

2δ + δ2)−1 = (1 + δ +
√

2δ + δ2). The inequality in (i) is
concluded by noticing that

(1 + δ +
√

2δ + δ2)n + (1 + δ −
√

2δ + δ2)n

2
≥ (1 +

√
2δ)n

2
,

by dropping the positive terms. To conclude (ii), we perform a series expansion upto degree 2 to get,

(1 + δ +
√

2δ + δ2)n + (1 + δ −
√

2δ + δ2)n

2
≥ 2 + 2nδ + n(n−1)

2 (4δ + 4δ2)

2

= 1 + n2δ.

Acceleration via Fractal Learning Rate Schedules

Classic convergence rate of Chebyshev iteration. Though Theorem 3 is classic, the exact statement of the convergence
rate has several variants. For sake of completeness, we give a quick proof of the convergence rate of Chebyshev iteration
implied by the exact formula in Lemma 19 (i):
Theorem 3. Choose spectral estimates m ≤ M such that 0 < m ≤ λmin ≤ λmax ≤ M . Then, setting {ηt} to be any
permutation of {1/γt}, the final iterate of gradient descent xout satisfies the following:

‖xout − x∗‖ ≤
2ρT

1 + ρ2T
‖x1 − x∗‖ ≤ e−Ω(T)/

√
κ̂ ‖x1 − x∗‖ ,

where ρ :=
√
M−
√
m√

M+
√
m
≤ 1− Ω

(
1√
κ̂

)
.

Proof. First, assume m < M . Then, we have

‖xout − x∗‖ ≤ ‖p‖[λmin,λmax] · ‖xout − x∗‖ ≤ ‖p‖[m,M] · ‖xout − x∗‖.

So, we need to bound ‖p‖[m,M]. Setting δ = θ − 1 = 2m
M−m , notice that 1 + δ +

√
2δ + δ2 = 1/ρ. Then, using Lemma 19

(i), we have

‖p‖[m,M] = max
|z| ≤ 1

TT (z)

TT (θ)
=

1

TT (θ)
=

2ρ−T

1 + ρ−2T
=

2ρT

1 + ρ2T
,

as desired. When m = M , the inequality is trivially true because ρ and ‖p‖[m,M] are both 0.

C. Theorems and proofs from (Lebedev & Finogenov, 1971)
In the hope of bridging old algorithmic ideas from numerical methods with modern optimization for machine learning, we
present a self-contained exposition of the results and proofs from (Lebedev & Finogenov, 1971) used in this paper. This
is far from an exact translation from the original Russian-language manuscript, whose exposition is somewhat terse. We
provide some more intuitive proofs, fix some small (inconsequential) typos, change some notation to match this paper,
isolate lemmas which are useful for proving our other results, and omit some weaker and irrelevant results.

C.1. Skewed Chebyshev polynomials

First, we show an equivalent divide-and-conquer root-partitioning construction of the fractal permutation σT . To review, this
construction defines σ1 := [1], and for each T ≥ 1 a power of 2, uses the recurrence

σ2T := interlace(σT , 2T + 1− σT),

where
interlace([a1 . . . an], [b1 . . . bn]) := [a1 b1 a2 b2 . . . an bn].

Some examples are below:
σ2 = [1 2],

σ4 = [1 4 2 3],

σ8 = [1 8 4 5 2 7 3 6],

σ16 = [1 16 8 9 4 13 5 12 2 15 7 10 3 14 6 11].

Let us formalize the sense in which σ contains internal copies of Chebyshev iteration. For positive integers n and α ∈ (0, π),
let us define the skewed Chebyshev polynomials

Pn,α(z) :=
Tn(z)− cos(α)

Tn(θ)− cos(α)
,

noting that PT,π2 (z) = p(λ). If α ∈ (0, π2], then call Pn,α good and if α ∈ [π2 , π), then call Pn,α bad. We use the colours
blue and red to highlight good and bad polynomials for clarity in our proofs. Note that p(λ) is both good and bad. Next, we
note some additional facts:

Acceleration via Fractal Learning Rate Schedules

Lemma 20 (Properties of skewed Chebyshev polynomials). The following are true for all n ∈ N and α ∈ (0, π):

(i) Pn,α(z) has n real roots.

(ii) If Pn,α is good, then

‖Pn,α‖L∞([−1,1]) ≤
2

1 + Tn(θ)
.

(iii) If Pn,α is bad, then

‖Pn,α‖L∞([−1,1]) ≤
2

n2(θ − 1)
.

(iv) If n is even, then for all −1 ≤ z ≤ 1,

Pn,α(z) = Pn
2 ,
α
2

(z) · Pn
2 ,π−

α
2

(z).

Proof. (i) follows from the fact that Tn(zi) = (−1)i at zi = arccos(iπ/n), i = 0, . . . , n.

(ii) follows from the fact that |T (z)| ≤ 1, T (θ) > 1, and cos(α) ≤ 0, so that for u = 1 + cos(α) ≥ 0,

‖Pn,α‖L∞([−1,1]) ≤
1− cos(α)

Tn(θ)− cos(α)
≤ 1− cos(α) + u

Tn(θ)− cos(α) + u
=

2

1 + Tn(θ)
,

where the last inequality uses the mediant inequality.

(iii) is a weaker bound than the above, because we can’t use the mediant inequality, as − cos(α) is negative. Using part (ii)
of Lemma 19 and cos(α) ≤ 1, we get

‖Pn,α‖L∞([−1,1]) ≤
2

Tn(θ)− cos(α)
≤ 2

(1 + n2(θ − 1))− 1
.

(iv) follows from half-angle formulas and factorizing differences of squares:

Pn,α(z) =
Tn(z)− cos(α)

Tn(θ)− cos(α)
=

(2T 2
n/2(z)− 1)− (2 cos2(α2)− 1)

(2T 2
n/2(θ)− 1)− (2 cos2(α2)− 1)

=
T 2
n/2(z)− cos2(α2)

T 2
n/2(θ)− cos2(α2)

=
Tn/2(z)− cos(α2)

Tn/2(θ)− cos(α2)
· Tn/2(z) + cos(α2)

Tn/2(θ) + cos(α2)
= Pn

2 ,
α
2

(z) · Pn
2 ,π−

α
2

(z),

as claimed.

C.2. The fractal schedule splits skewed Chebyshev polynomials

In this section, we connect the skewed polynomials Pn,α to the construction of the fractal permutation σT , obtained via
recursive binary splitting. This construction will provide the basis for all the proofs regarding the fractal schedule. The
starting point for the construction is Lemma 20, which shows that when T ≥ 2 is a power of 2,

p(λ) = PT,π2 (z) = PT
2 ,
π
4

(z) · PT
2 ,

3π
4

(z).

The above splitting procedure can be recursively repeated (since T is a power of 2) on the pieces produced till we reach
degree 1 polynomials of the form P1,α for some α. Such splitting can easily be visualized via the construction of a complete
binary tree of depth log2(T) (see Figure 7), by associating to every node a polynomial of the form Pn,α and setting its left
child to be Pn/2,α/2 and right child to be Pn/2,π−α/2. Note that every non-leaf node is a product of its children by Lemma
20. The root node corresponds to the polynomial p(λ) and the leaf nodes correspond to one degree polynomials which can
be equivalently identified by its root, which are by construction the roots of polynomial p(λ).

The key fact regarding this construction is the following.

Fact 21. The fractal schedule corresponds to the ordering of the roots as generated by a pre-order traversal of the tree.

Acceleration via Fractal Learning Rate Schedules

To see this note that every time a split is made in the tree, a constraint on the pre-order traversal is placed, i.e. the roots
of the left child polynomial Pn/2,α/2 precede that of the right child polynomial Pn/2,π−α/2. It can be easily verified that
the procedure for generating σT produces an ordering of the roots γt satisfying all of these constraints; the corresponding
learning rate schedule ηt is by definition the fractal Chebyshev schedule for each T , a power of 2.

Using the above, it can be seen that every node in the tree also corresponds to a particular infix polynomial ps:t(x) which
includes all the roots corresponding to all the leaves underneath the node.

PT,π
2

PT
2
,π
4

...

P1,α1

σT (1)

P1,α2

σT (2)

...

PT
2
, 3π

4

...
...

P1,αT−1

σT (T − 1)

P1,αT

σT (T)

. . .

Figure 7: The binary tree construction for the decomposition of skewed Chebyshev polynomials. Each non-leaf node
corresponds to the product of the polynomials corresponding to its children. The root corresponds to the entire polynomial
p1:T (λ). Leaf nodes correspond to 1 degree polynomials and the pre-order traversal on the leaves induces the ordering given
by σT .

C.3. Tree partitions and tree exchanges

In this section we collect some observations regarding the tree construction, which are essential to the proofs for the bounds
on the substring polynomials.

Firstly note that in the binary tree, a node/polynomial is good (bad) if and only if it is the left (right) child of its parent. We
begin by analyzing the special case of suffix polynomials ps:T and prefix polynomials p1:s respectively.

Suffix polynomials: The following key observation follows from the tree construction.
Fact 22. Every suffix polynomial ps:T (for any s) can be written as a product of good polynomials

To see the above, consider the binary expansion of the number T + 1− s, bits(T + 1− s) = {s1, s2 . . . sk} defined by the
unique decomposition, T + 1− s = 2s1 + 2s2 + . . .+ 2sk such that s1 > s2 > . . . sk ≥ 0. We now perform the following
iterative decomposition of the polynomial ps:T ,

ps:T = ps:T1 · pT1+1:T where T1 := T − 2s1 ,

= ps:T2 · pT2:T1 · pT1+1:T where T2 := T1 − 2s2 ,

. . . ,

until we reach s : Tk, which is the empty interval. It can be seen that every intermediate polynomial pTi+1:Ti−1 produced is
a good polynomial because each one is the rightmost node at level si (i.e. with distance log2 T − si from the root node),
restricted to the subtree rooted at the lowest common ancestor of roots s through Ti−1 (setting T0 := T). An example of the
above decomposition is highlighted in Figure 8a. Combining with statement (ii) in Lemma 20, we get

‖ps:T ‖L∞([−1,1]) ≤
k∏
i=1

2

1 + T2si (θ)
(5)

Acceleration via Fractal Learning Rate Schedules

σ(2) σ(8)
p2:8

(a) Suffix decomposition (eg. p2:8) into good polynomials

σ(1) σ(6)
p1:6

(b) Prefix decomposition (e.g. p1:6) into bad polynomials before
exchange

Prefix polynomials: The prefix polynomials p1:s are more challenging to analyze, as the immediate approach of reversing
the above construction gives a decomposition into bad polynomials only.

To this end, consider the binary expansion of s = 2s1 + 2s2 + . . .+ 2sk such that s1 > s2 > . . . s1 ≥ 0. We decompose
p1:s into products in the following manner: starting with {1, . . . , s− 1}, we iteratively partition

p1:s = p1:T1
· pT1+1:s where T1 := 2s1 ,

= p1:T1
· pT1+1:T2

· pT2+1:s where T2 := T1 + 2s2 ,

. . . ,

until we reach Tk + 1 : s, which is the empty interval. Note that this partition results in all bad polynomials. An example of
the above decomposition is highlighted in Figure 8b. We can in fact exactly characterize these polynomials. Define the
angle recurrence α1 = 2s1

T · π2 and αi+1 = π−αi
2si−si+1

. It can be seen that

p1:s =

k∏
i=1

P2si ,αi . (6)

To get a tight bound for the norms of these polynomials, we require another innovation from (Lebedev & Finogenov, 1971).
This innovation can be captured as a tree exchange property that allows us to switch two bad polynomials for a good and
bad polynomial. Starting with a partition of the roots of the polynomial we want to analyze, applying this tree switching
repeatedly allows us to convert a partition with multiple bad polynomials into a set containing only one bad polynomial (and
the rest good).

To further elucidate this tree exchange trick, let us establish some notation. We will be manipulating upper bounds for norms
of Pn,a, the product of which will serve as an upper bound for a prefix or suffix polynomial. Let

Bn,α := ‖Pn,α‖L∞([−1,1]) = max
z∈[−1,1]

∣∣∣∣Tn(z)− cos(α)

Tn(θ)− cos(α)

∣∣∣∣ .
Note that the denominator of this fraction is positive independent of z. In the numerator, the maximum is achieved when
Tn(z) is either +1 or −1, depending on the sign of cos(α). When Pn,α is good, cos(α) ≤ 0, thus we have

Bn,α =
1− cos(α)

Tn(θ)− cos(α)
=

2 sin2
(
α
2

)
Tn(θ)− cos(α)

.

When Pn,α is bad, cos(α) ≥ 0, thus we have

Bn,α =
1 + cos(α)

Tn(θ)− cos(α)
=

2 cos2
(
α
2

)
Tn(θ)− cos(α)

.

Acceleration via Fractal Learning Rate Schedules

With this notation, using (6), we get that,

‖p1:s‖L∞([−1,1]) ≤
k∏
i=1

B2si ,αi .

Now, we introduce the key tool which will allow us to handle products of bad polynomials.

Lemma 23 (Tree Exchange Property). For any 0 < α < π
2 , and integers n ≥ 2, r ≥ 1, we have

Bnr,α · Br,π−αn ≤ Bnr,π−α · Br,αn .

If we view the arguments as indexing the corresponding subtrees in our construction, then the right hand side can be viewed
as exchanging a (bad) Pnr,α with its (good) sibling Pnr,π−α at the cost of exchanging Pr,π−αn with the leftmost degree-r
polynomial Pr,αn under Pnr,α (see Figure 9).

Proof. Using the derived bounds on B, our claim reduces to proving the inequality

cos2
(
α
2

)
Tnr(θ)− cos(α)

· cos2
(
π−α
2n

)
Tr(θ)− cos

(
π−α
n

) ≤ cos2
(
α
2

)
Tnr(θ) + cos(α)

· cos2
(
α
2n

)
Tr(θ)− cos

(
α
n

) ,
which is equivalent to the following (since all terms are positive).

Tnr(θ)− 1 + 2 sin2
(
α
2

)
cos2

(
α
2

) · Tr(θ)− 1 + 2 sin2
(
π−α
2n

)
cos2

(
π−α
2n

) ≥ Tnr(θ)− 1 + 2 cos2
(
α
2

)
cos2

(
α
2

) · Tr(θ)− 1 + 2 sin2
(
α
2n

)
cos2

(
α
2n

) .

For ease of exposition, let us set ∆i(θ) = Ti(θ) − 1. Note that by definition of θ, we have ∆i(θ) ≥ 0. Observe that the
second inequality holds if the following three inequalities are true,

∆nr(θ)∆r(θ)

cos2
(
α
2

) (
1

cos2
(
π−α
2n

) − 1

cos2
(
α
2n

)) ≥ 0 (7)

tan2
(α

2

)
tan2

(
π − α

2n

)
− tan2

(α
2n

)
≥ 0 (8)

∆nr(θ)

(
sin2

(
π−α
2n

)
cos2

(
π−α
2n

)
cos2

(
α
2

) − sin2
(
α
2n

)
cos2

(
α
2n

)
cos2

(
α
2

))+ ∆r(θ)

(
sin2

(
α
2

)
cos2

(
α
2

)
cos2

(
π−α
2n

) − 1

cos2
(
α
2n

)) ≥ 0 (9)

Note that Equation (7) follows from the fact that cos2
(
α
2n

)
≥ cos2

(
π−α
2n

)
> 1/2 since π

4 ≥ π−α
2n ≥ α

2n ≥ 0.

To prove Equation (8), observe that it is equivalent to proving

sin
(α

2

)
sin

(
π − α

2n

)
cos
(α

2n

)
− cos

(α
2

)
cos

(
π − α

2n

)
sin
(α

2n

)
≥ 0

Further simplifying the left hand side, we get

2

(
sin
(α

2

)
sin

(
π − α

2n

)
cos
(α

2n

)
− cos

(α
2

)
cos

(
π − α

2n

)
sin
(α

2n

))
= sin

(α
2

)(
sin
(π

2n

)
+ sin

(
π − 2α

2n

))
− cos

(α
2

)(
sin
(π

2n

)
− sin

(
π − 2α

2n

))
= sin

(π
2n

)(
sin
(α

2

)
− cos

(α
2

))
+ sin

(
π − 2α

2n

)(
sin
(α

2

)
+ cos

(α
2

))
=
√

2

(
sin

(
π − 2α

2n

)
cos

(
π − 2α

4

)
− sin

(π
2n

)
sin

(
π − 2α

4

))
.

Acceleration via Fractal Learning Rate Schedules

Observe that sin(x)
x is a decreasing function for 0 < x ≤ π

4 , therefore we have
sin(π−2α

2n)
π−2α
2n

≥ sin(π
2n)
π
2n

. Substituting this back,
we get

√
2

(
sin

(
π − 2α

2n

)
cos

(
π − 2α

4

)
− sin

(π
2n

)
sin

(
π − 2α

4

))
≥
√

2 sin
(π

2n

)(π − 2α

π
cos

(
π − 2α

4

)
− sin

(
π − 2α

4

))
≥ 0.

Here the last inequality follows from observing that tan(x) ≤ 4x
π for 0 ≤ x ≤ π

4 . This proves Equation (8). Now it remains
to prove Equation (9). Further simplifying the equation, it is equivalent to,

∆nr(θ)

∆r(θ)

(
sin2

(
π − α

2n

)
cos2

(α
2n

)
− sin2

(α
2n

)
cos2

(
π − α

2n

))
+ sin2

(α
2

)
cos2

(α
2n

)
− cos2

(α
2

)
cos2

(
π − α

2n

)
≥ 0

Let us prove this inequality. We have

∆nr(θ)

∆r(θ)

(
sin2

(
π − α

2n

)
cos2

(α
2n

)
− sin2

(α
2n

)
cos2

(
π − α

2n

))
+ sin2

(α
2

)
cos2

(α
2n

)
− cos2

(α
2

)
cos2

(
π − α

2n

)
=

∆nr(θ)

∆r(θ)

(
sin2

(
π − α

2n

)
− sin2

(α
2n

))
+ cos2

(α
2

)(
cos2

(α
2n

)
− cos2

(
π − α

2n

))
+
(

sin2
(α

2

)
− cos2

(α
2

))
cos2

(α
2n

)
=

∆nr(θ)

∆r(θ)
sin

(
π − 2α

2n

)
sin
(π

2n

)
+ cos2

(α
2

)(
cos2

(α
2n

)
− cos2

(
π − α

2n

))
− cos(α) cos2

(α
2n

)
≥ ∆nr(θ)

∆r(θ)
sin

(
π − 2α

2n

)
sin
(π

2n

)
− sin

(
π − 2α

2

)
.

Here the last inequality follows from the fact that cos
(
α
2n

)
≥ cos

(
π−α
2n

)
since α ≤ π

2 and cos(α) cos2
(
α
2n

)
≤ cos(α) =

sin
(
π−2α

2

)
.

By the composition property and part (ii) of Lemma 19, we have

∆nr(θ)

∆r(θ)
=
Tn(Tr(θ))− 1

Tr(θ)− 1
≤ 1 + n2(Tr(θ)− 1)− 1

Tr(θ)− 1
≤ n2.

We also know from before that sin(x)
x is decreasing in 0 < x ≤ π

4 , therefore, we have
sin(π

2n)
π
2n

≥ sin(π4)
π
4

and
sin(π−2α

2n)
π−2α
2n

≥
sin(π−2α

2)
π−2α

2

. Combining these and substituting back, we get

∆nr(θ)

∆r(θ)
sin

(
π − 2α

2n

)
sin
(π

2n

)
− sin

(
π − 2α

2

)
≥ n2 · sin

(
π−2α

2

)
n

· 2 sin
(
π
4

)
n

− sin

(
π − 2α

2

)
= (
√

2− 1) sin

(
π − 2α

2

)
≥ 0.

This completes the proof of the tree exchange lemma.

C.4. Completing the main theorems

Theorem 8 (Prefix and suffix bounds). For a fractal Chebyshev schedule with m,M, T , and all 1 ≤ s, t ≤ T :

(i) ‖p1:t‖L∞([m,M]) ≤
(
M
m − 1

)∏
j∈bits′(t)

2
1+T2j (θ) ;

(ii) ‖ps:T ‖L∞([m,M]) ≤
∏
j∈bits(T+1−s)

2
1+T2j (θ) ,

where bits(n) denotes the indices in the binary expansion of n, formally defined as the unique sequence {j1, j2 . . .}
with j1 > j2 > j3 . . . such that n =

∑
jk∈bits(n) 2jk . Further we define bits′(n) := bits(n) \ j1. For example, when

n = 6 = (110)2, bits(n) = {2, 1}, and bits′(n) = {1}.

Acceleration via Fractal Learning Rate Schedules

Figure 9: An example of successive exchanges to fix a prefix polynomial (p1:7). In every exchange, the product of two bad
nodes are exchanged with a product of a good node and a bad node. Eventually, one is left with exactly one bad node and
the remaining good nodes.

Starting with a prefix decomposition and repeatedly applying Lemma 23:

‖p1:s‖L∞([−1,1]) = max
−1≤z≤1

∣∣∣∣∣
k∏
i=1

P2si ,αi(z)

∣∣∣∣∣ (Using (6))

≤
k∏
i=1

max
−1≤z≤1

|P2si ,αi(z)|

=

k∏
i=1

B2si ,αi

=

(
k−2∏
i=1

B2si ,αi

)
· B2sk−1 ,αk−1

· B
2sk ,

π−αk−1

2
sk−1−sk

≤ B2sk−1 ,π−αk−1
·
(
k−2∏
i=1

B2si ,αk−1

)
· B

2sk ,
αk−1

2
sk−1−sk

(using Lemma 23)

= B2sk−1 ,π−αk−1
·
(
k−2∏
i=1

B2si ,αk−1

)
· B

2sk ,
π−αk−2

2
sk−2−sk

(using recurrence angle relation)

= B2sk−1 ,π−αk−1
·
(
k−3∏
i=1

B2si ,αk−1

)
· B2sk−2 ,αk−2

· B
2sk ,

π−αk−2

2
sk−2−sk

= B2sk−1 ,π−αk−1
· B2sk−2 ,π−αk−2

(
k−3∏
i=1

B2si ,αk−1

)
· B

2sk ,
αk−2

2
sk−2−sk

(using Lemma 23)

... (repeating this switching argument iteratively)

≤
(
k−1∏
i=1

B2si ,π−αi

)
· B2sk ,

α1

2s1−sk

=

(
k−1∏
i=1

B2si ,π−αi

)
· B

2sk , 2
skπ
2T

.

Note that this repeated exchange leads to only one bad polynomial and rest all good polynomials. Using (ii) and (iii) of
Lemma 20, we get

‖p1:s‖L∞([−1,1]) ≤
k−1∏
i=1

2

1 + T2si (θ)
· 2

4sk(θ − 1)

Acceleration via Fractal Learning Rate Schedules

≤
M
m − 1

4sk
·
k−1∏
i=1

2

1 + T2si (θ)
(using the definition of θ)

D. Proofs for Section 3
D.1. Basic facts about the schedule

We provide full statements and proofs of Proposition 6:

Proposition 6. For all m,M, T , the fractal Chebyshev step sizes γ−1
t satisfy the following:

(i) 1
M < γ−1

t < 1
m .

(ii) The number of step sizes greater than 2
M is

(
1
2 − ε

)
T , where 0 ≤ ε ≤ O(1/κ̂) as κ̂→∞.

(iii) For t ≤ T
2 , we have γ−1

t < 1

m+
2(M−m)t2

T2

. Further,

1
T

∑T
t=1 γ

−1
t =

tanh(Tacosh(2m
M−m))√

Mm
< 1√

Mm
.

(i) is obvious from the construction of γt, keeping in the mind the fact that −1 < cos(x) < 1 for x ∈ (0, π).

Proof of (ii). It is obvious that γ−1
t ≥ 2/M for at most half of the indices t = 1, . . . , T : the nodes γt are symmetric with

respect to reflection around the axis M+m
2 < M

2 , so at least half of them are greater than or equal to M
2 . Now, let us establish

the lower bound on the number of these steps. We have γ−1
t ≤ 2/M if and only if

γt =
M +m

2
− M −m

2
cos

(t− 1/2)π

T
≥ M

2

⇔ cos
(t− 1/2)π

T
≤ m

M −m

⇔ t ≥ 1

2
+

arccos(m
M−m)

π
· T.

Call the right hand side the threshold t∗. Then, using the fact that arccos(x) ≤ π
2 − x for x ∈ [0, 1], we have

t∗ ≤ T

2
+
T

π
· m

M −m +
1

2
,

as required.

Proof of (iii). The first statement follows from the upper bound cosα ≤ 1− (2α
π)2, which is valid for α ≤ π

2 :

γ−1
t =

1

M+m
2 − M−m

2 cos
(
t− 1

2

T π
) < 1

M+m
2 − M−m

2 cos
(
t
T π
) ≤ 1

M+m
2 − M−m

2

(
1−

(
2t
T

)2) ,
from which the claim follows.

A cheap version of the second statement, which is tight up to a constant, can be proven by viewing the summation above
as a Riemann sum for a continuous integral. Interestingly, this also provides a way to prove bounds on all moments: for
example, using the identity ∫ 1

0

1

(c+ x2)2
dx =

1

2

(
arccot(

√
c)

c3/2
+

1

c2 + c

)
≤ O(1/c3/2),

one can verify that the root-mean-square
√

1
T

∑T
t=1 γ

−2
t is bounded by O(κ̂3/4/M).

The exact statement in (iii) is subtler. We suspect that this is known in the literature on Chebyshev spectral methods, but
could not find a reference. Consider q(λ) = xT p(1/λ), which is p(λ) with its coefficients reversed. Then, the sum of

Acceleration via Fractal Learning Rate Schedules

reciprocal roots of p(λ) we want is the sum of roots of q(λ). By Viète’s formula, this is −aT−1/aT , where ai is the λi

coefficient of q(λ). By the coefficient reversal, aT is the constant term of p(λ), and aT−1 is its linear term. Thus, we have:

T∑
t=1

γ−1
t =

d
dλp(λ)|λ=0

p(0)
=

2

M −m
d
dzTT (z)|z=θ
TT (θ)

.

To reason about the derivatives, we need to introduce the Chebyshev polynomials of the second kind, Un(z). They can be
defined as the unique polynomial satisfying

Un(cosα) sinα = sin((n+ 1)α).

From this, the cosine characterization of Tn(z), and the trigonometric substitution z = cosα, we have

d

dz
Tn(z) = nUn−1(z).

By definition we have that

Un−1(z) =
(z +

√
z2 − 1)n − (z −

√
z2 − 1)n

2
√
z2 − 1

, Tn−1(z) =
(z +

√
z2 − 1)n + (z −

√
z2 − 1)n

2
.

Therefore,
Un−1(z)

Tn(z)
=

(z +
√
z2 − 1)n − (z −

√
z2 − 1)n

(z +
√
z2 − 1)n + (z −

√
z2 − 1)n

· 1√
z2 − 1

=
tanh(n acosh(z))√

z2 − 1
.

Substituting these back, we get that

T∑
t=1

γ−1
t =

2

M −m
d
dzTT (z)|z=θ
TT (θ)

=
2T tanh(T acosh(θ))

(M −m)
√
θ2 − 1

=
T tanh(T acosh(θ))√

Mm
.

Finally, we prove the simple observations about the fractal permutation:
Proposition 7. For all m,M, T and 0 ≤ i ≤ log2 T :

(i) The largest T2i steps ηt in the fractal Chebyshev schedule occur when t = 1 + 2i(τ − 1), with τ = 1, . . . , T2i .

(ii) The subsampled sequence {η1+2i(τ−1)} has the same ordering as the fractal permutation of the same length:

η1+2iτ = γ−1
1+2i(τ ′−1), where τ ′ = σT/2i(τ).

Proof. (i) and (ii) are true by the recursive interlacing construction. Let Ti := T
2i . The interlacing step makes it true that the

indices in σTi are every other element of σ2Ti , the indices in σ2Ti are every other element in σ4Ti , and so forth. Note that
γ−1
t are decreasing in t.

D.2. Infix polynomial bounds

Theorem 9. For the fractal Chebyshev schedule with m,M, T , and all 1 ≤ s ≤ t ≤ T :

‖ps:t‖[m,M] ≤
(
M

m
− 1

)
·

∏
i∈bits(ζ+1−s)

2

1 + T2i(θ)
·

∏
i∈bits′(t−ζ)

2

1 + T2i(θ)
,

where ζ is the index such that s− 1 ≤ ζ ≤ t and lca(ζ, ζ + 1) is maximized, where

lca(a, b) := max{j : j ∈ bits(a) xor j ∈ bits(b)}
is the index of the most significant bit at which the binary decompositions of a, b differ.

Acceleration via Fractal Learning Rate Schedules

σ(2) σ(7)
p2:7

LCA of 1 and 8

suffix prefix

Figure 10: A schematic for the decomposition of the infix p2:7 into a suffix and a prefix polynomial corresponding to the
child subtrees of the Lowest Common Ancestor

Proof. We have previously shown how to bound the norms of the prefix and suffix polynomial. In this section, we will
extend these arguments to bound any infix polynomial ps:t for 1 < s < t < T . To bound the norm of this polynomial, we
will decompose the polynomial into two polynomials lying in disjoint subtrees. On one part we will use the suffix argument
whereas on the other part we will use the prefix argument.

To formalize this, we split based on the lowest common ancestor of node s− 1 and t+ 1.7 Consider the binary expansions of
s−1 = 2s1 +2s2 + . . .+2sk such that s1 > s2 > . . . sk ≥ 0 and t+1 = 2t1 +2t2 + . . .+2tl such that t1 > t2 > . . . tl ≥ 0.
Let h be the minimum index such that sh 6= th and let ζ =

∑h
i=1 2th . Note that h is the level of the lowest common ancestor

in the tree, and ζ, ζ + 1 are the indices splitting the infix between the lowest common ancestor’s two subtrees. We will
perform the following decomposition based on this,

ps:t = ps:ζ · pζ+1:t.

It is not hard to see that this decomposition puts the two polynomials in disjoint subtrees: a subtree corresponding to
pζ−2th+1:ζ and pζ+1:ζ+2th . Observe that ps:ζ is a suffix in the left subtree and pζ+1:t is a prefix in the right subtree. See
Figure 10 for a schematic depiction of the above decomposition.

Let us first analyze ps:ζ . Note that ζ can be < s, in that case the polynomial is the empty product with norm 1. Thus, let

us assume ζ ≥ s. More formally, consider the binary expansions of M def
= ζ + 1 − s = 2r1 + 2r2 + . . . + 2rj such that

r1 > r2 > . . . rj ≥ 0. We now perform the following iterative decomposition of the polynomial ps:M ,

ps:M = ps:T1 · pT1+1:ζ where T1 := M − 2r1 ,

= ps:T2 · pT2:T1 · pT1+1:M where T2 := T1 − 2r2 ,

. . . ,

As in the suffix argument, we will decompose the polynomial into good polynomials starting from the right. Recall that
the right child of every node is a good polynomial. It can be seen that every intermediate polynomial pTi+1:Ti−1 produced
is a good polynomial because each one is the rightmost node at level ri (i.e. with distance log2 ζ − ri from the root node
of the subtree), restricted to the subtree rooted at the lowest common ancestor of roots s through Ti−1 (setting T0 := ζ).

7Note that we include s− 1 and t+ 1 when doing this split to ensure that the polynomials do not cover the corresponding subtrees
completely and are in fact prefixes and suffixes.

Acceleration via Fractal Learning Rate Schedules

Combining with statement (ii) in Lemma 20, we get

‖ps:ζ‖[m,M] ≤
j∏
i=1

2

1 + T2ri (θ)
=

∏
i∈bits(ζ+1−s)

2

1 + T2i(θ)
(10)

Let us now look at polynomial pζ+1:t. We will use the prefix argument as before on this polynomial. Consider the binary
expansion of t − ζ = 2q1 + 2q2 + . . . + 2qj such that q1 > q2 > . . . qj ≥ 0. We decompose pζ+1:t into products in the
following manner: starting with {ζ + 1, . . . , t}, we iteratively partition

pζ+1:t = pζ+1:T1
· pT1+1:t where T1 := 2q1 ,

= pζ+1:T1
· pT1+1:T2

· pT2+1:t where T2 := T1 + 2q2 ,

. . . ,

until we reach Tj + 1 : t, which is the empty interval. Note that this partition results in all bad polynomials. We can in fact
exactly characterize these polynomials. Define the angle recurrence with α1 being the angle corresponding to the subtree
pζ+1:ζ−2tj and αi+1 = π−αi

2qi−qi+1
. It can be seen that

pζ+1:t =

j∏
i=1

P2qi ,αi =⇒ ‖pζ+1:t‖[m,M] ≤
j∏
i=1

B2qi ,αi .

Using Lemma 23 iteratively on this, we can see that

‖pζ+1:t‖[m,M] ≤ B2qj ,
α1

2
q1−qj

·
k−1∏
i=1

B2qi ,π−αi

≤ 2

4qj (θ − 1)
·
j−1∏
i=1

2

1 + T2qi (θ)
(using Lemma 20 (ii) and (iii))

≤
(
M

m
− 1

)
·

∏
i∈bits′(t−ζ)

2

1 + T2i(θ)
. (using the definition of θ)

This gives us the final bound on the infix as,

‖ps:t‖[m,M] ≤
(
M

m
− 1

)
·

∏
i∈bits(ζ+1−s)

2

1 + T2i(θ)
·

∏
i∈bits′(t−ζ)

2

1 + T2i(θ)
. (11)

D.3. Infix series bounds

First, we provide a useful bound for an infix series contained entirely within a subtree:

Lemma 24. For any N = 2k for some k > 0 and any δ > 0,

N∑
i=1

∏
i∈bits(N+1−i)

2

1 + T2i(1 + δ)
≤ exp

(
1

1 + δ

)
·
(

1 + δ

δ

)1/ log(4)

.

Proof. Define PN :=
∑N
i=1

∏
i∈bits(N+1−i)

2
1+T2i (θ)

. Since N is a power of 2, it is not hard to see that

PN =

(
2

1 + TN/2(θ)

)
· PN/2 + PN/2 =

(
1 +

2

1 + TN/2(θ)

)
· PN/2.

Acceleration via Fractal Learning Rate Schedules

Recursively applying the above, we have

PN =

k−1∏
i=0

(
1 +

2

1 + T2i(θ)

)
.

To bound the above, let us take log on both sides. This gives us

log(PN) =

k−1∑
i=0

log

(
1 +

2

1 + T2i(θ)

)

≤
k−1∑
i=0

2

1 + T2i(θ)

≤
k−1∑
i=0

1

1 + 4iδ

≤ 1

1 + δ
+

∫ k−1

0

1

1 + 4xδ
dx

≤ 1

1 + δ
+

log(1 + δ)− log(δ)

log 4
.

Substituting back gives us the desired result.

Now, we are ready to prove the main theorem about infix series sums.

Theorem 10. For a fractal Chebyshev schedule with m,M, T , and all 1 ≤ s ≤ t ≤ T :

t∑
t′=s

‖pt′:t‖[m,M] ≤ 18

(
M

m
− 1

)((
M +m

2m

)1/ log(4)
)(

1 + log

(
M +m

2m

))
.

Proof. We prove the theorem only for s = 1 which subsumes all the cases. To prove the statement we will first consider
the binary expansion of t, bits(t) which is the unique sequence of numbers {t1 . . . tk} such that t =

∑k
j=1 2ti and

t1 > t2 > t3 Further, define the following the sequence

t̄0 = 0; t̄j =

j∑
j′=1

2tj′ ∀j ∈ [k].

We will break the sum and analyze it in the following manner:

k∑
j=1

t̄j∑
t′=t̄j−1+1

‖pt′:t‖[m,M]︸ ︷︷ ︸
:=Tj

.

Before analyzing Tj , we establish some calculations, which will be useful. Firstly, note that for all j, the roots in the range
[t̄j + 1, t] are all contained inside a subtree of height 2tj in the tree representation. Therefore the polynomial pt̄j+1,t forms a
prefix polynomial within the subtree for which we can apply the bounds in Theorem 8 (see usage in the proof of Theorem 9
on how Theorem 8 applies to prefix of any subtree). Using the above, we get the following bounds:

‖pt̄j+1:t‖[m,M] ≤
(
M

m
− 1

) k∏
r=j+2

2

1 + T2tr (θ)
. (12)

Note that for the above and the rest of this section if the sum Σ and product
∏

is over an empty set then they are assumed
to be 0 and 1 respectively. Furthermore, note that for any j and t′ ∈ [t̄j−1 + 2, t̄j], the range of roots [t′, t̄j], belongs to a

Acceleration via Fractal Learning Rate Schedules

subtree of height 2tj in the tree representation. In particular the infix polynomial pt′,t̄j is a suffix polynomial within the tree
and the bound from Theorem 8 can be invoked to give

‖pt′,t̄j‖[m,M] ≤
∏

r∈bits(t̄j+1−t′)

2

1 + T2r (θ)
. (13)

We are now ready to analyze the terms Tj for any j as follows.

Tj ≤ ‖pt̄j−1+1:t‖[m,M] +

t̄j∑
t′=t̄j−1+2

∥∥pt′:t̄j∥∥[m,M]

∥∥pt̄j+1:t

∥∥
[m,M]

≤
(
M

m
− 1

) k∏
r=j+1

2

1 + T2tr (θ)
+

k∏
r=j+2

2

1 + T2tr (θ)

 t̄j∑
t′=t̄j−1+2

 ∏
r∈bits(t̄j+1−t′)

2

1 + T2r (θ)


≤
(
M

m
− 1

) k∏
r=j+1

2

1 + T2tr (θ)
+

k∏
r=j+2

2

1 + T2tr (θ)

(
3

(
θ

θ − 1

)1/ log(4)
) .

≤ 6

(
M

m
− 1

) k∏
r=j+2

2

1 + T2tr (θ)

((
θ

θ − 1

)1/ log(4)
) .

In the above, the first inequality follows from triangle inequality, the second from (12),(13) and the third from Lemma 19.
Summing over j now gives us the bound as follows:

k∑
j=1

Tj ≤ 6

(
M

m
− 1

)k−2∑
j=1

 k∏
r=j+2

2

1 + T2tr (θ)

+ 2

((θ

θ − 1

)1/ log(4)
)
.

≤ 6

(
M

m
− 1

)k−2∑
j=1

(
2

1 + T2tj+2 (θ)

)
+ 2

((θ

θ − 1

)1/ log(4)
)
.

≤ 6

(
M

m
− 1

)(
log

(
θ

θ − 1

)
+ 3

)((
θ

θ − 1

)1/ log(4)
)
.

≤ 18

(
M

m
− 1

)((
M +m

2m

)1/ log(4)
)(

1 + log

(
M +m

2m

))
.

This concludes the theorem.

E. Proofs for Section 3
E.1. Modifications to the fractal schedule

Proof of Proposition 13 (i). For any 1 ≤ t ≤ T − 1, consider p1:t and p1:t+1 (under the reversed permutation). Both
decompose into a product of good polynomials, whose levels in the tree are given by bits(t) and bits(t+ 1). Notice that
bits(t+ 1) \ bits(t) contains exactly one element (the index where the carrying operation stops in binary addition); call it c.
Then, bits(t) \ bits(t+ 1) = {1, . . . , c− 1}. Thus, it suffices to prove that

2

1 + T2c(θ)
≤

c−1∏
i=0

2

1 + T2i(θ)
.

Notice that when i ≥ 1, we have
2

1 + T2i(θ)
=

1

T 2
2i−1(θ)

,

Acceleration via Fractal Learning Rate Schedules

so when c ≥ 1, the statement we wish to prove reduces to

T 2
2c−1(θ) ≥ 1 + θ

2
·
c−2∏
i=0

T 2
2i(θ).

This is true because 1+θ
2 ≤ θ2 = T 2

1 (θ), and we can recursively apply the following inequality:

T2n(θ) = 2T 2
n (θ)− 1 ≥ T 2

n (θ),

which holds because θ ≥ 1.

The other proofs in Section 3 follow immediately from the definitions.

E.2. Overstepping with conservative parameters

Proof of Theorem 14. With p = p1:T as the shifted Chebyshev polynomial with parameters m,M , we wish to bound
‖p‖[λmin,M] . In the range [m,M], the bounds from Theorem 3 hold; moreover, the cosine formula for the Chebyshev
polynomials implies that the inequality is tight at the boundary: the maximum is achieved at p(m). In the remaining part
[λmin,M], which is outside the range of the roots of p, p(λ) grows monotonically as λ decreases in this interval. Thus, it
will suffice to derive a bound for p(λmin).

When m < M , we use the notation θ = M+m
M−m , and define zmax := M+m−2λmin

M−m (the image of λmin under the bijection).

TT (zmax)

Tn(θ)
=

cosh(T acosh(zmax))

cosh(T acosh(θ))
=
eT acosh(zmax) + e−T acosh(zmax)

eT acosh(θ) + e−T acosh(θ)
≤ 2eT acosh(zmax)

eT acosh(θ)

= 2

(
zmax +

√
z2

max − 1

θ +
√
θ2 − 1

)T
= 2

(
1− θ +

√
θ2 − 1− zmax −

√
z2

max − 1

θ +
√
θ2 − 1

)T
.

The quantity in the fraction is equal to

M+m+2
√
Mm

M−m − M+m+2λmin+2
√

(M−λmin)(m−λmin)

M−m
M+m+2

√
Mm

M−m

= 2 · λmin +
√
Mm−

√
(M − λmin)(m− λmin)

(
√
M +

√
m)2

,

as required. The same is concluded for m = M by taking the limit m→M .

E.3. Conjugate gradient schedule

The simplest definition of the conjugate gradient algorithm, without having to worry about how to implement the iterations
in linear time, is the non-iterative formula

xt+1 := min
deg p ≤ t
p(0)=1

‖p(A)(x1 − x∗)‖A , (14)

where ‖x‖A :=
√
x>Ax, and the minimization is over polynomials with real coefficients.

Theorem 15 (Conjugate gradient schedule). For all positive definite matrices A ∈ Rd×d and b ∈ Rd, there exists a multiset
of real numbers {ηt}, all in the interval [1

λmax(A) ,
1

λmin(A)], such that xT+1 as defined by the conjugate gradient algorithm
(Equation (14)) is equal to xT+1 as defined by gradient descent (Equation (1)).

Proof. Let
p∗ ∈ arg min

deg p ≤ t
p(0)=1

‖p(A)(x1 − x∗)‖A .

Acceleration via Fractal Learning Rate Schedules

By the fundamental theorem of algebra applied to p∗ : R→ R, and noting that 0 cannot be a root of p∗, this is obviously
true if the step sizes ηt are allowed to be arbitrary complex numbers. We will show that there exists a minimal real-rooted
polynomial that achieves the minimum in Equation (14), with all roots lying in the specified interval. To do this, we will
start with a p∗ with possibly complex roots, and transform it to fit our conditions, without increasing the residual norm.

Let F(p) denote the functional that returns the squared residual of a residual polynomial:

F(p) := ‖p(A)(x1 − x∗)‖2A =
∑

(λi,ui)∈eigs(A)

λi [p(λi)]
2

(u>i (x1 − x∗))2,

where eigs(A) denotes the eigendecomposition of A. Define a partial ordering on functions p : [λmin(A), λmax(A)]→ R:

p < q ⇔ |p(λ)| ≥ |q(λ)| ∀λ ∈ [λmin(A), λmax(A)].

Notice that F(p) is monotone with respect to (<). That is,

p < q → F(p) < F(q).

Now we can complete the proof.

Roots are real w.l.o.g. By the complex conjugate root theorem, if p∗ has any complex roots, they come in conjugate pairs
(a± bi) with matching multiplicities. Multiplying these in pairs gives us quadratic factors q(a, b) := (x− a)2 + b2. But
|q(a, 0)| ≤ |q(a, b)|, so we can construct a real-rooted polynomial p′ with the same degree as p∗ such that p′ 4 p∗, by
deleting the complex parts of each root.

Roots lie within the eigenvalue range w.l.o.g. By the above, p∗ is real-rooted; write p∗(λ) =
∏deg p
i=1 (1− λ/αi). Split

the real line into intervals I1 = (−∞, 0), I2 = (0, λmin(A)), I3 = [λmin(A), λmax(A)], and I4 = (λmax(A),∞).
We will show that we can move all the roots of p∗ into I3 without increasing F . For roots α ∈ I1 and α ∈ I4,
notice that (1 − λ/λmax(A)) 4 (1 − λ/α), so we can change those roots to λmax(A). For roots α ∈ I2, notice that
(1− λ/λmin(A)) 4 (1− λ/α), so that we can change those roots to λmin(A). By making these changes, we have obtained
a polynomial p′′ with the desired properties, such that F(p′′) ≤ F(p∗).

Finally, the roots of p∗ give the reciprocal step sizes needed for the final iterate of gradient descent to match that of conjugate
gradient. If deg p < T , then we have more step sizes to assign than roots, and we can simply assign the remaining T −deg p
step sizes to 0. This completes the proof.

E.4. Non-convex combination lock

This construction is a simple variant of the “needle-in-haystack” construction for global non-convex optimization with a
first-order oracle. This statement can be strengthened, but we optimize for brevity.

Proposition 16. Let (η∗1 , . . . , η
∗
T) be any sequence of positive real numbers, and 0 < δ ≤ 1

2 mint η
∗
t . Then, there exists a

function f : RT → R for which:

• f is infinitely differentiable. All of its derivatives are O(1/δ).

• −1 ≤ f(x) ≤ 2 for all x ∈ RT , and minx∈RT f(x) = −1, where ηmin := mint η
∗
t . The minimizer is unique.

• Let xout be the final iterate of gradient descent, starting from x1 = 0 and with learning rate schedule (η1, . . . , ηt).
Then, if ηt = η∗t for each t, then xout = −1. Furthermore, for any t we have |ηt − η∗t | ≥ δ, then f(xout) ≥ 0.

Proof. We will start by constructing a non-smooth such function. For all z ∈ R, η > 0, define

g
(T)
η∗T

(z) =


2 z ∈ (−∞,−δ/2]

1− z z ∈ [−δ/2, η∗T − δ/2)

−1 z ∈ [η∗T − δ/2, η∗T + δ/2]

0 z ∈ (η∗T + δ/2,∞)

.

Acceleration via Fractal Learning Rate Schedules

Starting at z = 0, one step of gradient descent on g(T) with learning rate η reaches a global minimizer only if η = η∗T .

Now, for each t = T − 1, . . . , 1, define

g
(t)
η∗t

(z, zt+1, . . . , zT) =


2 z ∈ (−∞,−δ/2]

1− z z ∈ [−δ/2, η∗t − δ/2)

g
(t+1)
η∗t+1

(zt+1, . . . , zT) z ∈ [η∗t − δ/2, η∗t + δ/2]

0 z ∈ (η∗t + δ/2,∞)

,

and so forth. Then let g := g
(1)
η∗1

be our unsmoothed function of choice: define f = g ∗ ψ(2x/δ), where

ψ(x) =

{
1
Z e
− 1

1−‖x‖2 ‖x‖ < 1

0 otherwise
,

where Z =
∫
x∈RT ψ(2x/δ) dx ≤ O(1/δ). Then:

• f is infinitely differentiable because g is bounded and ψ(2x/δ) is infinitely differentiable.

• −1 ≤ f(x) ≤ 2 by Young’s inequality. Since the support of ψ(2x/δ) is δ/2 times the unit sphere, and g = −1
exactly on the `∞ ball of radius δ/2 centered at (η∗1 , . . . , η

∗
T), the f has a unique minimum at (η∗1 , . . . , η

∗
T).

• By the construction, gradient descent with learning rates {η∗t }, starting at 0, encounters the gradient sequence {et}, the
elementary unit vectors, so it outputs the minimizer. At each iteration t, xt+1 must lie in the span of {e1, . . . , et} in
order for xout to reach the minimizer. If |ηt′ − η∗t′ | ≥ δ at any iteration t, this invariant cannot hold, since the next
gradient is in the span of et.

It may not be overly pessimistic to think of tuning the learning rate schedule in deep learning as a “needle-in-haystack”
search problem. Learning rate schedules have been observed to affect generalization behavior in practice (Jiang et al., 2020;
Agarwal et al., 2020a), so that restarting training with a new schedule is the only way to escape poor local optima.

E.5. No acceleration from the simple spiky schedule

A natural choice of self-stabilizing learning rate schedule is that which takes one large step of size η+ to make progress in
directions with shallow curvature, then several small steps of size η− to correct for the overshooting of the large step. This
is the cyclic schedule considered by (Oymak, 2021), which is shown to obtain a log(κ) “super-convergent” rate under the
assumption that the eigenvalues of A lie in two clusters. In this section, we provide a brief note on why this cannot obtain
the
√
κ rate on general strongly convex quadratics.

Proposition 25. Let η+, η− ∈ [1/λmax, 1/λmin], and suppose η+ ≥ 10η−. Let n be a positive integer. Consider the
polynomial

p(λ) := (1− η+λ)(1− η−λ)n.

Then, if n ≤ 0.1η+/η−, it must be true that

‖pm‖[λmin,λmax] > 1.34m

for all positive integers m.

Proof. We have

dp

dλ
= −η+(1− η−λ)n − nη−(1− η+λ)(1− η−λ)n−1 = −(1− η−λ)n−1

(
nη−(1− η+λ) + η+(1− η−λ)

)
,

Acceleration via Fractal Learning Rate Schedules

which has a root at λ∗ := η++nη−

(n+1)η+η− . Then,

‖p‖[λmin,λmax] ≥ |p(λ∗)| =
η+

η− − 1

n+ 1

((
1− η−

η+

)(
1− 1

n+ 1

))n
≥ 1

e

η+

η− − 1

n+ 1

(
1− η−

η+

)
e−nη

−/η+ ≥ 1

e

η+

η− − 1

0.1 η
+

η− + 1

(
1− η−

η+

)
e−nη

−/η+

≥ 1

e
· 9

2
· 0.9 · e−0.1 > 1.34.

Note that pm is the residual polynomial associated with repeating this cyclic schedulem times. Thus, if the unstable step size
in this schedule is κα times larger than the stable step size, the number of small steps required to prevent exponential blowup
of the residual polynomial norm is Ω(κα). For any α ∈ [0, 1], we have ‖pm‖ ≥ |p(λmin)|m ≥ (exp (−O(

√
κ)))

m, so
that m ≥ Ω(κ1−α log(1/ε)) cycles are required to make the residual norm at most ε. But we have shown that each cycle
requires Ω(κα) steps; thus, no choice of η+, η−, n can get a better unconditional convergence rate than O(κ log(1/ε)).

F. Experimental details and supplements
F.1. Visualization of the quadratic (theoretical) setting

In Figure 3, we provide a simple illustrative numerical experiment visualizing the tradeoffs; details are below.

This is an instance in dimension d = 100 with A = L/λmax(L) + 0.1I , where L is the Laplacian matrix of the path
graph on 100 vertices; this objective is 2.2-smooth and 0.2-strongly convex, b was sampled from N (0, I100), and x1 = 0.
Gradient descent (the non-accelerated baseline) was run with a learning rate of 0.9, determined via grid search on 0.1
increments (convergence was not significantly improved with a finer grid). The Chebyshev nodes were chosen with
m = 0.2,M = 2.2, T = 32, resulting in the four learning rate schedules shown.

This experiment was run with 80-bit (long double) precision, for illustrative purposes. At 32 or even 64 bits, or with larger
T , the increasing schedule exhibits exponential blowup of numerical noise, even in this small setting. In the plot to the right,
i.i.d. spherical Gaussian noise ∼ N (0, 0.0005I) was added.

F.2. One-dimensional counterexample

In Section 5.1, we noted log cosh(x)+0.01x2 as a “counterexample by numerical simulation” to the hypothesis that gradient
descent with the fractal Chebyshev schedule converges on general convex functions. This function is 1.02-smooth and
0.02-strongly convex.

To refute the possibility that Theorem 3 holds, it simply suffices to show that there is some setting m ≤ 0.02,M ≥ 1.02
and T such that the theoretical bound does not hold. We chose m = 0.01, M = 5, T = 32 (noting that it was quite easy to
generate counterexamples). The initial iterate was set to x1 = 2. The trajectory compared to the theoretical bound is shown
in Figure 11.

Results are shown in Figure 11. Gradient descent (constant step size 1/M) and Nesterov’s accelerated gradient (constant
step size 1/M ; momentum parameter γ = 1−

√
1/0.02) are shown for comparison. Of course, none of these parameters

are optimized; in the one-dimensional case, it is possible to reach the exact minimizer in one iteration.

We conjecture that stronger negative results (say, an infinite family of counterexamples for all T) can be constructed.

F.3. Convex experiments

To examine the empirical behavior of gradient descent with the fractal Chebyshev learning rate schedule on a deterministic
higher-dimensional convex (but not quadratic) loss, we used the benchmark of logistic regression (with trainable biases, thus
totaling d = 7850 trainable parameters) on the MNIST dataset (LeCun et al., 1989) with normalized raw pixel features, with
an `2 regularization coefficient of 10−3. The initial iterate was set to zero during all runs, for a completely deterministic

Acceleration via Fractal Learning Rate Schedules

0 4 8 12 16 20 24 28 32
t

10−3

10−2

10−1

100

101

‖x
t+

1
−
x
∗ ‖

f (x) = log cosh(x) + 0.01x2

GD

Nesterov
fractal η1:T

bound

Figure 11: Non-convergent behavior of the fractal Chebyshev schedule on f(x) = log cosh(x) + 0.01x2. The final iterate
fails to follow the convergence bound from Theorem 3.

0 128 256 384 512
iteration t

10−8

10−6

10−4

10−2

100

lo
gi

st
ic

lo
ss

GD, constant lr

0 128 256 384 512
iteration t

Nesterov, constant lr

0 128 256 384 512
iteration t

GD, fractal lr ηT :1

Figure 12: Convex deterministic MNIST experiments: comparison of classic non-accelerated and accelerated algorithms,
and the fractal Chebyshev schedule. Most opaque curves correspond to the optimal tuned constant multiplier; lower opacity
corresponds to shrinking the steps in equally spaced increments, down from 0.5 to 0.1. Gradient descent with the fractal
schedule makes non-local progress and converges at the accelerated rate in practice.

setting. To measure the global minimum, we ran L-BFGS (Liu & Nocedal, 1989) until convergence to the 64-bit numerical
precision floor.

We compared three iterative algorithms: gradient descent with a constant learning rate (known in theory to get the slow rate),
Nesterov’s accelerated gradient descent with a constant learning rate and momentum parameter 0.9 (known in theory to
get the accelerated rate), and gradient descent with the reversed fractal schedule ηT :1 (no known theoretical guarantees in
this setting). We tuned the constant learning rates in increments of 0.1 until divergence (arriving at 0.5 as the largest stable
learning rate). For the fractal schedule, we chose m = 0.0006,M = 5, and tuned the global learning rate multiplier in
increments of 0.1 (arriving also at 0.5). The step sizes in the schedule were in the range [0.05, 408.65], with a mean of 4.56
(much larger than the maximum stable constant learning rate).

Figure 12 shows our results: in this setting, gradient descent can achieve accelerated convergence by overstepping the
threshold of guaranteed local progress. We used the reverse schedule here (largest step last), as suggested for parameter
stability in the noiseless setting. The forward schedule converged with accelerated rates for some choices of hyperparameters,
but convergence on this non-quadratic objective was sensitive to initial large steps.

It is not the purpose of Figure 12 to demonstrate a comparison between Nesterov’s acceleration and the fractal schedule; this
is a somewhat brittle comparison and is sensitive to hyperparameter choice and floating-point precision. The quantitative
comparison from this experiment is between gradient descent with the optimal constant learning rate and any fractal
Chebyshev schedule which outperforms it. The Nesterov training loss curves are provided as an illustration only.

Acceleration via Fractal Learning Rate Schedules

0 50 100 150 200
epoch

10−1

100

101

training loss

const lr
fractal ηt

0 16 32 48 64
iteration t

0.00

0.05

0.10

0.15

0.20

learning rates

Figure 13: ResNet-18/CIFAR-10 training with batch size 8192 and a repeated T = 8 fractal Chebyshev schedule. Left:
Training loss curves. Right: Learning rates; the schedule pokes through the edge of stability (magenta and red) without
destabilizing training.

F.4. Deep learning experiments

We present some simple experiments for the fractal Chebyshev schedule on deep neural networks. The purpose of this
preliminary study is to demonstrate that the constant learning rate “edge of stability” can be overstepped without causing
training to diverge, using a carefully designed schedule. We do not make claims about end-to-end performance improvements
that are robust under ablation and tuning other hyperparameters. A more systematic examination of the behavior of “spiky”
learning rate schedules in deep learning is left for future work.

In the deep learning experiments, it is most convenient to think of a learning rate schedule as a time-varying multiplier
on top of an existing baseline. Thus, it is most helpful to set the scaling hyperparameters to let the fractal schedule act as
a “learning rate bonus”: set M = 1, so that the smallest multiplier is approximately 1, the largest ≈ 1/m, and the mean
≈ 1/

√
m.

CIFAR-10/ResNet experiments. The experiments were conducted on the CIFAR-10 dataset on a pre-activation ResNet-
18 model (He et al., 2016) with d ≈ 11M parameters. As a baseline, we trained the network with vanilla minibatch SGD
with batch size 8192; the choice of a large batch was made to reduce confounding factors arising from stochasticity, and we
omitted the usual practice of momentum in order to remove temporal correlations between step sizes. To find the edge of
stability for training with a constant learning rate, we searched over the fixed learning rate parameter on an exponential grid
of powers of 2, as depicted in Figure 13 (right): the learning rate of 0.05 leads to stable and the best results; at 0.1, training
is subject to destabilizing outliers, and at 0.2, the model does not train at all; this is summarized in the fainter training loss
curves in Figure 13 (left).

We applied a cyclic fractal schedule with m = 0.05, M = 1, and T = 8, as a periodic multiplier on top of the constant
learning rate 0.125; this is pictured in Figure 13 (right) as the blue curve. Although this schedule uses large learning
rates that would cause unstable training, the fractal Chebyshev schedule periodically surpasses these learning rates while
maintaining stable training.

We did not evaluate the model based on generalization performance (indeed, we have removed the usual practices of
momentum, random cropping image augmentation, and a decaying learning rate schedule), but in this set of experiments we
found the test accuracy to be slightly higher (83%) than the best constant learning rate baseline (81%). The stability results
were consistent over 5 trials. These experiments were run in PyTorch with an 8× NVIDIA Tesla V100 GPU machine, and
each run took less than 30 minutes for 200 epochs.

MNIST experiments with a small neural network. We chose a simpler and cheaper-to-train model to present a few
more empirical insights on the behavior of fractal Chebyshev schedules beyond known theory. Namely, we use the model

Acceleration via Fractal Learning Rate Schedules

0 100 200 300 400 500 600
iteration t

10−1

100

101

102
lo

gi
st

ic
lo

ss
stable const lr (0.1)

unstable const lr (0.8)

random perm ηt (max 1.99)

fractal ηt (max 1.99)

naive spiky lr (max 1.99)

Figure 14: MNIST experiments, to show that baselines fail to stabilize training as successfully as the fractal Chebyshev
schedule. The constant learning rate edge of stability is surpassed at a constant learning rate of 0.8, while the fractal schedule
can take steps of up to 1.99. Random permutations of the same schedule cause divergent training, as does a simple “spiky”
schedule which only oversteps once per cycle.

for MNIST classification from the PyTorch tutorial8: two convolutional layers, followed by two fully-connected layers, with
a total of ∼ 1.2M parameters. The model was trained with SGD with batch size 1024.

In this setup, the same methodology as the larger-scale experiments was used on a finer grid (linearly spaced between
0.1 and 0.8) to determine a stable constant learning rate (0.1) and an unstable one (0.8). A fractal Chebyshev schedule
with m = 1/20,M = 1, T = 64 accelerated convergence when applied to the stable constant learning rate baseline.
However, randomly permuting this schedule caused divergent training. Furthermore, applying a periodic multiplier of
(20, 1, 1, 1, 1, 1, 1, 1) resulted in worse convergence. This exploratory study suggests that some of the self-stabilizing
behavior of the fractal schedule in the theoretical setting (where large steps are stabilized by internal copies of Chebyshev
iteration, which also consist of large steps) may hold, even for deep networks. Results were consistent over 10 trials.

These experiments were run in PyTorch on a 1× NVIDIA Tesla P100 GPU machine, and each run took around less than 1
minute for 10 epochs.

G. Additional discussion on related work
G.1. Fractal cyclic Chebyshev iterative methods

We provide a review of the line of work that serves as the origin of these fractal permutations. These were motivated by
the setting of cyclic iteration methods for solving linear equations by least-squares in Banach spaces, a primitive in finite
element methods for solving partial differential equations. All citations we could find for this line of work have been in the
context of numerical methods for least-squares; much of it is in the Russian language, untranslated. We have not encountered
prior work linking these methods to machine learning.

Lebedev & Finogenov (1971) construct the fractal permutation seen in this paper, and proved the prefix and suffix bounds, as
well a series bound for all prefixes (as opposed to infixes). This remarkable paper is the starting point for us (as well as the
authors, evidently). Appendix C is an attempt to make that paper more accessible (it is far longer than the original paper).

Lebedev & Finogenov (1973) consider generalized versions of the construction, where T is any positive integer, and the
polynomial splitting is performed with the prime factors. They describe general conditions under which stability of a cyclic
method (thus only prefix, suffix, and series bounds) can be achieved, and prove stability theorems like the previous work
about constructions where the only prime factors of T and 2 and 3.

8https://pytorch.org/tutorials/recipes/recipes/defining a neural network.html

Acceleration via Fractal Learning Rate Schedules

Lebedev & Finogenov (1976), working in this generalized setting, also analyze the stability of a single cycle of a fractal
Chebyshev schedule. They consider series sums of infixes where the series terminate at indices dn which form a divisor
chain of T , rather than general indices.

Lebedev & Finogenov (2002; 2004) provide English-language overviews of selected methods and theorems from this line of
work.

In all of these works, the authors were motivated by high-precision settings in computational physics, rather than statistical
or model error. This is perhaps why they were motivated to generalize the results of (Lebedev & Finogenov, 1971) in their
follow-up papers in a different way than ours. Thus, even though the ideas and motivations overlap with the ones considered
in our work, especially in (Lebedev & Finogenov, 1976), the authors might not have found it important to bound the noise
stability of every intermediate iteration of the algorithm. However, thinking of the perturbations as arising from statistical
error or model misspecification, this is a natural notion for our setting. We could not find a way to immediately derive our
estimates from any theorem or intermediate lemma in (Lebedev & Finogenov, 1976).

It remains an interesting direction for future work to find efficient algorithms to compute stable schedules for general T , and
analyze their every-iterate stability like in our work. We could not see immediate ways to extend Theorems 9 and 10 to their
more general classes of schedules.

G.2. Learning rate schedules and tradeoffs in practice

State-of-the-art models do not show any signs of consensus towards principled or fully-understood learning rate schedules,
adaptive or otherwise. A common practice has been to use a cosine learning rate schedule, originally proposed for cyclic
warm restarts (Loshchilov & Hutter, 2016) but widely adopted in its one-cycle form. For example, GPT-3 (Brown et al.,
2020) was trained with a cosine schedule. Large-scale empirical studies (Shallue et al., 2019) indicate that the optimal
choice of learning rate schedule is sensitive to the batch size. See the discussion on learning rate schedules in (You et al.,
2019) for a discussion of recent empirical observations in pretraining large-scale language models.

Several papers study the theoretical tradeoffs between stability and acceleration in large-scale stochastic optimization: (Bottou
& Bousquet, 2007; Devolder et al., 2014; Chen et al., 2018; Agarwal et al., 2020b). A common message throughout these
papers is that the best choice of iterative optimization algorithm depends in general on the data, model, and computational
resources.

(Cohen et al., 2021) provide an empirical account of the insufficiency of second-order Taylor approximations of the loss
function in deciding the correct learning rate. (Agarwal et al., 2020a) point out that learning rate schedules are entangled
with adaptive gradient methods.

G.3. Learning rate schedules in theory

While learning rate schedules while ubiquitously used in practice, the diversity of existing practical learning rate schedules
has received little theoretical treatment. In convex optimization, learning rate schedules have primarily been employed in
stochastic settings, in particular to correctly average the zero-mean noise. It is well known in the stochastic and online
optimization literature that a step schedule akin to t−1/2 is necessary for the convergence of stochastic gradient descent. In
the case of zero-mean bounded variance stochastic noise, the AC-SA algorithm proposed by (Lan, 2012) which achieves
optimal convergence rates employs an effective step decay schedule of t−3/2. In a complementary line of work, (Ge et al.,
2019) show that for the streaming least squares regression problems, no polynomial decay of learning rates achieves the
minimax rate; on the other hand the rate is achieved by the geometric decay learning rate schedule which is very popular in
practice.

An alternative point of view towards the power of learning rate schedules arises from the Polyak step size (Polyak, 1987;
Hazan & Kakade, 2019), which is a single learning rate per step which generalizes the classical gradient descent oblivious
to the smoothness/strong convexity properties of the function. The Polyak step size requires the knowledge of the optimality
gap at any point. The vanilla version of the Polyak step size is unable to provide accelerated rates; an extension of these
ideas to momentum has been carried out by Barré et al. (2020).

Practical deep learning models due to the presence of normalization layers lead to homogeneous models. For such models, Li
& Arora (2019) perhaps surprisingly show that the standard training algorithm which includes weight decay and momentum
is equivalent to performing an exponentially increasing learning rate schedule. Li et al. (2020) further explore the intricate

Acceleration via Fractal Learning Rate Schedules

interaction of weight decay and learning rates in such models proposing the notion of an intrinsic learning rate. The practice
of using a large initial learning rate in optimization from the point of view of better generalization has been theoretically
investigated in (Li et al., 2019) (see references herein for a detailed treatment of the topic).

A line of work (Orabona & Tommasi, 2017; Cutkosky & Orabona, 2018) derives parameter-free algorithms for selecting
learning rates which are optimal in the noise-dominated (as opposed to curvature-dominated) regime. These algorithms are
shown to be practical for training deep neural networks with small batch size (e.g. a convolutional network for CIFAR-10
with batch size 128). The theory presented in this paper is only applicable to large batch/curvature-dominated settings which
is the regime, where one might hope to isolate the benefits of acceleration. In small-batch/noise-dominated settings, the
precise role of acceleration/learning rate schedules is muddled with confounding factors (e.g. variance reduction); see the
next section for a discussion of this point. Designing adaptive algorithms which interpolate between these results and ours,
like the analysis of Nesterov’s acceleration under additive noise (Lan, 2012), is an interesting direction for future work; we
hope that this will lead to new practical algorithms for large-scale settings.

G.4. Acceleration methods and momentum

The phenomenon of acceleration in numerical analysis and optimization is a classical concept which has manifested through
a large variety of viewpoints , algorithms, and analyses over the years. We provide a very short and limited summary of these
manifestations, focusing on more modern machine learning focused developments. For an in-depth treatment, we strongly
recommend the reader to refer the recent monograph (d’Aspremont et al., 2021). Possibly the earliest works on non-linear
acceleration in numerical analyses date back to Aitken’s ∆2 (Aitken, 1927), Wynn’s epsilon algorithm (Wynn, 1956), and
Anderson acceleration (Anderson, 1965) (see (Sidi et al., 1986) for an in-depth survey, or the blogpost (Bach, 2020) for
a condensed description). The recent work of (Li & Li, 2020) establishes an optimum rate for an Anderson acceleration
method based on Chebyshev polynomials. The more standard suite of acceleration algorithms applied in machine learning
arise from the direct acceleration algorithms like Polyak’s momentum (also known as the heavy ball algorithm) (Polyak,
1964a) and Nesterov’s breakthrough result (Nesterov, 1983) which established the optimal rates for general smooth convex
optimization.

More recently, various acceleration algorithms (Allen-Zhu & Orecchia, 2014; Bubeck et al., 2015) have been proposed, with
more intuitive analyses than Nesterov’s. Another line of work stemming from the work of (Su et al., 2014; Wibisono &
Wilson, 2015) derives Nesterov-like methods via discretizations of appropriate continuous-time differential equations. A
lesser known (but relevant to our work) version of direct acceleration is Nemirovski’s acceleration based on a line search
(not a search over ηt like the greedy steepest descent method); see (Bubeck, 2019) for a concise exposition. An alternative
methodology for acceleration (Monteiro & Svaiter, 2013; Lin et al., 2018) comes about via iteratively solving appropriate
(strongly convex) proximal point problems using classical iterative methods. This latter line of work has been influential in
deriving optimal accelerated versions of higher-order methods (Nesterov, 2008; Bubeck et al., 2019).

In stochastic and/or non-convex settings (including deep learning), the role of acceleration is not fully clear. In the general
convex case, worst case theory (Lan, 2012) suggests that acceleration leads to benefits only in curvature-dominated regime
(as opposed to the noise dominated regime). Nevertheless, heavy-ball momentum and Nesterov acceleration are part of the
core toolkit in state-of-the-art optimization for optimization in various batch size regimes (Sutskever et al., 2013; Kingma
& Ba, 2014; Dozat, 2016). Recent theoretical work (Cutkosky & Orabona, 2019) suggests that momentum can implicitly
perform variance reduction (akin to a low-pass filter), leading to improved convergence rates for stochastic optimization
in non-convex problems. Understanding the variance-reducing mechanisms of the fractal schedules (or any learning rate
schedule in general) is an interesting direction for future work.

In a recent orthogonal line of inquiry into momentum methods, Pedregosa & Scieur (2020); Scieur & Pedregosa (2020)
analyze an average case setting of the quadratic model, and establish the universality of Polyak momentum as an optimal
algorithm. The analysis of globally-optimized learning rate schedules in average-case settings is an interesting direction for
future work.

G.5. Optimization as a dynamical system

Our approach to analyzing stability is most similar to the view of optimization algorithms as dynamical systems (Lessard
et al., 2016; Li et al., 2017). Of course, beyond the simplest objectives and noise models, optimization algorithms are
nonlinear dynamical systems; thus, theory under this very general abstraction is very limited. Bousquet & Elisseeff (2002)
define related but stronger notions of stability, which can lead to generalization properties (Hardt et al., 2016; Chen et al.,

Acceleration via Fractal Learning Rate Schedules

2018; Agarwal et al., 2020b).

In the dynamical systems view, our work shows that stable acceleration is obtained by treating the learning rate schedule as
a long-horizon planning problem, accounting for the interactions between the choices of ηt at different times and the global
curvature of the loss. Even an open-loop control sequence (i.e. non-adaptive schedule) designed with global objectives has
a provable benefit over a naive closed-loop controller (i.e. adaptive line search) which only uses instantaneous feedback
(i.e. xt, gt). Thus, it may be beneficial for any closed-loop controller for the learning rate schedule to depend on global
context or curvature, and possibly make negative local progress. In light of this, neural and reinforcement learning-based
optimizer search (Bello et al., 2017) may be an enticing solution to the empirical problem of scheduling the learning rate
with awareness of global curvature.

