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Abstract
In practical applications of iterative first-order
optimization, the learning rate schedule remains
notoriously difficult to understand and expensive
to tune. We demonstrate the presence of these
subtleties even in the innocuous case when the
objective is a convex quadratic. We reinterpret an
iterative algorithm from the numerical analysis
literature as what we call the Chebyshev learn-
ing rate schedule for accelerating vanilla gradient
descent, and show that the problem of mitigat-
ing instability leads to a fractal ordering of step
sizes. We provide some experiments to challenge
conventional beliefs about stable learning rates
in deep learning: the fractal schedule enables
training to converge with locally unstable updates
which make negative progress on the objective.

1. Introduction
In the current era of large-scale machine learning models,
a single deep neural network can cost millions of dollars
to train. Despite the sensitivity of gradient-based training
to the choice of learning rate schedule, no clear consensus
has emerged on how to select this high-dimensional hyper-
parameter, other than expensive end-to-end model training
and evaluation. Prior literature indirectly sheds some light
on this mystery, showing that the learning rate schedule gov-
erns tradeoffs between accelerated convergence and various
forms of algorithmic stability.

In this work, we highlight the surprising consequences of
these tradeoffs in a very simple setting: first-order optimiza-
tion of a convex quadratic function. We start by pointing out
the existence of a non-adaptive step size schedule, derived
from the roots of Chebyshev polynomials, which allows
plain gradient descent to obtain accelerated convergence
rates without momentum. These learning rates overshoot
the region of guaranteed local progress, resulting in unsta-
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Figure 1: Visualization of the Chebyshev nodes γt, their
corresponding step sizes γ−1

t , and the fractal permutation
(Lebedev & Finogenov, 1971) studied in this paper.

ble optimization trajectories. Extending a relatively obscure
line of work motivated by numerical imprecision in PDE
solvers (Lebedev & Finogenov, 1971), we show that stable
acceleration is achieved by selecting a fractal permutation
of the Chebyshev step sizes.

Acceleration via large step sizes may provide an useful al-
ternative to momentum: it is less stable according to our
worst-case bounds, but inherits the memory-efficiency and
statelessness of vanilla gradient descent. More broadly,
we discuss how this form of acceleration might implicitly
present itself in settings like deep learning, introducing hid-
den entanglements and experimental confounds. We hope
that these ideas will lead to new adaptive algorithms which
overstep the “edge of stability” (the largest constant learning
rate at which model training converges) (Giladi et al., 2019;
Cohen et al., 2021), and accelerate training via carefully
scheduled negative progress. We provide some supporting
experiments towards bridging the theory-practice gap, as
well as open questions for future investigation.

1.1. Our contributions

Provably stable acceleration without momentum. We
revisit an oft-neglected variant of the Chebyshev iteration
method for accelerating gradient descent on convex quadrat-
ics. In lieu of momentum, it uses a recursively-defined
sequence of large step sizes derived from Chebyshev poly-
nomials, which we call the fractal Chebyshev schedule. We
prove a new stability guarantee for this algorithm: under
bounded perturbations to all the gradients, no iterate changes
by more than O(poly(κ)), where κ is the condition num-
ber of the problem. We also some provide theoretically-
grounded practical variants of the schedule, and negative
results for function classes beyond convex quadratics.
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Empirical insights on stable oscillating schedules. We
demonstrate empirically that the fractal Chebyshev sched-
ule stabilizes gradient descent on objectives beyond con-
vex quadratics. We observe accelerated convergence on an
instance of multiclass logistic regression, and convergent
training of deep neural networks at unstable learning rates.
These experiments highlight the power of optimizing the
“microstructure” of the learning rate schedule (as opposed
to global features like warmup and decay). We discuss how
these findings connect to other implicit behaviors of SGD
and learning rate schedules.

1.2. Related work

The predominant algorithms for accelerated first-order op-
timization are the momentum methods of Polyak (1964b)
and Nesterov (1983). The former, known as the heavy-ball
method, only achieves provable acceleration on quadratic
objectives. The latter achieves minimax optimal conver-
gence rates for general smooth convex objectives. Both are
widely used in practice, far beyond their theoretical scope;
for instance, they are the standard options available in deep
learning frameworks.

Empirical challenges and tradeoffs. (Bottou & Bous-
quet, 2007) discuss the competing objectives of stability,
acceleration, and computation in large-scale settings, where
one cannot afford to consider a single asymptotically domi-
nant term. Devolder et al. (2014); Chen et al. (2018); Agar-
wal et al. (2020b) study this specifically for acceleration.
Optimizing the learning rate schedule remains a ubiquitous
challenge; see Section 6.2 and Appendix G.2 for references.

Numerical methods and extremal polynomials. There
are many connections between algorithm design and ap-
proximation theory (Vishnoi, 2012; Sachdeva & Vishnoi,
2013). We emphasize that the beautiful idea of the fractal
permutation of Chebyshev nodes is an innovation by Lebe-
dev & Finogenov (1971; 1973; 1976); our technical results
are generalizations and refinements of the ideas therein. We
give an overview of this line of work in Appendix G.1.

Learning rate schedules in stochastic optimization.
Bias-variance tradeoffs in optimization are studied in vari-
ous theoretical settings, including quadratics with additive
and multiplicative noise (Lan, 2012; Ge et al., 2019; Gor-
bunov et al., 2020). Many of them also arrive at theoretically
principled learning rate schedules; see Appendix G.3. On
the more empirical side, Zhang et al. (2019) use a noisy
quadratic model to make coarse predictions about the dy-
namics of large-scale neural net training. Cyclic learning
rate schedules have been employed in deep learning, with
various heuristic justifications (Loshchilov & Hutter, 2016;
Smith, 2017; Fu et al., 2019). In parallel work, (Oymak,

2021) considers a cyclic “1 high, n low” schedule, which
gives log(κ) convergence rates in the special case of convex
quadratics whose Hessians have bimodal spectra. We dis-
cuss in Appendix E.5 why this approach does not provide
acceleration in the general case; the MNIST experiments in
Appendix F.4 include a comparison with this schedule.

2. Preliminaries
2.1. Gradient descent

We consider the problem of iterative optimization of a dif-
ferentiable function f : Rd → R, with a first-order oracle
∇f : Rd → Rd which computes the gradient of f at a query
point. The simplest algorithm in this setting is gradient de-
scent, which takes an arbitrary initial iterate x1 ∈ Rd and
executes T update steps

{xt+1 ← xt − ηt∇f(xt)}Tt=1 (1)

according to a learning rate schedule (η1, . . . , ηT ), produc-
ing a final iterate xout := xT+1. When the {ηt} do not
depend on T , an analogous infinite sequence of iterates
{xt}t∈N can be defined.

There are many ways to choose the learning rate sched-
ule, depending on the structure of f and uncertainty in the
gradient oracle. Some schedules are static (non-adaptive):
(η1, . . . , ηT ) are chosen before the execution of the algo-
rithm. For instance, when f is an M -smooth convex func-
tion, ηt = 1/M achieves the classical convergence rates.

Adaptive choices of ηt are allowed to depend on the ob-
served feedback from the current execution (including xt
and∇f(xt)), and are considerably more expressive. For ex-
ample, ηt can be chosen adaptively via line search, adaptive
regularization, or curvature estimation.

2.2. The special case of quadratics

Consider the case where the objective is of the form

f(x) =
1

2
x>Ax− b>x,

where A ∈ Rd×d is symmetric and positive definite, and
b ∈ Rd, so that∇f(x) = Ax− b is an affine function of the
query point x. Then, the mapping G : xt 7→ xt+1 induced
by gradient descent is also affine. Let x∗ := min f (a fixed
point of G). Then,

xt+1 − x∗ = G(xt)− x∗ = G(xt)− G(x∗)

= (I − ηtA)(xt − x∗).

By induction, we conclude that

xout − x∗ =

[
T∏
t=1

(I − ηtA)

]
(x1 − x∗).
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Thus, the residual after T steps of gradient descent is given
by a degree-T matrix polynomial times the initial residual:

Definition 1 (Residual polynomial). Fix a choice of non-
adaptive (η1, . . . , ηT ). Then, define the residual polynomial
p : Rd×d → Rd×d as

p(A) :=

T∏
t=1

(I − ηtA).

When clear, we will interchange to denote scalar and matrix
polynomials with the same coefficients. Thus, overloading
p : R→ R, we have p(0) = 1, and p(1/ηt) = 0 for each t.

Remark 2. The matrices in the above product all commute.
Thus, when f is quadratic, p(A) (and thus xout given x1)
does not depend on the permutation of (η1, . . . , ηT ).

2.3. Chebyshev polynomials and Chebyshev methods

The problem of choosing p(A) to optimize convergence
for least-squares has roots in numerical methods for dif-
ferential equations (Richardson, 1911). The Chebyshev
polynomials, which appear ubiquitously in numerical meth-
ods and approximation theory (Chebyshev, 1853; Mason
& Handscomb, 2002), provide a minimax-optimal solution
(Flanders & Shortley, 1950; Gavurin, 1950; Young, 1953)1:
choose positive real numbers m ≤ M , and set

p(λ) =
TT (z)

TT (θ)
,

where z := M+m−2λ
M−m , θ := M+m

M−m = 1 + 2m
M−m , and Tn(·)

is the degree-n Chebyshev polynomial of the first kind. One
of many equivalent definitions is Tn(z) = cos(n arccos z)
for |z| ≤ 1. From this definition it follows that the roots of
p occur at the Chebyshev nodes

γt :=
M +m

2
− M −m

2
cos

(t− 1
2 )π

T
, t = 1, . . . , T.

Setting {ηt} to be any permutation of {1/γt} suffices to
realize this choice of p. Note that 1/γt is decreasing in
t. The limiting case m = M is gradient descent with a
constant learning rate, and p(λ) = (1− λ/m)T .

Let λmin, λmax denote the smallest and largest eigenvalues
of A, so that the condition number of A is κ := λmax/λmin.
Viewing m,M as estimates for the spectrum, we define

κ̂ :=
M

m
≥ λmax

λmin
= κ.

We state a classic end-to-end convergence rate for Cheby-
shev iteration (proven in Appendix B for completeness):

1For a modern exposition, see the blogpost http://fa.
bianp.net/blog/2021/no-momentum/.

Theorem 3 (Convergence rate of Chebyshev iteration).
Choose spectral estimates m ≤ M such that 0 <
m ≤ λmin ≤ λmax ≤ M . Then, setting {ηt} to
be any permutation of {1/γt}, the final iterate of gradient
descent xout satisfies the following:

‖xout − x∗‖ ≤
2ρT

1 + ρ2T
‖x1 − x∗‖

≤ e−Ω(T )/
√
κ̂ ‖x1 − x∗‖ ,

where ρ :=
√
M−
√
m√

M+
√
m
≤ 1− Ω

(
1√
κ̂

)
.

Thus, accelerated methods like Chebyshev iteration get
ε-close to the minimizer in O(

√
κ̂ log(1/ε)) iterations, a

quadratic improvement over the O(κ̂ log(1/ε)) rate of gra-
dient descent with a constant learning rate. Theorem 3 is
proven using approximation theory: show that |p(λ)| is
small on an interval containing the spectrum of A.

Definition 4 (Uniform norm on an interval). Let p : R→ R,
and m ≤ M ∈ R. Define the norm

‖p‖[m,M ] := ‖p‖L∞([m,M ]) = max
λ∈[m,M ]

|p(λ)|.

Then, any upper bound on this norm gives rise to a conver-
gence rate like Theorem 3:

‖xout − x∗‖ ≤ ‖p‖[m,M ] · ‖x1 − x∗‖ .

These can be converted into optimality gaps on f by consid-
ering the polynomial λ p2(λ).

Moving beyond infinite-precision arithmetic, the optimiza-
tion literature typically takes the route of Stiefel (1958), es-
tablishing a higher-order recurrence which “semi-iteratively”
(iteratively, but keeping some auxiliary state) constructs the
same final polynomial p. This is the usual meaning of the
Chebyshev iteration method, and coincides with Polyak’s
momentum on quadratics.

This is where we depart from the conventional approach.2

We revisit the idea of working directly with the Chebyshev
step sizes, giving a different class of algorithms with differ-
ent trajectories and stability properties.

3. The fractal Chebyshev schedule
In this section, we work in the strongly3 convex quadratic
setting from Section 2.2. Our new contributions on top of
the existing theory address the following questions:

2For instance, this is not found in references on acceleration
(Bubeck, 2017; d’Aspremont et al., 2021), or in textbooks on
Chebyshev methods (Gottlieb & Orszag, 1977; Higham, 2002).

3Accelerated rates in this paper haveO(1/T 2) analogues when
λmin = 0 (Allen-Zhu & Hazan, 2016).

http://fa.bianp.net/blog/2021/no-momentum/
http://fa.bianp.net/blog/2021/no-momentum/
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Figure 2: Shapes of the Chebyshev step sizes and fractal per-
mutations. Left: Step sizes in sorted order for M = 1, and
m = 1, 1

2 , . . . ,
1
20 (black to blue). Right: Permuted sched-

ule with M = 1,m = 1
20 , T = 128 (red). Subsequences

with strides {1, 4, 16, 64} are overlaid, demonstrating self-
similarity arising from the interlacing construction.

(1) How noise-tolerant is gradient descent with Chebyshev
learning rates, beyond numerical imprecision?

(2) How do we choose the ordering of steps?

We first introduce the construction originally motivated by
numerical error, which provides an initial answer to (2).
Then, our extended robustness analysis provides an answer
to (1), and subsequently a more refined answer to (2).

3.1. Construction

We begin with the construction from (Lebedev & Finogenov,
1971), defined below and visualized in Figure 2.

Definition 5 (Fractal Chebyshev schedule). Let σ1 := [1],
and for each T ≥ 1 a power of 2, define

σ2T := interlace(σT , 2T + 1− σT ),

where

interlace([a1 . . . an], [b1 . . . bn]) := [a1 b1 a2 b2 . . . an bn].

Then, for given m ≤ M , and T a power of 2, the fractal
Chebyshev schedule is the sequence of learning rates

ηt := 1/γσT (t), t = 1, . . . , T.

Below are the first few nontrivial permutations σT :

σ2 = [1 2],

σ4 = [1 4 2 3],

σ8 = [1 8 4 5 2 7 3 6],

σ16 = [1 16 8 9 4 13 5 12 2 15 7 10 3 14 6 11].

3.2. Basic properties

We first list some basic facts about the unordered step sizes:

Proposition 6. For all m < M and T , the fractal Cheby-
shev step sizes {γ−1

t } satisfy the following:

(i) 1
M < γ−1

t < 1
m = κ̂

M .

(ii) The number of step sizes greater than 2
M is

(
1
2 − ε

)
T ,

where 0 ≤ ε ≤ O(1/κ̂) as κ̂→∞.

(iii) For t ≤ T
2 , we have γ−1

t < 1

m+
2(M−m)t2

T2

, and

1
T

∑T
t=1 γ

−1
t =

tanh(T acosh( 2m
M−m ))√

Mm
< 1√

Mm
=
√
κ̂
M .

Interpreting m,M as estimates for λmin, λmax:

(i) Every step size in the schedule exceeds the classic fixed
learning rate of 1/λmax. As T gets large, the largest
step approaches 1/λmin, a factor of κ larger.

(ii) For large κ, close to half of the step sizes overshoot the
stable regime η ∈ [0, 2/λmax], where local progress
on f is guaranteed.

(iii) The large steps are neither highly clustered nor dis-
persed. The largest γ−1

t overshoots the stable regime
by a factor of Θ(κ), but the average factor is only
O(
√
κ).

Next, some basic observations about the fractal schedule:

Proposition 7 (Hierarchy and self-similarity). For all
m,M, T and 0 ≤ i ≤ log2 T :

(i) The largest T2i steps ηt in the fractal Chebyshev sched-
ule occur when t = 1 + 2i(τ − 1), with τ = 1, . . . , T2i .

(ii) The subsampled sequence {η1+2i(τ−1)} has the same
ordering as the fractal permutation of the same length:

η1+2iτ = γ−1
1+2i(τ ′−1), where τ ′ = σT/2i(τ).

Figure 2 visualizes these observations, while Appendix D.1
contains formal statements and proofs.

3.3. Self-stabilization via infix polynomial bounds

Now, let us examine why the fractal ordering is needed.
As discussed, in the noiseless infinite-precision setting, the
final iterate xout is invariant to the permutation of {ηt}.
However, the intermediate iterates xt depend on a sequence
of partial products, which depend very sensitively on the
permutation; Figure 3 illustrates these tradeoffs; details are
found in Appendix F.1.
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Figure 3: The optimization trajectories of various permuta-
tions of the Chebyshev step sizes. Left: In the noiseless case,
the final iterates coincide, but xt can wander exponentially
far away. Right: With (i.i.d. Gaussian) noise, there is a
tradeoff between ‖xt‖ and the stability of xout.

We motivate our first new results using an additive noise
model; this is a refinement of (Lebedev & Finogenov, 1971;
1973; 1976), which are only concerned with preventing
exponential blowup of negligible perturbations at the nu-
merical noise floor. We consider adding a sequence of
perturbations (ξ1, . . . , ξT ) to gradient descent (Equation 1):

{xt+1 ← xt − ηt∇f(xt) + ξt}Tt=1. (2)

Note that this captures an inexact (e.g. stochastic) gradient
oracle ∇̃f(·), in which case

ξt = ηt(∇f(xt)− ∇̃f(xt)). (3)

Unrolling the recursion, we get:

x2 − x∗ = (I − η1A)(x1 − x∗) + ξ1,

x3 − x∗ = (I − η2A) [(I − η1A)(x1 − x∗) + ξ1] + ξ2,

· · ·

xt − x∗ = p1:t−1(A)(x1 − x∗) +

t∑
t′=2

pt′:t−1(A)ξt′−1,

where we have defined the infix polynomial as the (possibly
empty) product

ps:t(A) :=

t∏
τ=s

(I − ητA).

Lebedev & Finogenov (1971) give bounds on the norms of
the prefix polynomials p1:t and suffix polynomials ps:T :

Theorem 8 (Prefix and suffix bounds). For a fractal Cheby-
shev schedule with m,M, T , and all 1 ≤ s ≤ t ≤ T :

(i) ‖p1:t‖[m,M ] ≤ κ̂−1
4min(bits(t))

∏
j∈bits′(t)

2
1+T2j (θ) ;

(ii) ‖ps:T ‖[m,M ] ≤
∏
j∈bits(T+1−s)

2
1+T2j (θ) ,

where bits(n) denotes the sequence j1 > j2 > . . . > jk
of indices in the binary expansion of n, and bits′(n) :=

bits(n)\jk. For example, when n = 6 = 22+21, bits(n) =
{2, 1}, and bits′(n) = {2}.

Let V(·),V ′(·) denote the bounds from Theorem 8, so that
‖p1:t‖[m,M ] ≤ V ′(t), and ‖ps:T ‖[m,M ] ≤ V(T + 1− s).

Notice that V(t) ≤ 2
1+Tbt/2c(θ)

≤ e−Ω(t)/
√
κ̂ for all

t ≥ 1, and V ′(t) ≤ κ̂V(t).

To fully understand the propagation of ξt through Equa-
tion 2, we provide bounds on the infix polynomial norms:

Theorem 9 (Infix polynomial bounds). For the
fractal Chebyshev schedule with m,M, T , and all
1 ≤ s ≤ t ≤ T :

‖ps:t‖[m,M ] ≤ V(ζ + 1− s) · V ′(t− ζ),

where ζ is the index such that s− 1 ≤ ζ ≤ t and ζ, ζ + 1
differ at the most significant bit.

Then, analyzing the decay of V,V ′, we derive cumulative
error bounds:

Theorem 10 (Infix series bounds). For a fractal Chebyshev
schedule with m,M, T , and all 1 ≤ s ≤ t ≤ T :

t∑
t′=s

‖pt′:t‖[m,M ] ≤ O(κ̂1+ 1
ln 4 log κ̂) = o

(
κ̂1.73

)
.

This bound, a sum of up to T terms, is independent of T .

These require generalizations of the combinatorial proofs for
Theorem 8, presented (along with more precise statements)
in Appendices D.2 and D.3.

3.4. Implications for gradient descent

Theorem 10 translates to the following end-to-end statement
about gradient descent with the fractal schedule:

Corollary 11. Suppose 0 < m ≤ λmin ≤ λmax ≤ M .
Then, gradient descent with the fractal Chebyshev schedule
of length T , and perturbations (as in Equation 2) such that
‖ξt‖ ≤ ε, outputs iterates xt satisfying

‖xt+1 − x∗‖ ≤ ‖p1:t‖[m,M ] · ‖x1 − x∗‖+ o(κ̂1.73) · ε.

Recall that Theorems 8 and 3 guarantee

‖p1:t‖[m,M ] ≤ e−Ω(T )·log(κ̂)/
√
κ̂ ;

‖p1:T ‖[m,M ] ≤ e−Ω(T )/
√
κ̂.

The fractal schedule allows the stability factor to be inde-
pendent of T . When the perturbations arise from noisy
gradients (as in Equation 3), so that each ξt is ηtε-bounded,
this factor becomes o(κ̂2.73).
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Provable benefit of negative progress. A striking fact
about the fractal Chebyshev schedule is that this non-
adaptive method provably beats the minimax convergence
rate of line search, the most fundamental adaptive algorithm
in this setting (Boyd & Vandenberghe, 2004):

η
(ls)
t := arg min

η ≥ 0
f(xt − η∇f(xt)). (4)

Proposition 12 (No acceleration from line search). On a
strongly convex quadratic objective f(x) = 1

2x
>Ax+ b>x,

let {xt} be the sequence of iterates of gradient descent with
the adaptive learning rate schedule η(ls)

t from Equation 4.
Then, for each A, b, there exists a setting of x1 such that

‖xt+1 − x∗‖ ≥
(

1− 1

Ω(κ)

)T
· ‖x1 − x∗‖ , ∀t ≥ 1.

This is a classic fact; for a complete treatment, see Sec-
tion 3.2.2 of (Kelley, 1999). In the context of our results, it
shows that greedily selecting the locally optimal learning
rates is provably suboptimal, even compared to a feedback-
independent policy.

Adaptive estimation of the local loss curvature is an oft-
attempted approach, amounting to finding the best conserva-
tive step size 1

M . Proposition 12 suggests that although such
methods have numerous advantages, greedy local methods
can miss out on acceleration. The fact that acceleration
can be obtained from carefully scheduled overshooting is
reminiscent of simulated annealing (Aarts & Korst, 1989),
though we could not find any rigorous connections.

Comparison with momentum. We stress that this form
of acceleration does not replace or dominate momentum.
The dependence of the stability term on κ̂ is suboptimal
(Devolder et al., 2014). In exchange, we get a memory-
less acceleration algorithm: gradient descent has no aux-
iliary variables or multi-term recurrences, so that xt fully
specifies the state. This bypasses the subtleties inherent in
restarting stateful optimizers (O’Donoghue & Candes, 2015;
Loshchilov & Hutter, 2016).

Finally, our theory (especially Theorem 14) implies that
experiments attempting to probe the acceleration benefits
of momentum might be confounded by the learning rate
schedule, even in the simplest of settings (thus, certainly
also in more complicated settings, like deep learning).

3.5. Brief overview of proof ideas

Figure 3 suggests that there is a tradeoff between taking
large Ω(1/m) steps for acceleration vs. small O(1/M)
steps for stability. To get acceleration, we must take all of
the large steps in the schedule. However, we must space
them out: taking k = o(T ) of the largest steps consecutively

incurs an exponential blowup in the infix polynomial:

k∏
i=1

∥∥∥∥(1− λ

γi

)∥∥∥∥
[m,M ]

≈
∥∥∥∥∥
(

1− λ

m

)k∥∥∥∥∥
[m,M ]

= (κ̂− 1)
k
.

The difficulty arises from the fact that there are not enough
small steps in the schedule, so that a large step will need
to be stabilized by internal copies of Chebyshev iteration.
This is why the fractal schedule is necessary. Theorem 9
shows that this is surprisingly possible: the fractal schedule
is only as unstable as the largest single step.

This intuition does not get us very far towards an actual
proof: the internal copies of Chebyshev iteration, which
form a complete binary tree, are “skewed” in a way that is
sometimes better, sometimes worse. Isolating a combina-
torial tree exchange lemma used to prove Theorem 8, we
can iteratively swap two special infix polynomials with two
others, and localize “bad skewness” to only one large step.
Theorem 9 follows from decomposing each infix into two
infixes amenable to the tree exchange procedure. Theo-
rem 10 follows by combining Theorem 9 with sharpened
generalizations of the original paper’s series bounds.

The proofs involve delicate trigonometric inequalities and
various interesting facts about the geometry of polynomials.
Appendices B, C, and D build up to self-contained proofs.

4. Extensions and variants
Next, we explore some theoretically justified variants.

4.1. Useful transformations of the fractal schedule

Reversing the schedule. Notice that the first step η1 is
the largest step in the schedule. This might not be desirable
when ξt is proportional to ‖x− x∗‖ (like in linear regression
with minibatch SGD noise). It is a simple consequence of
the symmetries in the main theorems that reversing the
fractal Chebyshev schedule produces a contractive variant:

Proposition 13. Suppose we run gradient descent with the
reversed fractal Chebyshev schedule σT (T + 1− t). Then:

(i) For any 1 ≤ t < t′ ≤ T , we have

‖p1:t‖[m,M ] ≤ ‖p1:t′‖[m,M ] ≤ 1,

where ‖·‖ denotes the corresponding suffix norm bound
from Theorem 8 (ii).

(ii) The bounds from Theorem 8 are swapped: replace
(p1:t, ps:T )→ (pT+1−t:T , p1:T+1−s).

(iii) Theorem 9 holds, swapping V ↔ V ′. Theorem 10
holds.
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Concatenating schedules. One can also repeat the fractal
Chebyshev schedule indefinitely.4 Note that each infix poly-
nomial of a repeated schedule can be written as a product
of one prefix p1:t, one suffix ps:T , and a power of p1:T , so
stability bounds analogous to Theorems 9 and 10 follow
straightforwardly. It is also possible to concatenate sched-
ules with different lengths T . Choosing T to be successive
powers of 2, one obtains an infinitely long schedule suitable
for unknown time horizons.

4.2. Conservative overstepping and partial acceleration

In this section, we decouple the eigenvalue range
[λmin, λmax] from the Chebyshev node range [m,M ] used
in constructing the schedule. This can simply arise from
an incorrect estimation of the eigenvalue range. However,
more interestingly, if we think of [m,M ] as purposefully
omitting the lower spectrum of A (and thus taking smaller
large steps), this allows us to interpolate between the fractal
Chebyshev schedule and the vanilla constant learning rate.

Easy cases. If m < λmin or M > λmax, then [m,M ] is
still an interval containing the spectrum of A; it is simply
the case that convergence rates and stability bounds will
depend on a worse κ̂ > κ. On the other hand, if M < λmax,
the residual blows up exponentially.

The subtle case is when m > λmin, when we are over-
stepping with restraint, trading off acceleration for stability
via more conservative step sizes. This requires us to rea-
son about ‖p‖[λmin,M ] when p was constructed to shrink
‖p‖[m,M ]. Analyzing this case, we get partial acceleration:

Theorem 14. Given a quadratic objective with matrix A
and 0 < λmin ≤ m ≤ λmax ≤ M , gradient descent with
the Chebyshev step sizes results in the following convergence
guarantee:

‖xout − x∗‖ ≤ 2
(
1− φ−1(λmin,m,M)

)T · ‖x1 − x∗‖,

with

φ−1(λmin,m,M)

:= 2 · λmin +
√
Mm−

√
(M − λmin)(m− λmin)

(
√
M +

√
m)2

.

This is an interpolation between the standard and accelerated
convergence rates of O(κ log(1/ε)) and O(

√
κ log(1/ε)).

Figure 4 shows the shape of φ for m ∈ [λmin,M ], as it
ranges from ∼ √κ→ κ.

4This is known as a cyclic iterative method, and was in fact the
original motivation for (Lebedev & Finogenov, 1971).
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Figure 4: Summary of the discussion in Section 4.2. Subop-
timal decay times φ(λmin = 0.01,m,M = 1) interpolate
between the standard and accelerated rates. Green curves
correspond to settings of m < λmin where Theorem 3 ap-
plies; notice the distorted horizontal scale.

4.3. Existence of clairvoyant non-adaptive schedules

Finally, we present one more view on the provable power of
tuning (i.e. searching globally for) a learning rate schedule
on a fixed problem instance. An ambitious benchmark is
the conjugate gradient method (Hestenes & Stiefel, 1952),
which is optimal for every (rather than the worst-case)
choice of A, b. That is, at iteration t, it outputs

xt+1 := arg min
deg p ≤ t
p(0)=1

‖p(A)(x1 − x∗)‖A ,

where ‖x‖A :=
√
x>Ax. This can be much stronger than

the guarantee from Theorem 3 (e.g. when the eigenvalues of
A are clustered). In Appendix E.3, we prove that there are
non-adaptive (but instance-dependent) learning rate sched-
ules that compete with conjugate gradient:

Theorem 15 (Conjugate gradient schedule; informal). For
every problem instance (A, b), there is a learning rate sched-
ule {ηt} for gradient descent, with each ηt ∈ [ 1

λmax
, 1
λmin

],
such that xout is the output of conjugate gradient.

5. Beyond convex quadratics
5.1. General convex objectives: a counterexample

A mysterious fact about acceleration is that some algorithms
and analyses transfer from the quadratic case to general
convex functions, while others do not. (Lessard et al., 2016)
exhibit a smooth and strongly convex non-quadratic f for
which Polyak’s momentum gets stuck in a limit cycle.

For us, f(x) = log cosh(x) + 0.01x2 serves as a one-
dimensional “proof by simulation” that gradient descent
with the fractal Chebyshev schedule can fail to converge.
This is shown in Appendix F.2; note that this is a tiny in-
stance of ridge logistic regression.
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5.2. Non-convex objectives: a no-go

None of this theory carries over to worst-case non-convex f :
the analogue of Theorem 15 is vacuously strong. We point
out that global optimization of the learning rate schedule is
information-theoretically intractable.

Proposition 16 (Non-convex combination lock; informal).
For every “passcode” {η∗1 , . . . , η∗T } and δ > 0, there is a
smooth non-convex optimization problem instance (f(·), x1)
for which the final iterate xout of gradient descent is an 1-
approximate global minimum only if

|ηt − η∗t | ≤ δ, ∀t = 1, . . . , T.

A formal statement and proof are given in Appendix E.4.

5.3. More heuristic building blocks

With Polyak momentum as the most illustrious example, an
optimizer can be very useful beyond its original theoretical
scope. We present some more ideas for heuristic variants
(unlike the theoretically justified ones from Section 4):

Cheap surrogates for the fractal schedule. The worst-
case guarantees for Chebyshev methods depend sensitively
on the choice of nodes. However, beyond worst-case objec-
tives, it might suffice to replace {γ−1

t } with any similarly-
shaped distribution (like the triangular one considered by
(Smith, 2017)), and σ with any sequence that sufficiently
disperses the large steps. We show in Appendix E.5 that ac-
celeration cannot arise from the simple cyclic schedule from
(Oymak, 2021). An intriguing question is whether adap-
tive gradient methods or the randomness of SGD implicitly
causes partial acceleration, alongside other proposed “side
effect” mechanisms (Keskar et al., 2016; Jin et al., 2017;
Staib et al., 2019).

Inserting slow steps. We can insert any number of steps
η ∈ [0, 2

M ] at any point in a schedule without worsening
stability or convergence, because ‖(1− ηλ)‖[m,M ] ≤ 1.
That is, ‖ps′:t′‖ in the supersequence is bounded by the cor-
responding ‖ps:t‖ in the original schedule, and Theorems 9
and 10 apply. A special case of this is warmup or burn-in:
take any number of small steps at the beginning.

Another option is to insert the small steps cyclically: notice
from Propositions 6 (ii) and 7 (i) that the steps {ηt} come
in “fast-slow” pairs: an odd step overshoots, and an even
step corrects it. This suggests further heuristics, like the
following “Chebyshevian waltz”: in minibatch SGD, run
triplets of iterations with step sizes (η2t−1, η2t,

1
M ).5 In

5In non-GPU-bound regimes (Choi et al., 2019; Agarwal et al.,
2020a) and deep RL, one can sometimes take these steps for free,
without causing a time bottleneck.
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theory, this degrades the worst-case convergence rate by a
constant factor, but improves stability by a constant factor.

6. Experiments
6.1. Convex problems and non-local progress

In spite of the simple negative result in Section 5.1, we find
that the fractal Chebyshev schedule can exhibit accelerated
convergence beyond quadratic objectives. Figure 5 shows
training curves for logistic regression for MNIST classifi-
cation; details are in Appendix F.3. We leave a theoretical
characterization of the schedule’s acceleration properties on
general convex functions to future work; this may require
further assumptions on “natural” problem instances beyond
minimax bounds.

6.2. Beyond the edge of stability in deep learning

We provide a small set of deep learning experiments, finding
that the fractal Chebyshev schedule can overstep the empir-
ical “edge of stability” (i.e. the largest constant multiplier
on the learning rate for which training does not diverge).
Figure 6 gives an overview of these findings; details are in
Appendix F.4.

Estimating the scale of λmax(∇2f) is an old paradigm for
selecting learning rates (LeCun et al., 1992; Schaul et al.,
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2013); there are many proposed mechanisms for the success
of larger learning rates. Our theory (especially Theorem 14)
and experiments point to the possibility of time-varying
schedules to enable larger learning rates, on a much finer
scale than cyclic restarts (Loshchilov & Hutter, 2016; Smith,
2017; Fu et al., 2019). A nascent line of work also chal-
lenges the classical ηt ∼ 1/λmax wisdom from an empirical
angle (Cohen et al., 2021), finding a phenomenon dubbed
progressive sharpening during normal (smooth ηt) training.

End-to-end improvements on training benchmarks are out-
side the scope of this work: the learning rate schedule in-
teracts with generalization (Jiang et al., 2020), batch nor-
malization + weight decay (Li & Arora, 2019), batch size
(Smith et al., 2018), adaptive preconditioners (Agarwal et al.,
2020a) and now (from this work) acceleration. This adds
yet one more perspective on why it is so difficult to stan-
dardize experimental controls and ablations in this space.
Analogously, it has been proposed that momentum acts as a
variance reduction mechanism (Li et al., 2017; Cutkosky &
Orabona, 2019), alongside its classical role in acceleration.

As an invitation to try these ideas in various experimental
settings, we provide in Appendix A some Python code to
generate Chebyshev learning rates and fractal schedules.

7. Conclusion
We have revisited a lesser-known acceleration algorithm
which uses a fractal learning rate schedule of reciprocal
Chebyshev nodes, proved a stronger stability guarantee for
its iterates, and developed some practical variants. Our ex-
periments demonstrate promising empirical behaviors of the
schedule beyond low-noise quadratics. We hope that this
work provides new foundations towards investigating lo-
cal optimization algorithms which take carefully scheduled
“leaps of faith”.

Open questions. We conclude with some natural follow-
up questions for future work:

• Find “reasonable”6 (computationally efficient, oracle-
efficient, and perturbation-stable) adaptive learning
rate schedulers with accelerated convergence rates.
What are the acceleration properties of commonly-
used adaptive step size heuristics (Duchi et al., 2011;
Kingma & Ba, 2014; Ward et al., 2019)?

• Do there exist learning rate schedules (adaptive or non-
adaptive) which obtain the accelerated rate for general
strongly convex f , as opposed to only quadratics?

6One example which is unreasonable in every way: run conju-
gate gradient ahead of time, maintaining monomial-basis expan-
sions of the A-orthogonal basis. Compute the roots of the final
polynomial, and use their inverses as a learning rate schedule.
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