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Abstract

We consider the setting of iterative learning con-
trol, or model-based policy learning in the pres-
ence of uncertain, time-varying dynamics. In
this setting, we propose a new performance met-
ric, planning regret, which replaces the standard
stochastic uncertainty assumptions with worst
case regret. Based on recent advances in non-
stochastic control, we design a new iterative al-
gorithm for minimizing planning regret that is
more robust to model mismatch and uncertainty.
We provide theoretical and empirical evidence
that the proposed algorithm outperforms existing
methods on several benchmarks.

1. Introduction

Consider a robotic system learning to perform a novel task,
e.g., a quadrotor learning to fly to a specified goal, a ma-
nipulator learning to grasp a new object, or a fixed-wing
airplane learning to perform a new maneuver. We are partic-
ularly interested in settings where (i) the task requires one
to plan over a given time horizon, (ii) we have access to an
inaccurate model of the world (e.g., due to unpredictable
external disturbances such as wind gusts or misspecification
of physical parameters such as masses, inertias, and fric-
tion coefficients), and (iii) the robot is allowed to iteratively
refine its control policy via multiple executions (i.e., roll-
outs) on the real world. Motivated by applications where
real-world rollouts are expensive and time-consuming, our
goal in this paper is to learn to perform the given task as
rapidly as possible. More precisely, given a cost function
that specifies the task, our goal is to learn a low-cost control
policy using a small number of rollouts.

The problem described above is challenging due to a number
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of factors. The primary challenge we focus on in this pa-
per is the existence of unmodeled deviations from nominal
dynamics, and external disturbances acting on the system.
Such disturbances may either be random or potentially even
adversarial. In this paper we adopt a regret minimization ap-
proach coupled with a recent paradigm called non-stochastic
control to tackle this problem in generality. Specifically, con-
sider a time-varying dynamical system given by the equation

(1.1

where x; is the state, u; is the control input, and w; is an
arbitrary disturbance at time ¢. Given a horizon 7T, the
performance of a control algorithm .4 may be judged via
the aggregate cost it suffers on a cost function sequence
c1,...cr along its state-action trajectory (7', ufl,...):

T = fe(ae, u) + wy,

1
J(Ajwrr) = 7 PR CARTE
t=1

For deterministic systems, an optimal open-loop control
sequence u1 ... ur can be chosen to minimize the cost se-
quence. The presence of unanticipated disturbances often
necessitates the superposition of a closed-loop correction
policy 7 to obtain meaningful performance. Such closed-
loop policies can modify the open-loop control sequence
uy ... ur to uy = w(uy.4,x1,¢) which is a function of the
observed history till time ¢, and facilitate adaptation to real-
ized disturbances. To capture this, we define a comparative
performance metric, which we call Planning Regret. In an
episodic setting, for every episode 4, an algorithm 4 adap-
tively selects control inputs while the rollout is performed
under the influence of an arbitrary disturbance sequence
w}. . Planning regret is the difference between the total
cost of the algorithm’s actions and that of the retrospectively
optimal open-loop plan coupled with episode-specific op-
timal closed-loop policies (from a policy class II). Regret,
therefore, is the relative cost of not knowing the to-be re-
alized disturbances in advance. Formally for a total of N
rollouts, each of horizon 7', it is defined as:

Planning Regret
N N
> J(Ajwip)—min Y min J(ufp, 77w )
— uly S miE€l '
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The motivation for our performance metric arises from the
setting of Iterative Learning Control (ILC), where one as-
sumes access to an imperfect (differentiable) simulator of
real-world dynamics as well as access to a limited number of
rollouts in the real world. In such a setting the disturbances
capture the model-mismatch between the simulator and the
real-world. The main novelty in our formulation is the fact
that, under vanishing regret, the closed-loop behavior of A
is almost instance-wise optimal on the specific trajectory,
and therefore adapts to the passive controls, dynamics and
disturbance for each particular rollout. Indeed, worst-case
regret is a stronger metric of performance than commonly
considered in the planning/learning for control literature.

Our main result is an efficient algorithm that guarantees
vanishing average planning regret for non-stationary linear
systems and disturbance-action policies. We experimentally
demonstrate that the algorithm yields substantial improve-
ments over ILC in linear and non-linear control settings.

Paper structure. We present the relevant definitions in-
cluding the setting in Section 2. The algorithm and the
formal statement of the main result can be found in Section
3. In Section 4 we provide an overview of the algorithm and
the proof via the proposal of a more general and abstract
nested online convex optimization (OCO) game. This formu-
lation can be of independent interest. Finally in Section 5,
we provide the results and details of the experiments. Proofs
and other details are deferred to the Appendix.

1.1. Related Work

The literature on planning and learning in partially known
MDPs is vast, and we focus here on the setting with the
following characteristics:

1. We consider model-aided learning, which is suitable
for situations in which the learner has some informa-
tion about the dynamics, i.e. the mapping f; in Equa-
tion (1.1), but not the disturbances w;. We further
assume that we can differentiate through the model.
This enables efficient gradient-based algorithms.

2. We focus on the task of learning an episodic-agnostic
control sequence, rather than a policy. This is aligned
with the Pontryagin optimality principle (Pontryagin
et al., 1962; Ross, 2015), and differs from dynamic
programming approaches (Sutton & Barto, 2018).

3. We accomodate arbitrary disturbance processes, and
choose regret as a performance metric. This is a signifi-
cant deviation from the literature on optimal and robust
control (Zhou et al., 1996; Stengel, 1994), and fol-
lows the lead of the recent paradigm of non-stochastic
control (Agarwal et al., 2019a; Hazan et al., 2020; Sim-
chowitz et al., 2020).

4. Our approach leverages multiple real-world rollouts.
This access model is most similar to the iterative
learning control (ILC) paradigm (Owens & Hitonen,
2005; Ahn et al., 2007). For comparison, the model-
predictive control (MPC) paradigm allows for only
one real-world rollout on which performance is mea-
sured, and all other learning is permitted via access to
a simulator.

Optimal, Robust and Online Control. Classic results
(Bertsekas, 2005; Zhou et al., 1996; Tedrake, 2020) in op-
timal control characterize the optimal policy for linear sys-
tems subject to i.i.d. perturbations given explicit knowledge
of the system in advance. Beyond stochastic perturbations,
robust control approaches (Zhou & Doyle, 1998) compute
the best controller under worst-case noise.

Recent work in machine learning (Abbasi-Yadkori &
Szepesvari, 2011; Dean et al., 2018; Mania et al., 2019; Co-
hen et al., 2018; Agarwal et al., 2019b) study regret bounds
vs. the best linear controller in hindsight for online control
with known and unknown linear dynamical systems. Online
control was extended to adversarial perturbations, giving
rise to the nonstochastic control model. In this general set-
ting regret bounds were obtained for known/unknown sys-
tems as well as partial observation (Agarwal et al., 2019a;
Hazan et al., 2020; Simchowitz et al., 2020; Simchowitz,
2020).

Planning with inaccurate models. Model predictive con-
trol (MPC) (Mayne, 2014) provides a general scheme for
planning with inaccurate models. MPC operates by ap-
plying model-based planning, (eg. iLQR (Li & Todorov,
2004; Todorov & Li, 2005)), in a receding-horizon manner.
MPC can also be extended to robust versions (Bemporad
& Morari, 1999; Mayne et al., 2005; Langson et al., 2004)
that explicitly reason about the parametric uncertainty or
external disturbances in the model. Recently, MPC has
also been viewed from the lens of online learning (Wagener
et al., 2019). The setting we consider here is more general
than MPC, allowing for iterative policy improvement across
multiple rollouts on the real world.

An adjacent line of work on learning MPC (Hewing et al.,
2020; Rosolia & Borrelli, 2017) focuses on constraint sat-
isfaction and safety considerations while learning models
simultaneously with policy execution.

Iterative Learning Control (ILC). ILC is a popular ap-
proach for tackling the setting considered. ILC operates by
iteratively constructing a policy using an inaccurate model,
executing this policy on the real world, and refining the
policy based on the real-world rollout. ILC can be extended
to use real-world rollouts to update the model (see, e.g.,
(Abbeel et al., 2006)). For further details regarding ILC, we
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refer the reader to the text (Moore, 2012). Robust versions
of ILC have also been developed in the control theory litera-
ture (de Roover, 1996), using H-infinity control to capture
bounded disturbances or uncertainty in the model.

However, most of the work in robust control, typically ac-
count for worst-case deviations from the model and can lead
to extremely conservative behavior. In contrast, here we
leverage the recently-proposed framework of non-stochastic
control to capture instance-specific disturbances. We demon-
strate both empirically and theoretically that the resulting
algorithm provides significant gains in terms of sample effi-
ciency over the standard ILC approach.

Meta-Learning. Our setting, analysis and, in particular,
the nested OCO setup bears similarity to formulations for
gradient-based meta-learning (see (Finn et al., 2017) and ref-
erences therein). In particular, as we detail in the Appendix
(Section A), the nested OCO setting we consider is a gener-
alization of the setting considered in (Balcan et al., 2019).
We further detail certain improvements/advantages our algo-
rithm and analysis provides over the results in (Balcan et al.,
2019). We believe this connection with Meta-Learning to
be of independent interest.

2. Problem Setting
2.1. Notation

The norm || - || refers to the ¢5 norm for vectors and spec-
tral norm for matrices. For any natural number n, the
set [n] refers to the set {1,2...n}. We use the notation
Va:p 2 {q ... vy} to denote a sequence of vectors/matrices.
Given a set S, we use v, € S to represent element wise in-
clusion, i.e. Vj € [a,b],v; € S; Projg(va:s) represents the
element-wise {5 projection onto to the set S. vg.p,.q denotes
a sequence of sequences, i.e. Vg:pc:d = {Va,c:d - - Vbc:d}
with vg c:a = {Va,c - - - Va,d}-

2.2. Basic Definitions

A dynamical system is specified via a start state xy € R,
a time horizon 7' and a sequence of transition functions
fir =A{felfe: Rie x R — R™}. The system produces
a T-length sequence of states (21, ...2r,1) When subject
to an T-length sequence of actions (u; . ..ur) and distur-
bances {wy, ... wr} according to the following dynamical
equation’

Tep1 = fi(e, ue) + wy.
Through the paper the only assumption we make about the

disturbance w; is that it is supported on a set of bounded
diameter W. We assume full observation of the system, i.e.

"For the sake of simplicity, we do not consider a terminal cost,
and consequently drop the last state from the description.

the states x; are visible to the controller. We also assume the
passive transition function to be known beforehand. These
assumptions imply that we fully observe the instantiation of
the disturbances wq.7 during runs of the system.

The actions above may be adaptively chosen based on the
observed state sequence, ie. u; = (x4, ... x¢) for some
non-stationary policy 7.7 = {m1,...7r}. We consider
the policy to be deterministic (a restriction made for con-
venience). Therefore the state-action sequence {, us } 7.1,
defined as z11 = fi(xe, up) +we, up = me(2q - . . ), thus
produced is a sequence determined by ws.7, fixing the pol-
icy, and the system.

A rollout of horizon T on fi.7 refers to an evaluation of
the above sequence for 7" time steps. When the dynamical
system will be clear from the context, for the rest of the
paper, we drop it from our notation. Given a cost function
sequence {c;} : R™ x R? — R the loss of executing a policy
7 on the dynamical system f with a particular disturbance
sequence given by wy.7 is defined as

Z Ct(l‘t, Ut)] .
T=1

Assumption 2.1. We will assume that the cost c; is a twice
differentiable convex function and that the value, gradient
and hessian of the cost function c; is available. Further we
assume,

é1

J(mr| frr, wir) T

o Lipschitzness: There exists a constant G such
that if ||z||, ||ul| < D for some D > 0, then
IVacr(z, w)l, [[Vuce(z, u)|| < GD.

e Smoothness: There exists a constant 3 such that for
all z,u, Ve (x,u) < BI.

When the dynamical system and the noise sequence are
clear from the context we suppress them from the notation
for the cost denoting it by J(m1.7). A particular sub-case
which will be of special interest to us is the case of lin-
ear dynamical systems (LDS). Formally, a (non-stationary)
linear dynamical system is described by a sequence of ma-
trices ABy.7 = {(As, By) € Rderda x Rd=:du}T | and the
transition function is defined as ;1 = A;x; + Byuy.

Assumption 2.2. We will assume that the linear dynamical
system ABi.r is (k,0)- strongly stable for some k > 0
and 6 € (0,1], i.e. for if every t, we have that ||As]| <
1—46,||B:]| < k.

We note that all the results in the paper can be easily gen-
eralized to a weaker notion of strong stability where the
linear dynamical system is (k, d)- strongly stable if there
exists a sequence of matrices K., such that for every ¢,
we have that HAt — Bth” <1- 6, ||B,5||7 ||Kt|| < k. A
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system satisfying such an assumption can be easily trans-
formed to a system satisfying Assumption 2.2 by setting
Ay = A, — ByK,. This redefinition is equivalent to ap-
pending the linear policy K; on top of the policy being
executed. While we present the results for the case when
K = 0, the only difference the non-zero case makes to
our analysis is potentially increasing the norm of the played
actions which can still be shown to be bounded. Overall this
nuance leads to a difference to our main result only in terms
of factors polynomial in the system parameters. Hence for
convenience, we state our results under Assumption 2.2.
The assumption of strong-stability (in a weaker form as
allowed by stationary systems) has been popular in recent
works on online control (Cohen et al., 2018; Agarwal et al.,
2019a) and the above notion generalizes it to non-stationary
systems.

2.3. Policy Classes

Open-Loop Policies. Given a convex set I € R%, con-
sider a sequence of control actions, ui.7 € U. We define
(by an overload of notation), the open-loop policy u1.7 as
a policy which plays at time ¢, the action w;. The set of all
such policies is defined as IT;; £ U®7.

Given two policies we define the sum of the two (denoted
by 7 + ) as the policy for which the action at time ¢ is
the sum of the action recommended by policy 71 and 7.

Linear Policies. Given a matrix K € R%:= 3 [inear
policy > denoted (via an overload of notation) by K is a pol-
icy that plays action u; = Kz;. Such linear state-feedback
policies are known to be optimal for the LQR problem and
for H., control (Zhou et al., 1996).

Disturbance Action Controllers (DAC). A generaliza-
tion of the class of linear policies can be obtained via the
notion of disturbance-action policies (see (Agarwal et al.,
2019a)) defined as follows. A disturbance action policy
Tar,,, of memory length L is defined by a sequence of
matrices My.;, £ {M; ... My} where each M; € M C
{R%*d=} "\ith the action at time step ¢ given by

L
[TerzL]t S ZMjwt—j- 2.1
j=1

A natural class of matrices from which the above feedback
matrices can be picked is given by fixing a number v > 0
and picking matrices spectrally bounded by v, i.e. M., =
{M|M € R%*d= ||M|| < ~}. We further overload the
notation for a disturbance action policy to incorporate an

?For notational simplicity, we do not include an affine offset c;
in the definition of our linear policy; this can be included with no
change in results across the paper.

A
open-loop control sequence 1.1, defined as 7y, , (u1.1) =

L
{ur + Zj:l Mjws—j}i—s.

2.4. Planning Regret With Disturbance-Action Policies

As discussed, a natural idea to deal with adversarial process
disturbance is to plan (potentially oblivious to it), produc-
ing a sequence of open loop (u1.7) actions and appending
an adaptive controller to correct for the disturbance online.
However the disturbance in practice could have structure
across rollouts, which can be leveraged to improve the plan
(u1.7), with the knowledge that we have access to an adap-
tive controller. To capture this, we define the notion of an
online planning game and the associated notion of planning
regret below.

Definition 2.3 (Online Planning). It is defined as an N
round/rollout game between a player and an adversary,
with each round defined as follows:

o At every round i the player given the knowledge of a
new dynamical system fi = {fi... fx}, proposesa
policy wt . = {mi .. .74}

; i
e The adversary then proposes a noise sequence Wi,
and a cost sequence c}.p.

e A rollout of policy i . is performed on the system
fi.p with disturbances w;.» and the cost suffered by

the player Ji(ﬂ-izT) £ J(Wi:T‘f{:T’wi:T)‘

The task of the controller is to minimize the cost suffered.
We measure the performance of the controller via the fol-
lowing objective, defined as Planning-Regret, which mea-
sures the performance against the metric of producing the
best-in-hindsight open-loop plan, having been guaranteed
the optimal adaptive control policy for every single roll-
out. The notion of adaptive control policy we use is the
disturbance-action policy class defined in (2.1). In the Ap-
pendix (Section B), we discuss the expressiveness of the
disturbance-actions policies. In particular, they generalize
linear policies for stationary systems and lend convexity.
Formally, planning regret is defined as follows:

Planning Regret
N N
3 trka) i3 (i o )

3. Main Algorithm and Result

In this section we propose the algorithm iGPC (Iterative
Gradient Perturbation Controller; Algorithm 1) to minimize
Planning Regret. The algorithm at every iteration given
an open-loop policy u;.7 performs a rollout overlaying an
online DAC adaptive controller GPC (Algorithm 2). Further
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the base policy u1.7 is updated by performing gradient de-
scent (or any other local policy improvement) on u fixing
the offsets suggested by GPC. > We show the following
guarantee on average planning regret for Algorithm 1 for
linear dynamical systems.

Theorem 3.1. Let U C R% be a bounded convex set with
diameter U. Consider the online planning game (Definition
2.3) with linear dynamical systems { AB T} v, satisfying
Assumption 2.2 and cost functions {cy.1}\, satisfying As-
sumption 2.1. Then we have that Algorithm 1 (when exe-
cuted with appropriate parameters), for any sequence of
disturbances {wt .} ‘
~ > 0, produces a sequence of actions with planning regret
bounded as

where My, = {M|M € R%= || M| < ~}.

The O notation above subsumes factors polynomial in sys-
tem parameters x,y,d %, U, W, G and log(T'). A restate-
ment of the theorem with all the details is present in the
Appendix (Section C).

Algorithm 1 iGPC Algorithm

Require: [Online] f/Y : Dynamical Systems, w}:® : Dis-
turbances , C%¥

Parameters: Set: U, 1,y : Learning Rate

1: Initialize uj,» € U arbitrarily.

2: fori=1...Ndo

3: Receive a dynamical system [} .
4 Rollout the policy u},, with GPC

> (Alg. 2),
{z1.7, ay.p, wip, 01,7} = GPCRollout(f.r, ui.z)-
5 Update: Compute the update to the policy,
Vi = VaypJ (i + 0yp| flp, wir)

i+1 : i
uyp = Projy (ulzT - noutvi) .

6: end for

3In Appendix Section D, we provide a more general version of
the algorithm defined for any base policy class.

Algorithm 2 GPCRollout

Require: fi.7 : dynamical system, uy.p :
[Online] wy.7 : disturbances, c1.7 : costs.

Parameters: L : Window, 7, : Learning rate, v : Feed-
back bound, S : Lookback

Initialize M 1.1, = {Ml’j}
Set w; = 0 forall 7 < 0.
fort=1...Tdo
Compute Offset: 0, = 27 1 My, wiy
Play action: a; = uy + 0.
Suffer Cost: ¢; (x4, ar)
Observe state: 4.
Compute perturbation:

input policy,

L EM,.

PRDID AR

— fi(@e, ar).
9: Do a gradient step on the GPCLoss (4.1)

Wt = T+41

Miji1.0 = PrOjMAY (M¢,1:. — nin VGPCLoss(arg)),

where arg captures policy M, 1.;,, open-loop
plan u;_g41.¢, disturbances wy_g_1,41:t—1, transition
ft—s+41,t—1, cost ¢, in Equation 4.1 and gradient is
taken with respect to the M parameter.
10: end for
11: return zy.7,a;.7, W1.T, O1.7-

4. Algorithm and Analysis

In this section we provide an overview of the derivation of
the algorithm and the proof for Theorem 3.1. The formal
proof is deferred to Appendix (Section C). We introduce
an online learning setting that is the main building block
of our algorithm. The setting applies more generally to
control/planning and our formulation of planning regret in
linear dynamical systems is a specification of this setting.

4.1. Nested OCO and Planning Regret

Setting: Consider an online convex optimization(OCO)
problem (Hazan, 2016), where the iterations have a nested
structure, divided into inner and outer iterations. Fix two
convex sets K1 and [Co. After every one out of N outer
iterations, the player chooses a point x; € K. After that
there is a sequence of T inner iterations, where the player
chooses yz € K5 at every iteration. After this choice, the
adversary chooses a convex cost function fg e FCKyx
K2 — R, and the player suffers a cost of f{(z;,yi). The
goal of the player is to minimize Planning Regret:

Planning Regret
— min

N T N T i
sz 1'27yt min th “y)
a:*EKl yEK:z

i=1 t=1 t=1
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To state a general result, we assume access to two on-
line learners denoted by A;, A;, that are guaranteed to
provide sub-linear regret bounds over linear cost func-
tions on the sets /Cq, s respectively in the standard OCO
model. We denote the corresponding regrets achieved by
Ry (A1), Rr(Asz). A canonical algorithm for online linear
optimization (OLO) is online gradient descent (Zinkevich,
2003), which is what we use in the sequel. The theory pre-
sented here applies more generally.  Algorithm 3 lays out
a general algorithm for the Nested-OCO setup.

Algorithm 3 Nested-OCO Algorithm
Require: Algorithms A1, As.

1: Initialize 1 € K arbitrarily.

2: fori=1...Ndo

3: Initialize y} € Ko arbitrarily.

4: fort=1...Tdo

5 Define loss function over o as

hy(y) = Yy fi(@i i) - v.

6: Update ;41 < Az(hd ... ).
7: end for
8: Define loss function over i as

T
0:(2) 2 3"V fiwi ) - .
t=1

9:  Update zs11 < A1(g1, -, gi)-
10: end for

Theorem 4.1. Algorithm 3 with sub-algorithms A, Ay
with regrets Ry (A1), Rp(As) ensures the following regret
guarantee on the average planning regret,

PlanningRegret < Ry (Ay) n Rr(Az)
N - N T

When using Online Gradient Descent as the base algorithm,

the average regret scales as O (ﬁ + %)

Proof of Theorem 4.1. Let * € K1 be any point and let

*Regret for OLO depends on function bounds, which corre-
spond to gradient bounds here. For clarity we omit this dependence
from the notation for regret.

yi.p € Ko be any sequence. We have

SN ST Fin i) — i@, )

TN
X Y Vafi(a — o)
- TN
N S Y Vi — v)
TN
Y lgi(@:) — gia*)]
TN
X Yy — hitw)]
TN
<RN(-A1) ‘R (Ag)
— N T )

where the first inequality follows by convexity and the last
inequality follows by the regret guarantees and noting that
the functions g; are naturally scaled up by a factor of 7. [

4.2. Proof Sketch for Theorem 3.1

The main idea behind the proof is to reduce to the setting
of Theorem 4.1. In the reduction the z variable corresponds
to the open loop controls u;.7 € U and the variables yg
correspond to the closed-loop disturbance-action policy
M{,.; € M.,. The algorithms A; and A, are instanti-
ated as Online Gradient Descent with appropriately chosen
learning rates.

We begin the reduction by using the observation in (Agarwal
et al., 2019a) that costs are convex with respect to the vari-
ables u, M, for linear dynamical systems with convex costs.
With convexity, prima-facie the reduction seems immediate,
however this is impeded by the counterfactual notion of
policy regret which implies that cost at any time is depen-
dent on previous actions. This nuance in the reduction from
Theorem 4.1 is only applicable to the closed loop policies
M, the open loop part u1.7) on the other hand, follows ac-
cording to the reduction and hence direct OGD is applied
(Line 6, Algorithm 1).

To resolve the issue of the counterfactual dependence, we
use the techniques introduced in the OCO with memory
framework proposed by (Anava et al., 2015) and recently
employed in the work of (Agarwal et al., 2019a). We lever-
age the underlying stability of the dynamical system to
ensure that cost at time ¢ depends only on a bounded num-
ber of previous rounds, say S. We then define a proxy loss
denoted by GPCLoss, corresponding to the cost incurred by
a stationary closed-loop policy executing for the previous S
time steps. Formally, given a dynamical system f;.g, pertur-
bations ws.g, a cost function ¢, a non-stationary open-loop
policy u;.5, GPCLoss is a function of closed-loop transfer
M., defined as follows. Consider the following iterations
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with y; =0,

L
£ M,
aj =u; + rWj—r,

r=1

yi = fi-1(yj-v.aj-1) +wj—1 Vi € [1, 8],

GPCLOSS(M1:L7 UL:8,W—L+1:5S—1, fl:S—la C) = C(y57 CLS)'

“.1)

The algorithm updates by performing a gradient descent step
on this loss, i.e. M}, ., = M} ,.; — 7V GPCLoss(:).
The proof proceeds by showing that the actual cost and
its gradient is closely tracked by their proxy GPC Loss coun-
terparts with the difference proportional to the learning rate
(Appendix Lemma C.4). Choosing the learning rate appro-
priately then completes the proof.

5. Experiments

We demonstrate the efficacy of the proposed approach on
two sets of experiments: the theory-aligned one performs
basic checks on linear dynamical systems; the subsequent
set demonstrates the benefit on highly non-linear systems
distilled from practical applications. In the following we
provide a detailed description of the setup and the results
are presented in Figure 1.

5.1. Experimental Setup

We briefly review the methods that we compare to: The
ILQG agent obtains a closed loop policy via the Iterative
Linear Quadratic Gaussian algorithm (Todorov & Li, 2005),
proposed originally to handle Gaussian noise while planning
on non-linear systems, on the simulator dynamics, and then
executes the policy thus obtained. This approach does not
learn from multiple rollouts and, if the dynamics are fixed,
provides a constant (across rollouts) baseline.

The Iterative Learning Control (ILC) agent (Abbeel et al.,
2006) learns from past trajectories to refine its actions on
the next real-world rollout. We provide precise details in
the Appendix (Section E). Finally, the IGPC agent adapts
Algorithm 1 by replacing the policy update step (Line 5)
with a LQR step on locally linearized dynamics.

In all our experiments, the metric we compare is the number
of real-world rollouts required to achieve a certain loss value
on the real dynamics. For further details on the setups and
hyperparameter tuning please see Appendix (Section E).

5.2. Linear Control

This section considers a discrete-time Double Integrator
(detailed below), a basic kinematics model well studied
in control theory. This linear system (described below) is
subject to a variety of perturbations that vary either within

or across episodes,

SRS

We pick three instructive perturbation models: First, as a
sanity check, we consider constant offsets. While both ILC
and IGPC adapt to this change, IGPC is quicker in doing
so as evident by the cost on the first rollout itself. In the
second, we treat constant offsets that gradually increase in
magnitude from zero with rollouts/episodes. While gradual
inter-episodic changes are well suited to ILC, IGPC still
offers consistently better performance. The final scenario
considers time-varying sinusoidal perturbations subject to
rollout-varying phase shifts. In contrast to the former setups,
such conditions make intra-episodic learning crucial for
good performance. Indeed, IGPC outperforms alternatives
here by a margin, reflecting the benefit of rollout-adaptive
feedback policy in the regret bound.

5.3. Non-linear Control with Approximate Models

Here, we consider the task of controlling non-linear systems
whose real-world characteristics are only partially known.
In the cases presented below, the proposed algorithm IGPC
either converges to the optimal cost with fewer rollouts
(for Quadrotor), or, even disregarding speed of convergence,
offers a better terminal solution quality (for Reacher). These
effects are generally more pronounced in situations where
the model mismatch is severe.

Concretely, consider the following setup: the agent is
scored on the cost incurred on a handful of sequentially
executed real-world rollouts on a dynamical system g(x, u);
all the while, the agent has access to an inaccurate sim-
ulator f(z,u) # g(z,wu). In particular, while limited to
simply observing its trajectories in the real world g, the
agent is permitted to compute the function value and Ja-
cobian of the simulator f(x,y) along arbitrary state-action
pairs. The disturbances here are thus the difference between
g and f along the state-action pairs visited along any given
real world rollout. Here, we also consider a statistically-
omnipotent infeasible agent ILQR (oracle) that executes
the Iterative Linear Quadratic Regulator algorithm (Li &
Todorov, 2004) directly via Jacobians of the real world dy-
namics g (a cheat), indicating a lower bound on the best
possible cost.

Quadrotor with Wind The simulator models an underac-
tuated planar quadrotor (6 dimensional state, 2 dimensional
control) attempting to fly to (1, 1) from the origin. The real-
world dynamics differ from the simulator in the presence
of a dispersive force field (xi + yj), to accomodate wind.
The cost is measured as the distance sqaured from the origin
along with a quadratic penalty on the actions.
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Figure 1. On top is a linear system, Double Integrator, setup subject to: (L) constant offset, (M) offset that increments with rollout count,
(R) phase-shifted sinusoidal perturbations. The middle section displays results on the quadrotor environment for varying magnitudes of
wind. Bottom figure captures performance on the reacher environment with varying magnitudes of periodic impulses. ILQR (oracle) is

an infeasible agent with access to Jacobians on the real world.

Reacher with Impulse The simulator dynamics model a
2-DOF arm (6 dimensional state, 2 dimensional control)
attempting to place its end-effector at a pre-specified goal.
The true dynamics g differs from the simulator in the appli-
cation of periodic impulses to the center of mass of the arm
links. The cost involves a quadratic penalty on the controls

and the distance of the end effector from the goal.

In both scenarios, JAX-based (Bradbury et al., 2018) differ-
entiable implementations of the underlying dynamics were
adapted from (Gradu et al., 2021). The implementations
along with some further experiments are present at https:
//github.com/MinRegret/deluca-igpc.
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6. Conclusion

In this work, we cast the task of disturbance-resilient plan-
ning into a regret minimization framework. We outline a
gradient-based algorithm that refines an open loop plan in
conjunction with a near instance-optimal closed loop policy.
We provide a theoretical justification for the approach by
proving a vanishing average regret bound. We also demon-
strate our approach on simulated examples and observe
empirical gains compared to the popular iterative learning
control (ILC) approach.

A particularly exciting direction for future work is to theoret-
ically and empirically explore the benefits in terms of sim-to-
real transfer conferred by our approach. Note that while we
consider state-independent perturbations, our regret analysis
also extends to affine state-dependent perturbations. Nev-
ertheless, we experimentally demonstrate the potential of
our algorithm in the non-linear case. Establishing regret-
like theoretical guarantees for non-linear state-dependent
perturbations is a challenging avenue for future work.
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A. Relationship with Meta-Learning

In this section, we detail how the nested-OCO formulation proposed in the paper can be used to derive upto a small constant
factor, the gradient based meta-learning results presented in (Balcan et al., 2019) by reducing their setting to the nested-OCO
setting and applying Algorithm 3. The reduction requires setting the z, i space, i.e. K1, Ko to be © C R¢ and a ball in R¢
of diameter D* (according to the notation in (Balcan et al., 2019)). Further, we set the function f{(z,y) = le.i(x +y). The
reduction recovers the same guarantee as the result in (Balcan et al., 2019) upto a factor of 2.

We note that (Balcan et al., 2019) provide an algorithm that works without the knowledge of D*, but such an extension
is standard in OCO literature and can be handled similarly to (Balcan et al., 2019). Further we acknowledge that for the
particular problem considered in (Balcan et al., 2019), the constant factor is important as a straightforward algorithm also
achieves the same rate if constant factors are ignored, a fact highlighted in the original paper. On the other hand, our
formulation allows for a stronger comparator even in the (Balcan et al., 2019) setup.

We would like to highlight that our nested-OCO setup allowing for different x, y spaces is more general than the setup
typically considered in initialization-based meta-learning. Owing to this generality, the algorithm we provide naturally
performs a gradient step on the true function value for the outer loop as opposed to a distance based function as in (Balcan
et al., 2019). Further exploring the effectiveness of our algorithm for meta-learning is left as interesting future work.

B. Comparison of Policy Classes

In this section we make a comparison of various policy classes introduced in the paper.

Linear state-action policies. In classical optimal control with full observation, the cost function is typically assumed to
be quadratic in the state and control, i.e.
ci(z,u) = 2" Qx +u' Ru.

Under this assumption and infinite horizon time-invariant (A4;, B; = A;, B;) linear dynamical system (LDS), and assuming
independent Gaussian disturbances at every time step, the optimal solution can be computed using the Bellman optimality
equations (see e.g. (Tedrake, 2020)). This gives rise to the Discrete time Algebraic Riccati Equation (DARE), whose
solution is a linear policy commonly denoted by

Ut = K Tt.

The finite-horizon solution is also computable and results in a non-stationary linear policy, where the linear policies converge
exponentially fast to the first solution of the Riccati equation. It is thus reasonable to consider the class of all linear policies
as a reasonable comparator class. Denote the class of all linear policies as

I, = {K € Rf%>%},

State of the art: linear dynamical control policies. A generalization of static state-action control policies is that of
linear dynamical controllers (LDC). LDC are particularly useful for partially observed LDS and maintain their own internal
dynamical system according to the observations in order to recover the hidden state of the system. A formal definition is
below.

Definition B.1 (Linear Dynamic Controllers). A linear dynamic controller 7 is a linear dynamical system (Ay, Br, Cr, Dy)
with internal state s, € R, input x, € R% and output u; € R% that satisfies

St41 = Ans + Bray, up = Crsy + Dawy.
LDC are state-of-the-art in terms of performance and prevalence in control applications involving LDS, both in the full

and partial observation settings. They are known to be theoretically optimal for partially observed LDS with quadratic cost
functions and normally distributed noise, but are more widely used. Denote the class of all LDC as

I pc = {A € R%*4: B e RE:xde O g RWXd D g RIwXda},

Disturbance-Action Controllers (DAC) As we have defined earlier, we consider an even more general class of policies,
i.e. that of disturbance-action control. For linear time invariant systems, this policy class is more general than that of LDC
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and linear controllers, in the sense that for every LDS there exists a DAC which outputs exactly the same controls on the
same system and sequence of noises. With a finite and fixed H, an approximate version of this statement is true. The precise
approximation statement and formal proof can be found in (Agarwal et al., 2019a). A similar statement can be made for
LDC as well.

However we note that all of the above statements hold only in linear time invariant case. In the time varying case, these
generalizations are not necessarily true, however note that we are using disturbance action feedback control only as an
adaptive control policy to correct against noise, and it is added upon an open-loop plan.

C. Main Theorem and Proof

We provide the following restatement of Theorem 3.1 with details regarding the parameters and the dependence on the
system parameters. To state the results concisely, we assume that all the appropriate assumed constants, i.e. x,v, G, 8, U, W
are greater than 1. This is done to upper bound the sum of two constants by twice their product. All the results hold by
replacing any of these constants by the max of the constant and 1.

Theorem C.1. Let U C R% be a bounded convex set with diameter U. Consider the online planning game(Definition 2.3)
with linear dynamical systems { AB% ;Y| satisfying Assumption 2.2 and cost functions {c1.7}\, satisfying Assumption
2.1. Then we have that Algorithm I(when executed with appropriate parameters), for any sequence of disturbances
{wt 23N with each || wi|| < W and any v > 0, produces a sequence of actions with planning regret bounded as

1 ol J i . ol . J < Cin 10g2(T) Cout
N ; i(”l;T)*ulrflTHelM i:1leILH€I}MV i (o, (u1.7)) s\T7 +\/N .

where M, = {M|M € R¥d= || M| < ~v}and cin, cou, are constants depending on system parameters as follows

Cout = O (GU(U + 'yLW)/iQ(S*Z)
ein = O (VPR3 3BCPLIWA(U + 7 LW)?) .

Here O subsumes constant factors and factors poly-logarithimic in the the arguments of O. To achieve the above bound,
Algorithm 1 is to be executed with parameters, learning rate Noyt = v with the inner execution of

Gré—2(kU+KkYyLW+W)VN’

Algorithm 2 is performed with parameters 1;, = T 5ﬁG1;2W3(U+ AT and S = 6~ log(nin).
yRA6— B!

C.1. Requisite Definitions

Before proving the theorem we set up some useful definitions. Fix a linear dynamical system AB;.r and
a disturbance sequence wi.r. For any sequence wi.r € U and Myri.; € M,, we define T functions
z1.7(-|AB1.7, w1.r), a1.7(-| AB1.7, w1.T), denoting the action played and the state visited at time ¢ upon execution of the
policies together. Herein we drop ABi.7, wi.7 from the notation when clear from the context. Formally, consider the
following definitions for all ¢,

L
ar(urr, Mira.n) = ue + Z My pwi— (C.1)
r=1
z1 (w1, Mir1.) £ 0 Typ1(urr, M) £ Awry(urr, Mir ) + Beay + wy (C2)

Given a sequence of cost functions ¢;.7(z,u) : R% >« — R, satisfying Assumption 2.1, define via an overload of notation,
the cost functions ¢; as a function of w;.7, My.7,1.1, as follows

Vte[l1:T], ce(ure, Mira.n) = ce(xe(wie, Mira:n), ae(ur.r, Miri.n)) (C3)

Naturally, according to our definition of the total cost J of the rollout we get that

T
1
J(u11T7 Ml:T,l:L) = T Z ct(”l:tv Ml:T,l:L)

t=1
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Next, we expand upon the recursive definition of x (-, -) via the following operators,

Definition C.2. Given a linear dynamical system ABy.r, define the following transfer matrices

v.] e [T],Vk 6 [,] + 1,T] T]—)k E Rded“r

T A I ifk=j5+1
Ik (Hf:j+2At) otherwise

Additionally given a disturbance sequence wi.r, define the following linear operator over matrix sequences M.t 1.1,

Vi€ [T, Vk € [j+1,T] M, : [RExd]TxL R

k-1 L
w]‘]\gk(Ml:T,l:L) = Z (Tt—>kBt <Z Mt,rwk-—r))

t=j r=1

It can be observed via unrolling the recursion and the definitions above that

t—1

xi(urr, M) = ZTj%t(Bjuj +w;) + 1, (Mirap). (C4)
st

Since x¢, a; are linear functions of wy.p, M1.7 1.1, therefore we have that ¢;(u1.p, M1.71.1.) is a convex function of its
arguments. The next lemma further shows that the gradient of the total cost with respect to the argument ;.7 is bounded, as
stated in the following lemma.

Lemma C.3. Given a linear system ABi.7 satisfying Assumption 2.2, a bounded disturbance sequence wy.T and a cost
sequence c satisfying Assumption 2.1, then for any v > 0,U, let uy.v € U, My.71.1, € M, be two sequences, then we
have that

< 2GS (kU + kyLW + W)

t=1

T
vuj (Z Ct (ulzTa Ml:T,l:L))

We provide the proof of the lemma further in the section. Using the lemma we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Lets fix a particular rollout i. Let AB? ;. be the dynamical system and w! ;. be the disturbance
supplied. Further ui.,. be the open loop control sequence played at round i and M sz’l: ;, be the disturbance feedback
sequence played by the GPC subroutine. By definition we have that the state achieved

xi = xt(uﬁtT, Mli:T,lzL) ai = at(ui:Tlei:T,lzL)

We have for convenience dropped the system and disturbance from our notation. The total cost at round ¢ incurred by the
algorithm by definition is

T
J = Z% (Z C’ti(uli:T7Mf:T,1:L)>

t=1
Fix the sequence of comparators to be 1.7, {M? ; }}¥ . The comparator cost by definition then is
N /T
P-3 3 (St ).
i=1 t=1

where given a sequence v, we define the tiling operator 7, which creates a nested sequence of outer length k by tiling
with copies of the sequence vg.p, i.€. TpVa:b = [Vabs Vasb - - - Va:p). We therefore have the following calculation for the regret
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which follows from the convexity of the cost function ¢; with respect to u, M as established before,

N T
Z(Ct uj, T7M1T1L) (“1 TaTTMl L))

i=1 t=1

oy
M=

«
Il
—
o~
Il
-

(VMC§(U§:T, Mli:T,lzL)(uli:T - {LLT) + VMCi(ui:Tﬂ M{:T,l:L)(MiL—:T,l:L - M{L))

Mz

T
(V’U«c;(uzlzT’ M{:T,I:L)(ullzT — U1.r) + Z (VMCt Ul v M1 :T,1: L)(M1 T 1:L Mf:L))

1t=1

I
M-
[M]=

@
Il
_
~
Il
—

7

Outer Regret Inner Regret

We analyze the both the terms above separately. We begin by analyzing the first term.

Outer Regret: Consider the following calculation

T T N T
ZZ uCt ul, TaM1T1L)(U1T _UlT ZZV“J (Zci(ull:Tlel:T,l:L)> (U3 — ;).
t=1

i=1 t=1 j=1i=1

29
Note that by definition of the algorithm, we have that for all 7, j

ul = Projy (v} — nowgiy),

which via the pythagorean inequality implies that
i+1 ﬁ]

Huj

< Hu; - noutg;‘j - ﬁj||2

Combining the above equations we immediately get that

M=
'[E?AZ

" (uf — ;) — (uf™h —1y)?
ZZ Vuli(uh.r, M 1.p) (Wl — Gnr)) < (noutgij”2+ ’ ’

=1 t=1 j=11i=1 Tout
T 1 * \2
1 (uf — )
Z 5 | Tout Z ||ng||2 ! :
j=1 2 Tlout
< 2UGKS (kU + kyLW + W)TV N (C.5)

where the last inequality follows using Lemma C.3 and choice of 7oy;.

Inner Regret: Next we analyze the second Inner Regret term. Before doing so we recommend the reader to re-familiarize
with the notations defined in Definition C.2 and Equations C.1,C.2,C.3. We will also need the following further definitions
again for a fixed rollout. Therefore given a dynamical system ABj.p, a disturbance sequence wi.7, and an open loop
sequence u1.7 define the notion of surrogate state at time ¢ which is parameterized by a lookback window .S and is a function
of an input sequence M;.;, € R% 9= Intuitively it corresponds to the state achieved by executing the stationary policy
M. 1, along with uq.p for S time steps, starting at time ¢ — .S with a resetted state. This is exactly the computation performed
in the GPCLoss definition in Equation 4.1. We can use the linear operator ¢ defined in Definition C.2 for an alternative and
succinct definition as follows.

t—1
Ee(urr, Mip) = Y Tise(Bjuj +wy) + ¥ s, (TrMy.p). (C.6)
j=t—S

Further given a cost function ¢;, we can use the above definition to also define a surrogate cost

L
é(urer, Myp) = e | &(urr, Mip),ue + Y Myw, (C7)
j=1
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It can be observed now by the definition of Algorithm 2, the sequence M 1i:T,1: 1, played by the algorithm is chosen iteratively
as follows

Mti+1,1:L = PI'OjM_Y (Mti,lzL - ninvMét(Uiva Mti,lzL)) . (CS)
To proceed with the proof we will need the following lemma
Lemma C.4. Consider a linear system ABi.7 satisfying Assumption 2.2, a bounded disturbance sequence w1.7 and a
sequence of cost functions c1.7 satisfying Assumption 2.1. Given any open loop sequence ui.7 € U and a closed-loop

matrix sequence My.1 1.1, € M., generated through the iteration specified in Equation C.8, we have that the following
properties hold for all t € [T

e For allj >, VijliLct(ulzT, Ml:T71:L) =0.
Forall j <t, ||V, ce(urr, Mira.p)l| < K2G(U +~yLW)LW (1 — §)t .

Forall t,

Vot é(urr, Mip)|| < GLW(U +vLW) (1 + %)

Furthermore, for any M 1. € M., and for any t, we have that

t

Z Vs, ce(urr, Myra.n)(Mj1.n — Ml:L) <V, Ce(urr, My1.p)(My1.p — Ml:L)
j=t—S

+ 2010 1og? (i) Y6203 BG2LAW3 (U + vLW)?

We are now ready to analyze the inner regret term. We analyze this term for one particular rollout say ¢ (thereby dropping ¢
from our notation). We get the following series of calculations,

T
Z (VMCt(ULT, Myran)Mira.n — 7}]\*41:L))
1 T T )
- (ij,lcht(m;T, Myran) (M1 — MM))
- *
- Z (ij,l:Lct(ulzTa Mira.n) (ML — Ml:L))

T ot
< Z Z (VMj,l:Lct(u1:T> Myra.0)(Mjq.L — M1:L)) + 2629GLW (U +yLW)6~%(1 - 6)®

T
< Z Vtap Co(wrr, My a.p)(My 1. — My.p) | + 22T, log? (1in)yK* 6 3 BG2L3W3(U + yLW)?,

gt

where the statements follow via repeated application of Lemma C.4 and the choice of S = §~! log(7;,). To analyse further
once again via a similar argument as in the case of the outer regret regarding projected gradient descent with learning rate
Nin, We get that,

[M]=

Vit Ce(vrr, Myr.n)(Me.r — MI:L)

t=1
gt
Biny va o IMixin — Mypl|? = [|Mys11.0 — My.p |2
< _ > )
<y ( 2 + =
i T M 1:L — M :L 2
§ Tlin ||gt||2 + || 1,1 1 ||

2 277in
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Combining the above equations, Equation C.9 and the choice of 7;,,, we get that the inner regret is bounded as,

T
Z (VMCt(ULT, Myra.)(Myra.r — 7-TM1:L)) <O (\/T73/€45*35G2L5W?’(U + 7LW)2>
t=1

Combining the outer and inner regret terms we finish the proof. O

In the remaining subsections we prove Lemmas C.3 and C.4, thereby finishing the proof of Theorem 3.1.

C.2. Proof of Lemma C.3

In this section we prove Lemma C.3. Before the proof we establish some other lemmas which will be useful to us.

Lemma C.5. Given a linear system ABy.7 satisfying Assumption 2.2, then the transfer matrices defined in Definition C.2
are bounded as follows _
Vike[TL+1,T] | Tjsel < (187

Proof of Lemma C.5. If k = j + 1 then by definition and Assumption 2.2,
1Tl = II1]] < 1.
Otherwise, again by definition and Assumption 2.2,

ITjnll < (T ollA]) < (1= 8)F 7

O

Lemma C.6. Given a linear system ABy.7 satisfying Assumption 2.2, a bounded disturbance sequence wy.T and a cost
sequence c satisfying Assumption 2.1, then for any v > 0,U, let uy.7 € U, My.71.1. € M., be two sequences, the following
bounds hold for x;, as for all t,
||{I?t(U1;T, Ml:T,l:L)” é 5_1(5(] + "{’YLW + W)7
llat(wir, Mipa:n)|| < U +~yLW.

Furthermore we have that for all j,t € [T we have that

Haxt(u1:T,M1:T,1:L) ‘ < k(1=8)I71 ifj<t
— 10 otherwise

an
1=t
)0 otherwise

Furthermore we have that for j,t € [T| and r € [L], we have that

Oat(ur.7, Mi.11:1)
an

8xt (ul:Ta Ml:T,l:L)
oM.,

‘ {ﬁwa o)t if <t

< .
0 otherwise

Oat(ur.r, Mi.11.1)
OM; .

AW =t
|0 otherwise
Proof. From the definition in Equation C.1 it follows that

L
lla(urr, Myga:n)|| < lluell + Z [ M|

r=1

lwe_l| < U +~LW.
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Also from the definition it follows that

80475 (ulzTa Ml:T,l:L)
8uj

1 ifj=t¢
= l6dl =4 "2~
0 otherwise

From the expansion in Equation C.4, we have that

t—1
e (urr, My o)l < (ITje(Byug +w))|) + 15, (Mg .|
j=1
t—1 t—1 L
Z T4 |l (Bju; +wj)|) + Z <|| il (Z |MJT||||wJT||>> (Definition C.2 & A-inequality)
Jj=1 Jj=1 r=1
t—1 .
< (kU + kyLW + W) Z(l — )it (Lemma C.5 and definitions)
j=1
1
S(I{U + kyLW + W)

Also from the definition it follows that for j > ¢,

Oy (urr, ML)
au]'

:0’

and if j < t, we have that

Oz¢(urr, ML)
a’LLj

’ < || Ty Byl < k(1 —8) 771 (Lemma C.5)
From the definition in Equation C.1 it follows that for any r € [L]

W ifj=t
0 otherwise

Oay(ur.r, My.7,1.1.)
oM,

‘ = [16;e] @ wl_, || < {

From the expansion in Equation C.4, it follows that for any ~ and 7 > ¢,

Ox¢(ur.r, Mi.71.1)
OM;

=0,

and if j < t, we have that

Oy (ur.r, Mi.71.1)
OM;

‘ < | TjoeBi(I @ w, )| < kW(1 =677 (LemmaC.5)

We are now ready to prove Lemma C.3.

Proof of Lemma C.3. Consider the following calculations for all j, ¢, following from Lemma C.6,
1V, (ci(urr, Myra.1)) ||

< Gmax(||a(ur.r, Mir1:0||||ac(uir, Mir:0|) (

0x¢(ur.r, Mir:1)
an

H Oay(ur.7, Mi.71:1)
+
8’U,j

)

GrS™ KU + iy LW + W)(1 —6)t 771 ifj <t
< GKSTY(KU + kyLW + W) j=t
0 otherwise
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Therefore we have that,

t=1

Hvuj (Z ct(urr, Ml:T,l:L)) H < 2GS (kU + kyLW + W)

C.3. Proof of Lemma C.4

In this section we prove Lemma C.4. To this end we will need the following lemma that is the extension of Lemma C.6 to
surrogate states.

Lemma C.7. Given a linear system AB.7 satisfying Assumption 2.2, a bounded disturbance sequence wy.T and a cost
sequence c; satisfying Assumption 2.1, then for any v > 0,U, let uy.7 € U, My.;, € M., be two sequences, then we have
that for all j,t € [T,

| (uy.ry Ma.p)|| < 5_1(/$U + Ky LW + W)

Furthermore we have that for t € [T'] and r € [L], we have that

3ft(U1-T, M1-L) -1
— < W
B R
Proof. From the expansion in Equation C.6, we have that
t—1
lze(urer, Myp)| <Y (1Tjme(Byug + wi) ) + 19 s (Tr Mu.p)|
j=t—5
t—1 t—1 L
< D UTselllByug +wil) + ) (IITHs (Z IIMrlllle—rH)) (Definition C.2 & A-inequality)
j=t==5 j=t—S r=1
t—1
< (kU + kyLW + W) Z (1—6)7-t (Lemma C.5 and Definitions)
j=t—8
1
< S(I{U + kyLW + W)

From the expansion in Equation C.6, it follows that

H O0x¢(urr, Mir1.1)

t—1
o ‘ < Z Tj_B;I ®ij_r <o kW (Lemma C.5)

j=t—5

We are now ready to prove Lemma C.4.

Proof of Lemma C.4. Since for any j7 > t, by Lemma C.6, we have that

aat(ulzTa Ml:T,l:L)
OM; 1.1,

6xiﬁ(ul:Ta Ml:T,l:L)
OM; 1.1,

=0, =0,
it immediately follows that for all 5 > ¢,

V. ce(urr, Myra.L) = 0.
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Furthermore again from Lemma C.6, we have that for all j < ¢ and for all r € [L],

8£Ut (u1:T7 Ml:T,l:L)
M,

’ < KkW(1—¢)91

and further if j < ¢ and for all r € [L],
Oat(ur.r, Mi.11:1)
OM;.,

Therefore, since the cost function c; satisfies the Assumption 2.1, using Lemma C.6, we have that for all j < ¢ and for any
Oxy(ur.r, Mir1.1)

r €[]
|
< GRrOW (KU + kyLW + W)(1 — 6)t7 (C.9)

=0

< Gllze(urr, Mira.1 ||H

HVM_,,TC:& (ur.r, My.1:1)

Using Lemma C.7 for the surrogate states and using Assumption 2.1, we have that for all ¢ and for all » € [L],
|V ar, ¢ (urr, My.p)|| < 2GkS W (kU + kyLW + W)

Since the gradient is bounded according to the above calculation and the M 1.7, are generated via gradient descent with a
learning rate 7y, it is immediate that for any j, k € [T] and for any r € [L],

| M — Myoo|| < minlj — k|- 2GR 2W (KU + kyLW + W) (C.10)

Given the above we show that for any execution the surrogate states and the real states are close to each other. To this end
consider the following calculations.

lze(urr, Mira.n) — &¢(urr, My )|
t—1 t—1

< ZTH (Bjuj +wj) + i, (Miran) — Y Tiose (Bjug +wy) — Mg (TrMy L) ’
=1 j=t—=S
—-S-1 L
= Z ( J—t <B u] + w] + Z MJ rw] r>> ( J—t <Z(Mj,r - Mt,r)wjr>> H
j=1 j=t—S r=1
< (KU + kyLW + W) (6711 — 0)% + 2ninrd ~2S2GLW?) (C.11)
Furthermore, note by definitions that
i al’t ul:T»MlzT,lzL) _ a@t(ul:Ta]\4t,1:L) (C 12)
s OM; 1.1, OM; 1.1, ’
Before moving further, consider the following calculations
t—1
Z (Vg ppce(urr, Mip )
j=t—==5
— [ Oxi(uyp, M )
= Z A LT LE vxct(xt(ulzTaMl:T,l:L)7at(u1:T7M1:T,1:L))
, OM; 1.1,
j=t—=S ’
t—1
Oxy(ur., M1.71. .
= t(ur, Mizin) ((Vaer(@(urr, My 1), ar(ur.r, Mir1.1)) +v))
s OM; 1.1

where

||U|| = ||vmct(xt(u1:T7 Ml:T,l:L); at(ulzT7 Ml:T,l:L)) - vmct(j:t(ul:T7 Mt,l:L)7 at(ul:T7 Ml:T,l:L)) H
< B(KU + Ky LW + W) (071 (1 = 0)% + 2minkd "2S*°GLW?)  (C.13)
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using Equation C.11 and the 3-smoothness of ¢; via Assumption 2.1. Using Equation C.12 and Lemma C.6 we now get that

t—1

Z (Vg ce(urr, Mir.))

Oz (ur.r, Myop 1, )
= ze(ur.r, Muric) (Vae(@¢(ur.r, My a.n), ar(ur.r, Mira.n)) +v)
, OM;1.L

S ) (vazct(fi't(ulzTa Mt,l:L)vat(ulva Ml:T,l:L))) + 'Ul (Cl4)
OM; 1.1

where v’ is a vector whose norm using Equation C.13 and Lemma C.7 can be bounded as follows
BETLLW (kU + Ky LW + W) (671 (1 — 8)° + 2nminkd 2S*GLW?) . (C.15)

Now, consider the following computation which follows from Equation C.14 and using the defintiions for the j = ¢ case,

t

(Vg ypce(urr, Miran)) = Vg, G(urr, Myi.p) +0'. (C.16)
j=t—S

We can now perform the calculation to relate the gradient inner products for surrogate cost to those of real cost.

t
Z (VM,,LLCt(ULT, Miy.ra.0)(Mja. — Ml:L))
j=t—5

(VMj,l:LCt(ULT, Mira.n)(Ma.n — Ml:L) + Vg, ce(urr, Myra.n)(Mj.n — Mt,l:L))

< (VMj,l:LCt(ulzT, My.ra.n) (M. — Ml:L)) + Nin2G2LS% K25 3W2(KU + kyLW + W)?

<V, Ce(urr, Mya.p)(My 1. — Ml:L)+
BETINLAW (KU + wyLW + W)2 (671 (1 — 6)% + dnink*62S*G2LW?)
< Vg, e(urr, Myg.p)(My 1. — MI:L) + 50in log? (Nin ) K26 2 BG2L3W3 (KU + wyLW + W)?

where the first inequality follows from applying Equations C.9, C.10 and Lemma C.6, the second last inequality follows

from Equations C.15 and C.16 and the last inequality follows from the choice of the parameter S = 6! log(m;,). This
finishes the proof. O

D. Adaptation of Algorithm to General Policies

In this section we provide a more general version of our algorithms 1 and 2, defined for any base outer policy class II. Note
that our formal results dont cover this generalization and it is provided with practical use in mind.
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Algorithm 4 iGPC Algorithm

Require: [Online] f/¥ : Dynamical Systems, w}:¥ : Disturbances
Parameters: Policy class: II, 7, : Learning Rate

1: Initialize 7.5 € IL

2: fori=1...Ndo

3: Receive the dynamical system f} . for the next rollout.

4: Rollout: Collect trajectory data by rolling out policy 7. with GPC > (Algorithm 2)

TrajData’ = {xi:T,ai:T, wizT, oi:T} — GPCRollout(ff:T,ﬂi:T)

5: Update: Compute update to the policy
ﬂ-’i-‘a} = PrOjH (ﬂji.:T - nOUtvﬂ'l:T‘](ﬂ-i:T + ﬂ-(o’i:Tﬂf{;:T? wiT))
6: end for
Algorithm 5 GPCRollout

Require: fi.7: dynamical system, 7r1.7: input policy, [Online] wq.: disturbances.
Parameters: L:Window, 7;,: Learning rate, y: Feedback bound, S: Lookback

1: Initialize Ml,l:L = {Ml,j}_]Lzl S Mry.
2: Setw; = 0forany i < 0.
3: fort =1...7T do
4: Compute GPC Offset
0y = My1.1 - We—1:4—L-

5: Play action
ar = m () + o
6: Observe state ;1.
7: Compute perturbation
wy = Tep1 — fi(Te, at).
8: Update M1 1.7 for the next round as:

Myy11.0 = Projug,, (Mg1. — Ninner Vs, , GPCLosS(My 1.1, T — 54106, We—§—L41:t-1))

> GPCLoss defined in Equation 4.1
9: end for
10: return zy.7,a1.7, W1.T, O1.7-

E. Details of ILQR/ILC/IGPC Algorithms

To succinctly state the algorithms define the following policy which takes as arguments a nominal trajectory 1.7 €
R%  Gq.p € R, open-loop gain seqeunce k1.7 and closed-loop gain sequence K. and a parameter «.. The policy defined
as (o, x1.7, k1.7, K1.7), in the sequel executes the following standard rollout on a dynamical system f;.7.

ay = U + aky + K(ap—1 — Z4-1)

Tiv1 = fi(we,ar)
Before stating the algorithm we also need the following quadratic approximation of the cost function ¢ around pivots xg, ug

Q(c, z0,u0)(z,u) = Ve (w0, uo)(x — 20) + Ve (xo, uo) (u — up)

+ 5 (] — Lo, o)) TV, w)(f, ] — foo,wol) (B
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Algorithm 6 now presents a combined layout for ILQG,ILC and IGPC.

Algorithm 6 Iterative Planning Algorithm

Require: g;.7 Real Dynamical Systems, f1.7 Simulator.

. Initialize starting sequence of actions u .,

1
2: Initialize sequence of open loop &Y. = 0 and closed loop gains KV, = 0.
3: fori=1...Ndo
4 Rollout the Policy:
e ILQG: Standard Rollout on f7.7.

xi:T? ui:T = ROHOHt(fl:T, (CM ‘El T ) ul T ) k; Tl7 Kl 1))
e ILC: Standard Rollout on g;.7.

xi:Tauzi:T = Rollout(g1.7, 7 (v, 5C1TaU1TvkiT1>KZ 1))

e IGPC: GPCRollout on g;.7,
.7, uh.p = GPCRollout(gr.r, m(a, #7, ui g, ki g K1)

5: Update: Obtain ki . € R% K! . € R%*d ag the optimal non-stationary affine policy to the following LQG

problem.
T
minE Z (e, wt, ul) (ze, up)
. aft( ) l) i aft(m%’u%) i
subject to Tip1 — Thyq = T(xt — )+ T(Ut —uy) + 2
Ty t

where z; are independent Gaussians of any non-zero variance.

6: end for

E.1. Hyperparameter Selection for Experiments

ILQG, ILC, IGPC in particular share one hyperparameter o which corresponds essentially to a step size towards the updated
policy. As is common in implementations, this hyperparameter is adjusted online during the run of the algorithm using a
simple retracting line search from a certain upper bound a*. We optimize over choices for o™ for ILC and report the best
performance obtained as baseline. For IGPC, we use the same o™ as obtained for ILC and the same line search for strategy
for selecting . We include the rollouts needed for line search in the rollout cost of the algorithm. Further, IGPC introduces
certain other hyperparameters, L the window, S the lookback, and 7;,,, the inner learning rate. We chose L, .S = 3 arbitrarily
for our experiments and tuned 7;,, per experiment. Overall we observed that for every experiment, the selection of 1 was
robust in terms of performance.



