
Label Inference Attacks from Log-loss Scores

Abhinav Aggarwal
1

Shiva Prasad Kasiviswanathan
1

Zekun Xu
1

Oluwaseyi Feyisetan
1

Nathanael Teissier
1

Abstract

Log-loss (also known as cross-entropy loss) met-
ric is ubiquitously used across machine learning
applications to assess the performance of classifi-
cation algorithms. In this paper, we investigate the
problem of inferring the labels of a dataset from
single (or multiple) log-loss score(s), without any
other access to the dataset. Surprisingly, we show
that for any finite number of label classes, it is pos-
sible to accurately infer the labels of the dataset
from the reported log-loss score of a single care-
fully constructed prediction vector if we allow
arbitrary precision arithmetic. Additionally, we
present label inference algorithms (attacks) that
succeed even under addition of noise to the log-
loss scores and under limited precision arithmetic.
All our algorithms rely on ideas from number the-
ory and combinatorics and require no model train-
ing. We run experimental simulations on some
real datasets to demonstrate the ease of running
these attacks in practice.

1. Introduction

Log-loss (a.k.a. cross-entropy loss) is an important metric
of choice in evaluating machine learning classification algo-
rithms. Log-loss is based on prediction probabilities where
a lower log-loss value means better predictions. Therefore,
log-loss is useful to compare models not only on their output
but on their probabilistic outcome.

Let [K] = {1, . . . ,K} be a set of label classes and consider
a dataset of N datapoints with true labels � 2 [K]N . The K-
ary log-loss score takes as input � and a matrix in [0, 1]N⇥K

of prediction probabilities, where the ith row is the vector of
prediction probabilities ui,1, . . . , ui,K (with

P
k2[K] ui,k =

1) for the ith datapoint on the K-classes.
Definition 1 (K-ary log-loss Score). Let u 2 [0, 1]N⇥K be
a matrix such that for all k 2 [K] and i 2 [N], it holds

1Amazon. Correspondence to: Abhinav Aggarwal <ag-
gabhin@amazon.com>, Shiva Prasad Kasiviswanathan <ka-
sivisw@amazon.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

that
PN

i=1 ui,k = 1. Let � 2 [K]N be a labeling. Then, the
K-ary log-loss (or, cross-entropy loss) on u with respect to
�, denoted by LLOSS (u;�), is defined as follows:

LLOSS (u;�) :=
�1
N

NX

i=1

KX

k=1

⇣
[�i = k] · lnui,k

⌘
,

where [�i = k] = 1 if �i = k and 0, otherwise.

Typically, the u 2 [0, 1]N⇥K is generated by a ML model.
We note that some texts use the unscaled version of log-
loss and that our algorithms can be easily extended to these
variants (see (Murphy, 2012) for more details on log-loss).

A special case is when K = 2 (binary labels) in which case
the above definition reduces to the following simpler form.
Definition 2 (Binary log-loss Score). Given a vector u =
(u1, . . . , uN) 2 [0, 1]N and a labeling � 2 {0, 1}N , the
log-loss on u with respect to �, denoted by LLOSS (u;�),
is defined as follows:

LLOSS (u;�) :=
�1
N

ln

NY

i=1

u
�i
i (1� ui)

1��i

!
.

Given its preeminent role in evaluating machine learning
models, especially in the neural network literature (Good-
fellow et al., 2016), an important question arises is whether
it is possible to “exploit” the log-loss score. In particular,
we ask whether the knowledge of log-loss scores leaks in-
formation about the true labels �. We answer the question
in affirmative by showing that for any finite number of label
classes, it is possible to infer all of the dataset labels from
just the reported log-loss scores if the prediction probabil-
ity vectors are carefully constructed and this can be done
without any model training. In fact, we present stronger in-
ference attacks, that succeed even when the log-loss scores
are perturbed by noise.

Our inference attacks have important consequences:

(i) Integrity of Machine Learning Competitions: Many ma-
chine learning (data mining) competitions such as those
organized by Kaggle1, KDDCup2 and ILSVRC Chal-
1https://www.kaggle.com/
2https://www.kdd.org/kdd-cup

Label Inference Attacks from Log-Loss Scores

Table 1. Overview of our results for binary label inference. Here, N � 1 is the number of labels to be inferred. We present attacks under
both arbitrary and bounded precision arithmetic models (see Section 2 for a comparison of these models). The ⌧ -accurate means that the
error on the responses are bounded by |⌧ |. The fourth column represents the number of arithmetic operations needed at the adversary. All
our adversaries are polynomial time except for the third row.

Amount of Noise in Responses Precision # Log-loss Queries #Arithmetic Operations Reference

No noise Arbitrary 1 O (N) Theorem 1
No noise �-bits ⇥

�
1 +N�2��/4

�
O (N) Algorithm 1

⌧ -accurate Arbitrary 1 O(2N) Algorithm 2
⌧ -accurate �-bits O

⇣
N

logN + N
log(�/N⌧)

⌘
O

⇣
poly(N,�/⌧)
log(�/N⌧)

⌘
Algorithm 3

lenge 3 use log-loss as their choice of evaluation metric.
In particular, it is common in these competitions that the
quality of a participants’ solution to be assessed through
a log-loss on an unknown test dataset. Our results demon-
strate that an unscrupulous participant can game this
system, by using the log-loss score to learn the test set
labels, and thereby constructing a fake but perfect clas-
sifier with zero test error. The simplicity and efficacy of
our proposed attacks make this issue a real concern.4

(ii) Privacy Concerns: ML models are regularly trained on
sensitive datasets. Imagine an adversary who can ask
log-loss scores for supplied prediction vectors. While at
the onset the log-loss being a non-linear function, might
look innocuous to release, our results show the extent of
information leakage from these scores. In fact, we get a
perfect reconstruction, a stronger privacy violation than
that achieved by the blatant non-privacy notion (Dinur
& Nissim, 2003), which only requires a large fraction of
the sensitive data to be reconstructed.

Overview of Our Results. We present multiple inference
attacks from log-loss scores under various constraints such
as bits of arithmetic precision, noise etc. All our attacks
operate only based on the ability of an adversary to query
the log-loss scores on the chosen prediction vectors, without
any access to the feature set or requiring any model training.
All our inference attacks are also completely agnostic of the
underlying classification task.

Our primary focus in this paper is on the binary label case.
An overview of our main results for the binary label infer-
ence, that we discuss below, is summarized in Table 1. We
start with the simplest setting, where the log-loss scores are
observed in the raw (without any noise). If the adversary
has the ability to perform arbitrary precision arithmetic, we
show that with just one log-loss query, an adversary can re-
cover all the labels. We extend this result to the case where
the adversary performs �-bits precision arithmetic, and show

3http://www.image-net.org/challenges/LSVRC/
4If needed, an attacker can obfuscate the prediction vectors

needed for our attacks in its ML models. We do not focus on this
aspect here.

that the labels can be recovered with ⇥
�
1 +N�2��/4

�
log-

loss queries. Both these attacks require only a polynomial-
time adversary and also extend to the multiclass case.

We then move on to the more challenging setting where
the scores can be perturbed with noise before the adver-
sary observes them. Assuming that the responses are ⌧ -
accurate (i.e., within error ±⌧), we show that an adver-
sary can still recover all the labels correctly in the arbi-
trary precision model with just one query but now with
exponential time. Interestingly, this holds independent of
⌧ . The construction here uses large numbers (that are
doubly-exponential in N) that our lower-bounds suggest
are unfortunately unavoidable. In the �-bits precision
model, we present a polynomial-time adversary that requires
O (N/ logN +N/ log (�/N⌧)) queries.

Next, we present extensions of these attacks to other inter-
esting noise settings such as randomly generated noise and
multiplicative noise, and show how to recover labels in those
settings (see Section 4.3). Finally, in Section 5, we present
experiments that demonstrate the remarkable effectiveness
and speed of these attacks on real and simulated datasets.

We note that while the techniques for label inference in
the noised case will also hold for the (raw) unnoised case,
we discuss the later separately to capture some key ideas
behind our constructions. Moreover, our construction for
inference from raw scores has some advantages, it uses a
fewer number of queries and can be easily extended to the
multiclass setting.

Overview of Our Techniques. Our attacks are based on a
variety of number-theoretic and combinatorial techniques
that we briefly summarize here.

• For the case where log-loss scores are returned without
any noise, we use the Fundamental Theorem of Arith-
metic (Hardy & Wright, 1979), which states that every
positive integer has a unique prime factorization. We
assign powers of distinct primes to different datapoints
in a way that all labels can be recovered in a single
query, for both binary as well as the multiclass case.
Moreover, since the list of primes is well-known and

Label Inference Attacks from Log-Loss Scores

only a function of the number of datapoints, recovery
of labels from the observed scores is efficient assuming
arbitrary-precision arithmetic.

• To adapt our construction above (in the no-noise
setting) to the case of bounded floating-point preci-
sion, we bound the number of log-loss queries us-
ing the well-known Prime Number Theorem (Poussin,
1897; Hadamard, 1896), which provides an asymptotic
growth rate for the size of prime numbers. Our con-
struction achieves label inference in an optimal number
of queries, which we prove by providing matching up-
per and lower bounds.

• For the case of label inference from noised scores, we
use a different attack strategy. Here, we reduce this
problem to the construction of sets with distinct subset
sums. For the lower-bound here, we build upon the
classic result (first conjectured) by Euler (and later
proved by (Benkoski & Erdős, 1974; Frenkel, 1998)),
which bounds the size of the largest element in such
sets with integer elements.

2. Problem Definition and Setting

We begin by formally defining our model of computation.
In this paper, we discuss perfect label inference problem,
which refers to inferring all the labels. We formally define
label inference under different constraints in subsequent
sections. We refer to the entity that runs this inference as
the adversary.

Throughout the paper, unless otherwise stated, we focus
on the binary label case. We refer to the vector u in Def-
inition 2 as the prediction vector used by the adversary.
The key ideas in our label inference algorithms are best
explained by describing a vector v = (v1, . . . , vN) 2 RN

and then constructing the prediction vector u = f(v) :=
[f(v1), . . . , f(vN)], where f(x) = x

1+x .

For notational convenience, we define:

Lv (�) := LLOSS (f(v),�) = LLOSS (u,�) . (1)

Note that for any � 2 {0, 1}N , a simple algebraic manipu-
lation of Lv (�) gives the following:

Lv (�) =
�1
N

ln

✓ Q
i:�i=1 vi

(1 + v1) . . . (1 + vN)

◆
. (2)

We will repeatedly refer to this form in our constructions.
We are interested in vectors v for which the function Lv is
injective (i.e., a 1-1 correspondence). This injection will
allow the adversary to ensure that the true labeling can be
unambiguously recovered from the observed loss score.

Models of Computation. We present our results in two
models of arithmetic computation. The first model assumes

arbitrary precision arithmetic, which allows precise arith-
metic results even with very large numbers. We refer to this
as the APA model. While this model results in considerably
slower arithmetic (Brent & Zimmermann, 2010), it helps an
adversary to perform label inference with fewer queries.

The second model is the more standard floating point preci-
sion model, where the arithmetic is constrained by limited
precision. We denote this model as FPA(�), where � repre-
sents the number of bits of precision. We assume the follow-
ing abstraction for the format for representing numbers in
this model: 1 bit for sign, (��1)/2 bits for the exponent and
(��1)/2 bits for the fractional part (mantissa).5 This allows
representing all numbers between �2(��1)/2 to +2(��1)/2,
with a resolution of 2�(��1)/2. The floating point precision
model allows for more efficient arithmetic operations (Brent
& Zimmermann, 2010). We refer the reader to Chapter
4 in (Knuth, 2014) for a detailed discussion on designing
algorithms for standard arithmetic in these models.

Threat Model. We assume that the adversary sends a pre-
diction vector u to a machine (server) that holds the (private)
dataset � 2 {0, 1}N (also called labeling) and gets back
LLOSS (u,�). We assume that the loss is computed on all
labels in � and that N is known to the adversary. In the
setting where the scores are noised, we assume that the
adversary knows an upper bound on the resulting error. Of-
ten the former can be inferred from the knowledge of the
precision on the machine that returns the loss score to the
adversary. Finally, we assume that the adversary can make
multiple queries with different prediction vectors and obtain
the corresponding loss scores. Since this query access can
be limited in practical settings, we optimize the number
of queries required by our inference algorithms and prove
formal lower bounds.

We refer to the adversary as a polynomial-time adversary
if it is restricted to only polynomial-time computations,
otherwise we refer to it as an exponential-time adversary.

Related Work. Whitehill (2018) initiated the study of
how log-loss scores can be exploited in ML competitions,
which was optimized for single-query inference in (Aggar-
wal et al., 2020). However, the attack in (Whitehill, 2018)
constructs prediction vectors (which they call probe matri-
ces) by heuristically solving a min-max optimization prob-
lem in a space that is exponentially large in the number of
labels their algorithm infers in a single query. This heuristic
is based on a Monte-Carlo simulation, which severely limits
the scalability of their algorithm to arbitrary large datasets
(and/or to arbitrarily many number of classes). In contrast,
our construction is simple and practical, which makes our
attack efficient (see Section 5 for details). Additionally, the

5More generally, one could allocate �a bits for the exponent
and �b bits for the fractional part where �a + �b = �� 1. This is
the setting in our experiments.

Label Inference Attacks from Log-Loss Scores

algorithms in both (Whitehill, 2018; Aggarwal et al., 2020)
cannot be extended to the noised case – the attacks by (Ag-
garwal et al., 2020), in particular, use a single log-loss query
and hence, cannot be run in the finite precision setting. Addi-
tionally, the use of Twin Primes in (Aggarwal et al., 2020) is
missing a discussion on efficiently constructing such primes
for arbitrarily large datasets.

Label inference attacks based on other metrics such as
AUC scores are also known (Whitehill, 2016; Matthews
& Harel, 2013), but we do not know of any connection
between these and our setting. In a recent work, (Blum
& Hardt, 2015) demonstrate general techniques for safe-
guarding leaderboards in Kaggle-type competition settings
against an adversarial boosting attack, in which the attacker
observes loss scores on randomly generated prediction vec-
tors to generate a labeling which, with probability 2/3, gives
a low loss function.

The constructions introduced in this paper are related to
the ideas prevalent in the coding theory literature.6 The
idea of designing the prediction vector (u) can be viewed
as constructing a coding scheme, whose input is the true
labels, with the goal of recovering (decoding) the true labels
after passing it through the log-loss function (which acts
as the noisy channel). In particular, our constructions in
Section 4, have parallels to coding schemes based on Sidon
sequences (O’Bryant, 2004) and Golomb rulers (Robinson
& Bernstein, 1967). We believe that better label inference at-
tacks could be designed by further exploring this connection
with the coding theory literature.

Additional Notation. We will denote by [n] =
{1, 2, . . . , n} and use R for real numbers, Z for integers,
and Z+ for the set of positive integers. For any vector
v = [v1, . . . , vn], we use v[: a] = [v1, . . . , va] for a 2 [n].
Unless specified, all logarithms use the natural base (e) and
p1, p2, . . . will denote the primes (pi being the i

th prime).

3. Label Inference from Raw Scores

We begin our discussion with label inference from scores
that are reported without any noise added. We will first
assume arbitrary precision arithmetic to explain the key idea
behind our construction, and then extend the discussion to
the case of floating-point precision. Missing details from
this section are collected in the Appendix A.

We begin by formally defining the label inference problem.

Definition 3. Let � 2 {0, 1}N be an (unknown) labeling.
The label inference problem is that of recovering � given
LLOSS (u1;�) , . . . , LLOSS (uM ;�). Here, M is the num-
ber of queries and ui 2 [0, 1]N are the prediction vectors.

6This was pointed to us by the anonymous ICML reviewers.

3.1. Single Query Label Inference under Arbitrary

Precision with Polynomial-time Adversary

For our first result, we show that it is possible to extract all
ground truth labels using just one query in the arbitrary pre-
cision (APA) model. Our key tool is the Fundamental The-
orem of Arithmetic (Hardy & Wright, 1979), which states
that every integer has a unique prime factorization. Recall
that from Equation (1), recovering � from LLOSS (u;�) is
equivalent to recovering � from Lv(�). Our construction is
described below.

Theorem 1. There exists a polynomial-time adversary for
the single-query label inference problem in the APA model.

Proof. Let � denote the (unknown) labeling. Define v =
[p1, . . . , pN] and T =

QN
i=1(1+pi). Observe that the terms

in Equation (2) can be re-arranged to give
Q

i:�i=1 pi =
T exp (�NLv (�)). This gives the required injection since
there is a unique product of primes for any given value of
the right hand side of this equation. Moreover, the primes in
this product uniquely define which elements in � have label
1, since we use a distinct prime for each i.

As an example, for N = 5, let v = [2, 3, 5, 7, 11]. Sup-
pose the true labeling is [0, 1, 1, 0, 1]. Then, the adversary
observes Lv (�) =

1
5 ln

�
2304
55

�
(obtained by plugging in v

and � in Equation 2). For reconstructing the labels, observe
that T = 3⇥4⇥6⇥8⇥12 = 6912, so that all we need is to
compute primes that divide T exp (�NLv (�)) = 165 =
3⇥ 5⇥ 11. This tells us that only the labels for the second,
third and fifth datapoints must be 1, which is indeed true.

We note that the construction above is not unique – all the
steps in the proof would go through if we replaced v with
any vector containing distinct primes (or even mutually
co-prime numbers) by the unique factorization property.
Moreover, since the adversary decides what primes go inside
v, it only takes O(N) time to determine all the factors in
the product above (e.g., by checking each pi one by one).
We further note that our proof assumes that Te�NLv(�) can
be written precisely and unambiguously as an integer for
any v and �. This requires arbitrary precision. In practical
scenarios, however, this may not be the case and hence,
only a few labels may be correctly inferred. We discuss our
construction for exact inference in this case next.

3.2. Label Inference under Bounded Precision with

Polynomial-time Adversary

To work in the more realistic scenario of bounded precision
within the FPA(�) model, we are restricted in our choice of
primes since the primes from Theorem 1 can get very large
(as N increases). We handle this using multiple queries,
inferring only a few labels at a time (details outlined in
Algorithm 1). In each iteration, the prediction vectors use

Label Inference Attacks from Log-Loss Scores

Algorithm 1 Label Inference with No Noise in the FPA(�)
Model (Polynomial Adversary)

1: Input: N (length of vector), � (bits of precision)
2: Output: Labeling �̂ 2 {0, 1}N
3: Initialize �̂ [0, . . . , 0].
4: Let m be the largest integer for which pm  2(��5)/4.
5: for k in {1, 2, . . . , dN/me} do

6: Set v(k) with v(k)
j = pr if j = (k � 1)m + r for

some r 2 [m]. Else, set v(k)
j = 1.

7: Obtain the loss `
(k) using u(k) = f

�
v(k)

�
as the

prediction vector.
8: Let P (k) = [p1, . . . , p|P (k)|] be the set of primes

inside v(k) and ↵
(k) =

Q
p2P (k)(1 + p).

9: Compute q
(k) ↵

(k)
e
�N`(k)+(N�|P (k)|) ln 2.

10: For j 2 {1, . . . , |P (k)|}, if pj divides q(k), then set
�̂(k�1)m+j 1.

11: end for

12: Return �̂.

primes for the bits not yet inferred, and the remaining entries
are kept fixed. This way the remaining entries contribute a
fixed amount to the loss, which can be subtracted at the time
of label inference. Thus, using a smaller number of primes
allows us to work with the available precision budget.

Theorem 2. Let � � 9. There exists a polynomial-time
adversary (from Algorithm 1) for the label inference problem
in the FPA(�) model using ⇥

�
1 +N�2��/4

�
queries.

Proof. We begin by proving the upper bound on the number
of queries. We refer to Algorithm 1 for our proof.

Let � denote the true labeling. Fix some m 2 [N] and
without loss of generality, assume that N is a multiple of
m, so that dN/me = N/m. Then, in the k

th iteration of
the for-loop in Algorithm 1, the prediction vector u(k) uses
m primes P

(k) = [p1, . . . , pm], with all other entries set
to 1. Since the computation of log-loss is invariant of the
relative order of the datapoints (as long as it aligns with the
prediction vector), it suffices to show that the first iteration
of the loop (k = 1) correctly recovers the first m labels. To
see this, observe that Lemma 4 gives us that the log-loss
score observed on u(k) has the following form:

�N`
(1) = �NLv(1)(�)

= ln

0

BB@
Y

i:�i=1
1iM

pi

1

CCA� (N �M) ln 2�
MX

j=1

ln(1 + pj)

=)

0

@
MY

j=1

(1 + pj)

1

A e
�N`(1)+(N�M) ln 2 =

Y

i:�i=1
1iM

pi.

The product term on the left is the same as ↵(1) and the prod-
uct term on the right allows for unambiguous label recovery
(via unique factorization) in Step 10 of Algorithm 1.

Next, we prove that in the FPA(�) model, a polynomial-
time adversary can infer at most 2�/4/� labels per query.

To see this bound on the number of labels inferred per itera-
tion, first observe that:

min
i,j2[N]
pi 6=pj

����
pi

1 + pi
� pj

1 + pj

���� �
pm

1 + pm
� pm�1

1 + pm�1

=
pm � pm�1

(1 + pm)(1 + pm�1)
� pm � pm�1

4pmpm�1

=
1

4

✓
1

pm�1
� 1

pm

◆
� 1

4

✓
1

pm � 1
� 1

pm

◆
� 1

4p2m
,

where the first line follows from the fact that p1 < · · · < pm,
and the second line from pm � 3 and pm�1 � 2. Thus, in
the FPA(�) model, we can only use m that is large enough
so that the following continues to holds:

�� 1

2
� log2(4p

2
m) = 2 + 2 log2 pm

=) � � 5 + 4 log2 pm.

From this, we obtain that the largest prime pm that can be
used must be at most 2(��5)/4, as mentioned in Algorithm 1
(which establishes the optimality of our construction).

Finally, from Lemma 3, since pm = ⇥(m logm), we obtain
m = ⇥

�
2�/4/�

�
, which gives the number of queries as

⇥
�
N�2��/4

�
for our inference attack.

Note that the bound on the number of queries is asymptot-
ically tight. We prove this using the Prime Number Theo-
rem (Hadamard, 1896; Poussin, 1897), which describes the
asymptotic distribution of primes among the integers. In
Section 5, we present experimental results to show Algo-
rithm 1 can be used for label inference on real datasets.

3.3. Extension to the Multiclass Case

Our construction using primes in Theorem 1 can be extended
to multiple classes as well. We now use Definition 1. We
prove that using the powers of a distinct prime for each
datapoint, we can infer all the labels in a single query – in
particular, using vector vK of the following form:

vi,k =
p
k�1
iPK

j=1 p
j�1
i

8(i, k) 2 [N]⇥ [K].

The proof of correctness follows from the Fundamental
Theorem of Arithmetic (see Appendix A.2 for details).

Label Inference Attacks from Log-Loss Scores

Theorem 3. There exists a polynomial-time adversary for
K-ary label inference in the APA model using only a single
log-loss query. For inference in the FPA(�) model, it suf-
fices to issue O (1 +NKh(�)) queries, where the following
holds when K < N :

h(�) = O

(ln�)2

(�+ (N �K) lnK)2/3

!
.

Observe that lim�!1 h(�) = 0, as expected.

4. Label Inference from Noised Scores

In this section, we describe a label inference attack for
binary labels that works even when the reported scores
are noised before the adversary gets to see them. We do
not place any assumption on the noise distribution except
that the adversary knows an upper bound on the amount of
resulting error. Compared to attacks in the unnoised case
presented in the previous section, our attacks here use a
larger number of queries (for the same number of bits of
precision) and currently only work for the binary label case.

We begin by formally defining the label inference problem
in presence of noise. Missing details from this section are
collected in the Appendix B.
Definition 4. Let ⌧ > 0 and � 2 {0, 1}N be the (unknown)
labeling. The ⌧ -robust label inference problem is that of
recovering � given `1, . . . , `M , where for all i 2 [M], it
holds that |LLOSS (ui;�)�`i|  ⌧ . Here, M is the number
of queries and ui 2 [0, 1]N are the prediction vectors.

As before, we discuss the results in both APA and FPA
arithmetic. In this case, we also make a distinction between
exponential- and polynomial-time adversaries.

4.1. ⌧ -Robust Label Inference under Arbitrary

Precision with Exponential-time Adversary

As in Section 3, because of the equivalence between Lv(�)
and LLOSS (u;�) for u = f(v), we focus on recovering
� from Lv(�). We start with a definition of a vector v
that helps with label inference in the presence of noise. To
illustrate our key ideas, we first focus on an exponential-time
adversary, and later extend the results to a polynomial-time
adversary.
Definition 5. Let ⌧ > 0. In the APA model, we say that
a vector v 2 (0,1)N is ⌧ -robust if for all labelings � 2
{0, 1}N and all ` such that |Lv (�)� `|  ⌧ , there exists an
algorithm (Turing Machine) A such that A (`, N, ⌧,v) = �.

We show that for all ⌧ > 0, there exists a ⌧ -robust vector
in the APA model that can recover the true labeling in a
single query. We do so by constructing a vector v such that
for any two different labelings �1,�2 2 {0, 1}N , it holds

Algorithm 2 Label Inference with Bounded Error in the
APA Model (Exponential Adversary)

1: Input: N , upper bound on error ⌧ > 0
2: Output: Labeling �̂ 2 {0, 1}N
3: Set u f(v), where vi 32

iN⌧ .
4: Obtain the loss score ` using u as the prediction vector.
5: Return �̂ argmin�2{0,1}N |Lu (�)� `|.

that |Lv(�1) � Lv(�2)| > 2⌧ , so that the inference from
the noised loss is unambiguous. To achieve this co-domain
separation, we reduce our problem to constructing sets with
a given minimum difference between its arbitrary subset
sums. The construction from this reduction will help design
our vector v. The main steps of our approach are outlined
in Algorithm 2 and described below.

Let �(v) := min�1,�22{0,1}N |Lv (�1)� Lv (�2)| be the
magnitude of the minimum difference in the loss scores
computed on any two distinct labelings. For any set S,
let µ(S) := minS1,S2✓S

��P
s12S1

s1 �
P

s22S2
s2

�� denote
the magnitude of the minimum difference between any two
subset sums in S. Remember that our goal is to ensure that
�(v) is large (in particular, more than 2⌧). The following
lemma will be helpful in constructing such a vector v.

Lemma 1. Let v = [v1, . . . , vN] be a vector with all en-
tries distinct and positive. Define lnv := [ln v1, . . . , ln vN].
Then, it holds that �(v) = 1

N µ(lnv).

Now, let SN = {1, 21, . . . , 2N�1}. Observe that µ (SN) =
1. This follows from the fact that SN contains all N distinct
powers of 2 (from 0 to N�1), and hence, every subset of SN

has a distinct sum since there are 2N subsets of SN and each
subset corresponds to a unique integer in [2N � 1]. Using
this set, we can achieve the desired separation between
loss scores by scaling the elements in SN as suggested by
Lemma 1 and the construction in Algorithm 2. We prove
the correctness of this approach in the following.

Theorem 4. For any ⌧ > 0, there exists an exponential-
time adversary (from Algorithm 2) for single-query ⌧ -robust
label inference in the APA model.

We note a few keys remarks about Algorithm 2. First, note
that the exact knowledge of ⌧ is not required – any up-
per bound ⌧max suffices. This eliminates the need for the
adversary to know the exact noise generation process and
compute the bound ⌧max purely from its knowledge of the
environment (e.g. precision on the channel through which
the scores are communicated). Second, at first glance, it may
seem too good to be true that we can handle arbitrary noise
levels added to the noise scores. Intuitively, too much noise
must render any signal completely useless when recovering
meaningful information. However, we remind the reader
that Algorithm 2 requires arbitrary precision. In practice,

Label Inference Attacks from Log-Loss Scores

any finite precision will limit the resolution to which the
difference between the loss scores can be controlled using
vectors that contain entries that are exponentially large in N

and ⌧ . As we will show next, multiple queries are required
in this case, which, instead of separating scores over all
the labelings at once, only separates scores over labelings
that differ in a few bits (which can be significantly smaller
in number). Third, note that the adversary iterates over
the entire exponentially large (2N) space of the labelings
to recover the true labeling � (see step 5). While this is
feasible if we assume an all-powerful adversary, in more
realistic scenarios where the adversary is limited to only
polynomial computations, at most O(logN) bits must be
inferred at a time. We discuss this approach in more detail
below. Lastly, observe that Algorithm 2 is a single-query
inference. Even with the caveats mentioned above, this al-
gorithm is a certificate to the guarantee that even noisy loss
scores leak sufficient information about the private labels,
which, given enough computation power, can be extracted
unambiguously. A natural question to ask is if it is possible
to perform this inference using smaller numbers than what
our construction uses. We now explore if this is possible.

Optimality of Single-Query ⌧ -Robust Inference. We
now prove that any solution to the single-query Robust
Label Inference Problem must use a prediction vector that
has large entries. At a high level, we do this by first reducing
the problem of constructing sets with distinct subset sums
into the problem of constructing ⌧ -robust vectors7. Hav-
ing established the equivalence between the two problems
through this reduction, we then prove our lower bound by
generalizing a classic result by Euler, which states that any
set of positive integers with distinct subset sums must have
at least one element that is exponentially large in the number
of elements in the set (Benkoski & Erdős, 1974; Frenkel,
1998). We state this result as a theorem since it may be of
independent mathematical interest (missing details in Ap-
pendix B.2). We let Q+ denote the set of positive rational
numbers and for any set S, let ||S||1 = maxs2S |s|.
Theorem 5. For any set S ⇢ Q+ with µ(S) > � for some
� 2 [0,1), it must hold that ||S||1 = ⌦(�2|S|).

The optimality of our construction of prediction vectors can
now be proven as follows.
Theorem 6. For sufficiently large N and all ⌧ > 0, any
⌧ -robust vector v must have ||v||1 = ⌦

⇣
e
2NN⌧

⌘
.

We emphasize that this lower bound is only when a sin-
gle log-loss query is used for inference (like used in Algo-
rithm 2). This is because if multiple queries can be issued,
then smaller numbers in the vector construction may suf-
fice. For example, using N queries with vectors of the form
v = [k, 1, . . . , 1], where k > e

2N⌧ suffice.
7Recall we used the reverse direction earlier in our construction.

Algorithm 3 Label Inference with Bounded Error in the
FPA(�) Model (Polynomial Adversary)

1: Input: N , upper bound on error ⌧ > 0, �
2: Output: Labeling �̂ 2 {0, 1}N
3: Initialize �̂ [0, . . . , 0].
4: Let m min

n
dlog2 Ne ,

j
log2

⇣
��8

N⌧ ln 2

⌘ko
.

5: for i in
�
1, . . . ,

⌃
N
m

⌥
do

6: Form a vector v with vj = 32
rN⌧ if j = (i�1)m+r

for some r 2 [m]. Else, set vj = 1.
7: Let u = f(v) =

h
v1

1+v1
, . . . ,

vN
1+vN

i
. Obtain the loss

score ` using u as the prediction vector.
8: Let ⌃w,m = 0(w�1)m(0+1)m0N�wm (expressed as

a regular expression – truncated to N bits) denote the
set of all labelings that have 0’s in the first (w� 1)m
and last (N � wm) positions.

9: Compute �
0 argmin�2⌃i,m |Lu (�)� `|.

10: Set �̂k = �
0
k for k 2 {(i� 1)m+ 1, . . . , im}, while

keeping all other entries in �̂ unchanged.
11: end for

12: Return �̂.

4.2. ⌧ -Robust Label Inference under Bounded

Precision with Polynomial-time Adversary

We now present our algorithm for label inference under
bounded number of bits of precision. As discussed above,
at most O(logN) bits must be inferred at a time since any
larger amount will be infeasible in polynomial time. The
idea behind our construction is similar to that in Algorithm 1,
only this time, we construct prediction vectors that offer
robustness to the noise added. We outline the main steps in
Algorithm 3 and discuss it below. Note that Algorithm 3
only requires an upper bound on ⌧ .

Lemma 2. Let ⌧ > 0 be a bound on the result-
ing error and m  N be an integer. Let vm =⇥
3e2N⌧

, 3e4N⌧
, . . . , 3e2

mN⌧
, 1, . . . , 1

⇤
. Then, for any dis-

tinct �1,�2 2 {0, 1}N , it holds that if �1[: m] =
�2[: m], then Lvm (�1) = Lvm (�2). Else, we have
|Lvm (�1)� Lvm (�2)| > 2⌧ .

If using the construction vector vm from this above lemma,
for any m  N , the loss scores computed on vector vm are
at least 2⌧ apart for all labelings that differ in at least one
index in [m]. Moreover, if the first m bits are the same for
any two labelings, this lemma tells us that the loss scores
will be the same as well. This is the key idea that allows
unambiguous label inference in Algorithm 3. We formally
state our result about the correctness of this algorithm and
compute a bound on the number of bits required as follows.

Theorem 7. For any error bounded by ⌧ > 0 and � �
8 + dN⌧ ln 2e, there exists a polynomial-time adversary
(from Algorithm 3) for the ⌧ -label inference problem in the

Label Inference Attacks from Log-Loss Scores

FPA(�) model using O

⇣
N

logN + N
log(�/N⌧)

⌘
queries.

4.3. Extension to Other Noise Models

In the previous section, we considered the case where the
log-loss responses were all accurate within ±⌧ for some
⌧ > 0. We now give an overview of how our attacks could
be presence of random and multiplicative noise (missing
details in Appendices B.4 and B.5, respectively).

Random Noise. The results above on bounded error can be
extended to handle randomly generated (additive) noise. We
achieve this by safeguarding against the worst case magni-
tude of the noise that can be added for bounded noise distri-
butions. For cases where this distribution is unbounded, we
allow for some error tolerance.

To see why this works, observe that for any bounded dis-
tribution, say over some interval [a, b] ⇢ R, the error is
bounded by max{|a|, |b|}. Thus, using any max{|a|, |b|}-
robust vector will suffice. For distributions with unbounded
support, however, this upper bound does not exist. However,
given a failure probability � > 0, it is possible to com-
pute this bound for vector robustness for any distribution.
For example, in the APA model, in case of subexponen-
tial noise8 with parameters �

2 and ⌫ > 0, and � 2 (0, 1),
a ⌧ -robust vector v constructed as in Algorithm 2 (with
⌧ =

⇣
2(�+ ⌫)

p
ln 2/�

⌘
) will succeed in label inference

with probability at least 1� �.

Multiplicative Noise. We briefly explore extending the
analysis above to the case of multiplicative error. In this case,
the adversary observes score ` that satisfies (1�↵)Lv(�) 
`  (1 + ↵)Lv(�), where the bound ↵ 2 [0, 1) is known
to the adversary. We prove that for any ↵  1/8, label
inference can be done,

⌃
log2

�
1
↵

�
� 2

⌥
labels at a time, us-

ing vectors that are (2 ln 2)↵-robust. Observe that when
↵ � 1/4, then no value of ⌧ satisfies the constraint above,
implying that vectors from Algorithm 3 cannot be used with
any number of queries. The noise is more than what these
vectors can guarantee handling.

5. Experimental Observations

We evaluate our attacks on both simulated binary labelings
and real binary classification datasets fetched from the UCI
machine learning dataset repository9. In this section, we
focus on the binary label experiments, deferring the mul-
ticlass experiments to Appendix C. The results show that
our algorithms are surprisingly efficient, even with a large
number of datapoints. All experiments are run on a 64-bit
machine with 2.6GHz 6-Core processor, using the standard

8A random variable X is subexponential with parameters �2

and ⌫ if E(esX)  exp
�
�2s2/2

�
for all |s| < 1/⌫

9https://archive.ics.uci.edu/ml/machine-learning-databases

IEEE-754 double precision format (1 bit for sign, 11 bits
for exponent, and 53 bits for mantissa). For ensuring repro-
ducibility, the entire experiment setup is submitted as part
of the supplementary material.

Results on Simulated Binary Labelings. The first row in
Figure 1 shows the plots for label inference with no noise,
where we use the attack based on primes from Theorem 1.
The accuracy reported is with respect to 10000 randomly
generated binary labelings for each N (length of the vector
to be inferred). For N  10 all labels are correctly recov-
ered (see Figure 1(a)). For N � 47, the maximum accuracy
falls to zero. This is not unexpected because of the limited
floating point precision on the machine. The run time plot
shows that this inference happens in only a few milliseconds
(see Figure 1(b)). The third plot in row 1 shows multi-query
label inference with no noise using Algorithm 1. We use
N/5 queries.10 The results show that by changing the num-
ber of queries from 1 to N/5, we now have accuracy of
100% even up to N = 10, 000, with the corresponding av-
erage run time shown in the fourth plot (Figure 1(d)). The
average runtime is order of few milliseconds, even when
N = 10000, demonstrating the efficiency of this attack.

The second row in Figure 1 shows the plots for robust label
inference with bounded noise. The setup is similar to the
first row, except that a bounded noise of scale 0.01, 0.1, or
1 is added to the log-loss scores (the noise is from about
1% to 100% of the raw log-loss score). In Figure 1(e), the
label inference is performed using Algorithm 2. As the
noise scale increases from 0.01 to 0.1 and 1, the length of
the private vector on which we can recover all labelings
correctly drops from 12 to 8 and 6, respectively. The run
time displayed in the Figure 1(f) is much higher than in
the unnoised case (Figure 1(b)) because the label inference
algorithm for the noised setting involves iterating through
2N labelings to find out the one that is closest to the reported
noisy log-loss. The third plot shows the accuracy for multi-
query label inference with bounded noise using Algorithm 3.
With multiple queries calibrated by the noise scale, we are
able to recover all labelings correctly in all three noise cases,
with the corresponding run time displayed in Figure 1(f).

Results on Real Binary Classification Datasets. We now
discuss (unnoised) label inference on real datasets. The list
of datasets we use is as follows:

i. D1 (IMDB movie review for sentiment analysis (Maas
et al., 2011)) – 0 (negative review) or 1 (positive review);

ii. D2 (Banknote Authentication) – 0 (fine) or 1 (forged);
iii. D3 (Wisconsin Cancer) – 0 (benign) and 1 (malignant);
iv. D4 (Haberman’s Survival) – 0 (survived) and 1 (died).

As our attacks construct prediction vectors that are indepen-
10We did not optimize for the number of queries – probably a

smaller number of queries suffice for 100% reconstruction.

Label Inference Attacks from Log-Loss Scores

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Results on simulated binary labelings. The first row shows the performance of the label inference without noise using for
single-query (a) and (b), and multi-query (c) and (d). The second row shows the performance of label inference with bounded error (scale
= 0.01, 0.1, and 1) for single-query (e) and (f), and multi-query (g) and (h). Here, M is the number of queries from Algorithm 3.

Table 2. Experimental results on real datasets using Algorithm 1.
Here, N is the number of test samples in the dataset and Accq is
the fraction of labels correctly inferred with q queries.

Dataset N Acc1 AccN/5 TimeN/5

D1 25,000 0.4891 1.0 53.41 ms
D2 1,372 0.4446 1.0 0.2 ms
D3 569 0.3448 1.0 0.06 ms
D4 306 0.2647 1.0 0.03 ms

dent of the dataset contents, we ignore the dataset features
in our experiments. Our results are summarized in Table 2
with N/5 log-loss queries. In Figure 2, for D1, we plot
the results as we double the queries from 1 to N/5. Note
while the accuracy is low to start with, as soon as we get
sufficiently large number of queries we get perfect recovery.

6. Conclusion

In this paper, we discussed multiple label inference attacks
from log-loss scores. These attacks allow an adversary to
efficiently recover all test labels in a small number of queries,
even when the observed scores can be erroneous due to
perturbation or precision constraints (or both), without any
access to the underlying dataset or model training. These
results shed light into the amount of information that log-
loss scores leak about the test datasets.

A natural question to ask is if there are ways to defend
against such inference attacks. One way is to apply Warner’s
randomized response mechanism (Warner, 1965) to the test
labels before computing the loss score. This way, when

Figure 2. Accuracy of label inference on dataset D1 as a function
of the number of queries used by the adversary. For N/5 = 5000
queries, all labels have been correctly inferred.

an adversary runs our inference attacks, the labels that it
recovers will be protected by plausible deniability. Yet
another way is to report the scores on a randomly chosen
subset of the test dataset. In this case, bounding the loss is
not possible when the size of this subset is unknown.

Acknowledgements

We would like to thank the anonymous reviewers of ICML
2021 for their feedback. We are also grateful to Prakash
Krishnamurthy, Shengsheng Liu, Huiming Song and the
scientific publications team at Amazon for their helpful
comments on the earlier drafts of this paper and providing
the necessary resources for this research.

Label Inference Attacks from Log-Loss Scores

References

Aggarwal, A., Xu, Z., Feyisetan, O., and Teissier, N. On
primes, log-loss scores and (no) privacy. Workshop on
Privacy in Natural Language Processing (PrivateNLP),
The 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Benkoski, S. and Erdős, P. On weird and pseudoperfect
numbers. Mathematics of Computation, 28(126):617–
623, 1974.

Blum, A. and Hardt, M. The ladder: A reliable leader-
board for machine learning competitions. arXiv preprint
arXiv:1502.04585, 2015.

Brent, R. P. and Zimmermann, P. Modern computer arith-
metic, volume 18. Cambridge University Press, 2010.

Dinur, I. and Nissim, K. Revealing information while pre-
serving privacy. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pp. 202–210, 2003.

Dubhashi, D. P. and Panconesi, A. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cam-
bridge University Press, 2009.

Frenkel, P. Integer sets with distinct subset sums. Pro-
ceedings of the American Mathematical Society, 126(11):
3199–3200, 1998.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT press Cambridge, 2016.

Hadamard, J. Sur la distribution des zéros de la fonction
⇣(s) et ses conséquences arithmétiques. Bulletin de la
Societé mathematique de France, 24:199–220, 1896.

Hardy, G. and Wright, E. Statement of the fundamental
theorem of arithmetic. Proof of the Fundamental Theorem
of Arithmetic,” and” Another Proof of the Fundamental
Theorem of Arithmetic, 1(2.10):3, 1979.

Knuth, D. E. Art of computer programming, volume 2:
Seminumerical algorithms. Addison-Wesley Professional,
2014.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. Learning word vectors for sentiment
analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies, pp. 142–150, Portland, Oregon,
USA, June 2011.

Matthews, G. J. and Harel, O. An examination of data
confidentiality and disclosure issues related to publication
of empirical roc curves. Academic radiology, 20(7):889–
896, 2013.

Murphy, K. P. Machine learning: a probabilistic perspective.
MIT press, 2012.

O’Bryant, K. A complete annotated bibliography of work
related to sidon sequences. arXiv preprint math/0407117,
2004.

Poussin, C. J. d. L. V. Recherches analytiques sur la théorie
des nombres premiers, volume 1. Hayez, 1897.

Robinson, J. p. and Bernstein, A. A class of binary recurrent
codes with limited error propagation. IEEE Transactions
on Information Theory, 13(1):106–113, 1967.

Warner, S. L. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American
Statistical Association, 60(309):63–69, 1965.

Whitehill, J. Exploiting an oracle that reports auc scores in
machine learning contests. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

Whitehill, J. Climbing the kaggle leaderboard by exploiting
the log-loss oracle. In Workshops at the Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

