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Abstract

We define deep kernel processes in which positive

definite Gram matrices are progressively trans-

formed by nonlinear kernel functions and by sam-

pling from (inverse) Wishart distributions. Re-

markably, we find that deep Gaussian processes

(DGPs), Bayesian neural networks (BNNs), infi-

nite BNNs, and infinite BNNs with bottlenecks

can all be written as deep kernel processes. For

DGPs the equivalence arises because the Gram

matrix formed by the inner product of features

is Wishart distributed, and as we show, standard

isotropic kernels can be written entirely in terms

of this Gram matrix — we do not need knowledge

of the underlying features. We define a tractable

deep kernel process, the deep inverse Wishart pro-

cess, and give a doubly-stochastic inducing-point

variational inference scheme that operates on the

Gram matrices, not on the features, as in DGPs.

We show that the deep inverse Wishart process

gives superior performance to DGPs and infinite

BNNs on fully-connected baselines.1

1. Introduction

The deep learning revolution has shown us that effective

performance on difficult tasks such as image classification

(Krizhevsky et al., 2012) requires deep models with flexible

lower-layers that learn task-dependent representations. Here,

we consider whether these insights from the neural network

literature can be applied to purely kernel-based methods.

(Note that we do not consider deep Gaussian processes or

DGPs to be “fully kernel-based” as they use a feature-based

representation in intermediate layers).

Importantly, deep kernel methods (e.g. Cho & Saul, 2009)
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already exist. In these methods, which are closely re-

lated to infinite Bayesian neural networks (Lee et al., 2017;

Matthews et al., 2018; Garriga-Alonso et al., 2018; Novak

et al., 2018), we take an initial kernel (usually the dot prod-

uct of the input features) and perform a series of determinis-

tic, parameter-free transformations to obtain an output ker-

nel that we use in e.g. a support vector machine or Gaussian

process. However, the deterministic, parameter-free nature

of the transformation from input to output kernel means that

they lack the capability to learn a top-layer representation,

which is believed to be crucial for the effectiveness of deep

methods (Aitchison, 2019).

2. Contributions

1. We propose deep kernel processes (DKPs), which com-

bine nonlinear transformations of the kernel, as in Cho

& Saul (2009) with a flexible learned representation by

exploiting a Wishart or inverse Wishart process (Dawid,

1981; Shah et al., 2014).

2. We show that models ranging from DGPs (Damianou

& Lawrence, 2013; Salimbeni & Deisenroth, 2017) to

Bayesian neural networks (BNNs; Blundell et al., 2015,

App. C.1), infinite BNNs (App. C.2) and infinite BNNs

with bottlenecks (App. C.3) can be written as DKPs.

3. We define a specific DKP, the deep inverse Wishart

process (DIWP) which offers convenient variational

approximate posteriors.

4. We develop a novel doubly-stochastic variational

inducing-point inference scheme purely in the kernel

domain (as opposed to Salimbeni & Deisenroth, 2017,

who described DSVI for standard feature-based DGPs)

for DIWPs.

5. We demonstrate improved performance of DIWPs on

fully-connected benchmark datasets.

DKPs and specifically DIWPs offer two key advantages

over feature-based methods such as DGPs and BNNs. First,

DGPs and BNNs have complex approximate posteriors (Li

et al., 2018), due in part to permuation/rotation symmetries

in the posterior over weights/features (App. D.1 and D.2;

MacKay, 1992; Moore, 2016; Pourzanjani et al., 2017).

github.com/LaurenceA/bayesfunc
github.com/LaurenceA/bayesfunc
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This complexity means that common variational approxi-

mate posteriors can give a very poor approximation to the

true posterior. In contrast, the Gram matrices in DKPs are

invariant to permutations/rotations of the weights/features

and thus have much simpler true posteriors which are more

easily captured by variational approximate posteriors. Sec-

ond, in DIWPs the “width” parameter is learnable, and in

the limit of infinite width gives a series of deterministic ker-

nel transformations, as in an infinite neural network. This

gives DIWPs the ability to learn on a layer-by-layer basis

where a deterministic kernel transformation is appropriate,

or where more flexibility in the kernel is needed.

3. Background

We briefly revise Wishart and inverse Wishart distributions.

The Wishart distribution is a generalization of the gamma

distribution that is defined over positive semidefinite matri-

ces. Suppose that we have a collection of P -dimensional

random variables xi with i ∈ {1, . . . , N} such that

xi
iid
∼ N (0,V) , (1)

∑N
i=1xix

T
i = S ∼ W (V, N) (2)

has Wishart distribution with scale matrix V and N degrees

of freedom. When N > P − 1, the density is,

W (S;V, N) =
|S|(N−P−1)/2e−Tr(V−1

S/2)

2NP |V|ΓP

(

N
2

) (3)

where ΓP is the multivariate gamma function. Fur-

ther, the inverse, S−1 has inverse Wishart distribution,

W−1
(

V−1, N
)

. The inverse Wishart is defined only for

N > P − 1 and also has closed-form density. Finally, we

note that the Wishart distribution has mean NV while the in-

verse Wishart has mean V−1/(N−P−1) (for N > P+1).

4. Deep kernel processes

We define a kernel process to be a set of distributions over

positive definite matrices of different sizes, that are consis-

tent under marginalisation (Dawid, 1981; Shah et al., 2014).

The two most common kernel processes are the Wishart

process and inverse Wishart process, which we write in a

slightly unusual form to ensure their expectation is K. We

take G and G′ to be finite dimensional marginals of the

underlying Wishart and inverse Wishart process,

G ∼ W (K /N,N) , (4a)

G∗ ∼ W (K∗/N,N) , (4b)

G′ ∼ W−1(δK , δ+(P +1)) , (4c)

G′∗ ∼ W−1(δK∗, δ+(P ∗+1)) , (4d)

and where we explicitly give the consistent marginal distri-

butions over K∗, G∗ and G′∗ which are P ∗ × P ∗ principal

submatrices of the P × P matrices K, G and G′ dropping

the same rows and columns. In the inverse-Wishart distri-

bution, δ is a positive parameter that can be understood as

controlling the degree of variability, with larger values for δ
implying smaller variability in G′.

We define a deep kernel process by analogy with a DGP, as

a composition of kernel processes, and show in App. A that

under sensible assumptions any such composition is itself a

kernel process. 2

4.1. DGPs with isotropic kernels are deep Wishart

processes

We consider deep GPs of the form (Fig. 1 top) with X ∈
R

P×N0 , where P is the number of input points and N0 is

the number of features in the input.

Kℓ =

{

1
N0

XXT for ℓ = 1,

K (Gℓ−1) for ℓ ∈ {2, . . . , L+1},
(5a)

P (Fℓ|Kℓ) =
∏Nℓ

λ=1N
(

f ℓλ;0,Kℓ

)

, (5b)

Gℓ =
1
Nℓ

FℓF
T
ℓ . (5c)

Here, Fℓ ∈ R
P×Nℓ are the Nℓ hidden features in layer ℓ; λ

indexes hidden features so f ℓλ is a single column of Fℓ, rep-

resenting the value of the λth feature for all training inputs.

Note that K(·) is a function that takes a Gram matrix and

returns a kernel matrix, whereas Kℓ is a (possibly random)

variable representing the kernel matrix at layer ℓ. Note, we

have restricted ourselves to kernels that can be written as

functions of the Gram matrix, Gℓ, and do not require the

full set of activations, Fℓ. As we describe later, this is not

too restrictive, as it includes amongst others all isotropic

kernels (i.e. those that can be written as a function of the dis-

tance between points Williams & Rasmussen, 2006). Note

that we have a number of choices as to how to initialize the

kernel in Eq. (5a). The current choice just uses a linear dot-

product kernel, rather than immediately applying the kernel

function K. This is both to ensure exact equivalence with

infinite NNs with bottlenecks (App. C.3) and also to high-

light an interesting interpretation of this layer as Bayesian

inference over generalised lengthscale hyperparameters in

the squared-exponential kernel (App. B e.g. Lalchand &

Rasmussen, 2020).

For DGP regression, the outputs, Y, are most commonly

given by a likelihood that can be written in terms of the

output features, FL+1. For instance, for regression, the

2Note that we leave the question of the full Kolmogorov exten-
sion theorem (Kolmogorov, 1933) for matrices to future work: for
our purposes, it is sufficient to work with very large but ultimately
finite input spaces as in practice, the input vectors are represented
by elements of the finite set of 32-bit or 64-bit floating-point num-
bers (Sterbenz, 1974).
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Figure 1. Generative models for two layer (L = 2) deep GPs. (Top) Generative model for a deep GP, with a kernel that depends on

the Gram matrix, and with Gaussian-distributed features. (Bottom) Integrating out the features, the Gram matrices become Wishart

distributed.

distribution of the λth output feature column could be

P (yλ|FL+1) = N
(

yλ; f
L+1
λ , σ2I

)

, (6)

alternatively, we could use a classification likelihood,

P (y|FL+1) = Categorical
(

y; softmax
(

FL+1
λ

))

. (7)

Importantly, our methods can be used with any likelihood

with a known probability density function.

The generative process for the Gram matrices, Gℓ, consists

of generating samples from a Gaussian distribution (Eq. 5b),

and taking their product with themselves transposed (Eq. 5c).

This exactly matches the generative process for a Wishart

distribution (Eq. 1), so we can write the Gram matrices, Gℓ,

directly in terms of the kernel, without needing to sample

features (Fig. 1 bottom),

P (G1|X) =W
(

1
N1

(

1
N0

XXT
)

, N1

)

, (8a)

P (Gℓ|Gℓ−1) =W (K (Gℓ−1) /Nℓ, Nℓ) , (8b)

P (FL+1|GL) =
∏NL+1

λ=1 N
(

fL+1
λ ;0,K (GL)

)

. (8c)

Except at the output, the model is phrased entirely in terms

of positive-definite kernels and Gram matrices, and is con-

sistent under marginalisation (assuming a valid kernel func-

tion) and is thus a DKP. At a high level, the model can

be understood as alternatively sampling a Gram matrix (in-

troducing flexibility in the representation), and nonlinearly

transforming the Gram matrix using a kernel (Fig. 2).

This highlights a particularly simple interpretation of the

DKP as an autoregressive process. In a standard autore-

gressive process, we might propagate the current vector, xt,

through a deterministic function, f(xt), and add zero-mean

Gaussian noise, ξ,

xt+1 = f (xt) + σ2ξ such that E [xt+1|xt] = f (xt) .
(9)

By analogy, the next Gram matrix has expectation centered

on a deterministic transformation of the previous Gram

matrix,

E [Gℓ|Gℓ−1] = K (Gℓ−1) , (10)

so Gℓ can be written as this expectation plus a zero-mean

random variable, Ξℓ, that can be interpreted as noise,

Gℓ = K (Gℓ−1) +Ξℓ. (11)

Note that Ξℓ is not in general positive definite, and may

not have an analytically tractable distribution. This noise

decreases as Nℓ increases,

V
[

Gℓ
ij

]

= V
[

Ξℓ
ij

]

(12)

= 1
Nℓ

(

K2
ij(Gℓ−1) +K2

ii(Gℓ−1)K
2
jj(Gℓ−1)

)

.

Notably, as Nℓ tends to infinity, the Wishart samples con-

verge on their expectation, and the noise disappears, leaving

us with a series of deterministic transformations of the Gram

matrix. Therefore, we can understand a deep kernel process

as alternatively adding “noise” to the kernel by sampling

e.g. a Wishart or inverse Wishart distribution (G2 and G3

in Fig. 2) and computing a nonlinear transformation of the

kernel (K(G2) and K(G3) in Fig. 2)

Remember that we are restricted to kernels that can be writ-

ten as a function of the Gram matrix,

Kℓ = K (Gℓ) = Kfeatures (Fℓ) ,

Kℓ
ij = k

(

Fℓ
i,:,F

ℓ
j,:

)

. (13)

where Kfeatures(·) takes a matrix of features, Fℓ, and returns

the kernel matrix, Kℓ, and k is the usual kernel function,

which takes two feature vectors (rows of Fℓ) and returns

an element of the kernel matrix. This does not include all

possible kernels because it is not possible to recover the

features from the Gram matrix. In particular, the Gram

matrix is invariant to unitary transformations of the features:

the Gram matrix is the same for Fℓ and F′
ℓ = UFℓ where

U is a unitary matrix, such that UUT = I,

Gℓ =
1
Nℓ

FℓF
T
ℓ = 1

Nℓ
FℓUℓU

T
ℓ F

T
ℓ = 1

Nℓ
F′

ℓF
′T
ℓ . (14)

Superficially, this might seem very limiting — leaving us

only with dot-product kernels (Williams & Rasmussen,

2006) such as,

k(f , f ′) = f · f ′ + σ2. (15)

However, in reality, a far broader range of kernels fit within

this class. Importantly, isotropic or radial basis function ker-

nels including the squared exponential and Matern depend
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Figure 2. Visualisations of a single prior sample of the kernels and Gram matrices as they pass through the network. We use 1D, equally

spaced inputs with a squared exponential kernel. As we transition K(Gℓ−1) → Gℓ, we add “noise” by sampling from a Wishart

(top) or an inverse Wishart (bottom). As we transition from Gℓ to K(Gℓ), we deterministically transform the Gram matrix using a

squared-exponential kernel.

only on the squared distance between points, R, (Williams

& Rasmussen, 2006)

k(f , f ′) = k (R) , R = |f − f ′|
2
. (16)

These kernels can be written as a function of G, because the

matrix of squared distances, R, can be computed from G,

Rℓ
ij =

1
Nℓ

∑Nℓ

λ=1

(

F ℓ
iλ − F ℓ

jλ

)2

= 1
Nℓ

∑Nℓ

λ=1

(

(

F ℓ
iλ

)2
− 2F ℓ

iλF
ℓ
jλ +

(

F ℓ
jλ

)2
)

= Gℓ
ii − 2Gℓ

ij +Gℓ
jj . (17)

5. Variational inference in deep kernel

processes

A key part of the motivation for developing deep kernel

processes was that the posteriors over weights in a BNN or

over features in a deep GP are extremely complex and mul-

timodal, with a large number of symmetries that are not cap-

tured by standard approximate posteriors (MacKay, 1992;

Moore, 2016; Pourzanjani et al., 2017). For instance, in the

Appendix we show that there are permutation symmetries

in the prior and posteriors over weights in BNNs (App. D.1)

and rotational symmetries in the prior and posterior over

features in deep GPs with isotropic kernels (App. D.2). The

inability to capture these symmetries in standard variational

posteriors may introduce biases in the parameters inferred

by variational inference, because the variational bound is

not uniformly tight across the state-space (Turner & Sahani,

2011). Gram matrices are invariant to permutations or ro-

tations of the features, so we can sidestep these complex

posterior symmetries by working with the Gram matrices as

the random variables in variational inference. However, vari-

ational inference in deep Wishart processes (equivalent to

DGPs Sec. 4.1 and infinite NNs with bottlenecks App. C.3)

is difficult because the approximate posterior we would like

to use, the non-central Wishart (App. E), has a probability

density function that is prohibitively costly and complex to

evaluate in the inner loop of a deep learning model (Koev

& Edelman, 2006). Instead, we consider an inverse Wishart

process prior, for which the inverse Wishart itself makes a

good choice of approximate posterior.

5.1. The deep inverse Wishart processes

By analogy with Eq. (8), we define a deep inverse Wishart

processes (DIWPs). However, the inverse Wishart process

introduces a new difficulty: that at the input layer, 1
N0

XXT

may be singular if there are more datapoints than features.

Instead of attempting to use a singular Wishart distribution

over G1, which would be complex and difficult to work with

(Bodnar & Okhrin, 2008; Bodnar et al., 2016), we instead

define an approximate posterior over the full-rank N0 ×N0

matrix, Ω, and use G1 = 1
N0

XΩXT ∈ R
P×P .

P (Ω) =W−1(δ1I, δ1+N0+1) , (18)

(with G1 = 1
N0

XΩXT , )

P
(

Gℓ∈{2...L}|Gℓ−1

)

=W−1(δℓK (Gℓ−1) , P+1+δℓ) ,

P (FL+1|GL) =
∏NL+1

λ=1 N
(

fL+1
λ ;0,K (GL)

)

,

remembering that X ∈ R
P×N0 , Gℓ ∈ R

P×P and Fℓ ∈
R

P×NL+1 .

Critically, the distributions in Eq. (18) are consistent under

marginalisation as long as δℓ is held constant (Dawid, 1981),

with P taken to be the number of input points, or equiva-

lently the size of Kℓ−1. Further, the deep inverse Wishart

process retains the interpretation as a deterministic trans-
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formation of the kernel plus noise because the expectation

is,

E [Gℓ|Gℓ−1] =
δℓK (Gℓ−1)

(P + 1 + δℓ)− (P + 1)
= K (Gℓ−1) .

(19)

The resulting inverse Wishart process does not have a di-

rect interpretation as e.g. a deep GP, but does have more

appealing properties for variational inference, as it is always

full-rank and allows independent control over the approxi-

mate posterior mean and variance. Finally, it is important to

note that Wishart and inverse Wishart distributions do not

differ as much as one might expect; the standard Wishart

and standard inverse Wishart distributions have isotropic dis-

tributions over the eigenvectors so they only differ in terms

of their distributions over eigenvalues, and these are often

quite similar, especially if we consider a Wishart model with

ResNet-like structure (App. H).

5.2. An approximate posterior for the deep inverse

Wishart process

Choosing an appropriate and effective form for variational

approximate posteriors is usually a difficult research prob-

lem. Here, we take inspiration from Ober & Aitchison

(2020) by exploiting the fact that the inverse-Wishart dis-

tribution is the conjugate prior for the covariance matrix

of a multivariate Gaussian. In particular, if we consider

an inverse-Wishart prior over Σ ∈ R
P×P with mean Σ0,

which forms the covariance of Gaussian-distributed matrix,

V ∈ R
P×P , consisting of columns vλ, then the posterior

over Σ is also inverse-Wishart,

P (Σ) =W−1(Σ; δΣ0, P+1+δ) , (20a)

P (V|Σ) =
∏NV

λ=1N (vλ;0,Σ) , (20b)

P (Σ|V) =W−1
(

δΣ0 +VVT , P+1+δ+NV

)

. (20c)

Inspired by this exact posterior that is available in simple

models, we choose the approximate posterior in our model

to be,

Q
(

Ω
)

=W−1
(

δ1I+V1V
T
1 , δ1+γ1+N0+1

)

,

(with G1 = 1
N0

XΩXT , )

Q
(

Gℓ|Gℓ−1

)

=

W−1
(

δℓK (Gℓ−1)+VℓV
T
ℓ , δℓ+γℓ+P+1

)

,

Q
(

FL+1|GL

)

=
∏NL+1

λ=1 N
(

fL+1
λ ;ΣλΛλvλ,Σλ

)

,

where Σλ =
(

K−1 (GL) +Λλ

)−1
, (21)

and where V1 is a learned N0 × N0 matrix, {Vℓ}
L
ℓ=2 are

P ×P learned matrices and γℓ are learned non-negative real

numbers. For more details about the input layer, see App. F.

At the output layer, we use the global inducing approximate

posterior for DGPs from Ober & Aitchison (2020), with

learned parameters being vectors, vλ, and positive definite

matrices, Λλ (see App. G).

In summary, the prior has parameters δℓ (which also ap-

pears in the approximate posterior), and the posterior has

parameters Vℓ and γℓ for the inverse-Wishart hidden layers,

and {vλ}
NL+1

λ=1 and {Λλ}
NL+1

λ=1 at the output. In all our ex-

periments, we optimize all five parameters {δℓ,Vℓ, γℓ}
L
ℓ=1

and ({vλ,Λλ}
NL+1

λ=1 ), and in addition, for inducing-point

methods, we also optimize a single set of “global” inducing

inputs, Xi ∈ R
Pi×N0 , which are defined only at the input

layer.

5.3. Doubly stochastic inducing-point variational

inference in deep inverse Wishart processes

For efficient inference in high-dimensional problems,

we take inspiration from the DGP literature (Salimbeni

& Deisenroth, 2017) by considering doubly-stochastic

inducing-point deep inverse Wishart processes. We begin

by decomposing all variables into inducing and training (or

test) points Xt ∈ R
Pt×N0 ,

X =

(

Xi

Xt

)

FL+1 =

(

FL+1
i

FL+1
t

)

Gℓ =

(

Gℓ
ii Gℓ

it

Gℓ
ti Gℓ

tt

)

(22)

where e.g. Gℓ
ii is Pi × Pi and Gℓ

it is Pi × Pt where Pi is

the number of inducing points, and Pt is the number of

testing/training points. Note that Ω does not decompose as

it is N0 ×N0. The full ELBO including latent variables for

all the inducing and training points is,

L=E

[

log P (Y|FL+1)+log
P
(

Ω, {Gℓ}
L
ℓ=2,FL+1|X

)

Q
(

Ω, {Gℓ}Lℓ=2,FL+1|X
)

]

(23)

where the expectation is taken over

Q
(

Ω, {Gℓ}
L
ℓ=2,FL+1|X

)

. The prior is given by

combining all terms in Eq. (18) for both inducing and

test/train inputs,

P
(

Ω, {Gℓ}
L
ℓ=2,FL+1|X

)

=

P (Ω)
[

∏L
ℓ=2 P (Gℓ|Gℓ−1)

]

P (FL+1|GL) , (24)

where the X-dependence enters on the right because G1 =
1
N0

XΩXT . Taking inspiration from Salimbeni & Deisen-

roth (2017), the full approximate posterior is the product

of an approximate posterior over inducing points and the

conditional prior for train/test points,

Q
(

Ω, {Gℓ}
L
ℓ=2,FL+1|X

)

= (25)

Q
(

Ω, {Gℓ
ii}

L
ℓ=2,F

L+1
i |Xi

)

P
(

{Gℓ
it}

L
ℓ=2, {G

ℓ
tt}

L
ℓ=2,F

L+1
t |Ω, {Gℓ

ii}
L
ℓ=2,F

L+1
i ,X

)
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and the prior can be written in the same form,

P
(

Ω, {Gℓ}
L
ℓ=2,FL+1|X

)

= (26)

P
(

Ω, {Gℓ
ii}

L
ℓ=2,F

L+1
i |Xi

)

P
(

{Gℓ
it}

L
ℓ=2, {G

ℓ
tt}

L
ℓ=2,F

L+1
t |Ω, {Gℓ

ii}
L
ℓ=2,F

L+1
i ,X

)

To obtain the full ELBO, we substitute Eqs. (25) and (26)

into Eq.(23), the conditional prior terms cancel,

L=E

[

log P (Y|FL+1)+log
P
(

Ω, {Gℓ
ii}

L
ℓ=2,FL+1|X

)

Q
(

Ω, {Gℓ
ii}

L
ℓ=2,FL+1|X

)

]

(27)

where,

P
(

Ω,{Gℓ
ii}

L
ℓ=2,F

L+1
i |Xi

)

= (28)

P (Ω)
[

∏L
ℓ=2 P

(

Gℓ
ii|G

ℓ−1
ii

)

]

P
(

FL+1
i |GL

ii

)

,

Q
(

Ω,{Gℓ
ii}

L
ℓ=2,F

L+1
i |Xi

)

= (29)

Q (Ω)
[

∏L
ℓ=2 Q

(

Gℓ
ii|G

ℓ−1
ii

)

]

Q
(

FL+1
i |GL

ii

)

.

Importantly, the first term in the ELBO (Eq. 27 is a sum-

mation across test/train datapoints, and the second term

depends only on the inducing points, so as in Salimbeni &

Deisenroth (2017) we can compute unbiased estimates of

the expectation by taking only a minibatch of datapoints,

and we never need to compute the density of the conditional

prior (Eq. 30), we only need to be able to sample it.

Finally, to sample the test/training points, conditioned on

the inducing points, we need to sample,

P
(

{Gℓ
it,G

ℓ
tt}

L
ℓ=2,F

L+1
t |Ω, {Gℓ

ii}
L
ℓ=2,F

L+1
i ,X

)

=

P
(

FL+1
t |FL+1

i ,GL

)
∏L

ℓ=2 P
(

Gℓ
it,G

ℓ
tt|G

ℓ
ii,Gℓ−1

)

.
(30)

The first distribution, P
(

FL+1
t |FL+1

i ,GL

)

, is a multivari-

ate Gaussian, and can be evaluated using methods from

the GP literature (Williams & Rasmussen, 2006; Salimbeni

& Deisenroth, 2017). The difficulties arise for the inverse

Wishart terms, P
(

Gℓ
it,G

ℓ
tt|G

ℓ
ii,Gℓ−1

)

. To sample this dis-

tribution, note that samples from the joint over inducing and

train/test locations can be written,
(

Gℓ
ii Gℓ

it

Gℓ
ti Gℓ

tt

)

∼ W−1

((

Ψii Ψit

Ψti Ψtt

)

, δℓ + Pi + Pt + 1

)

,

(

Ψii Ψit

Ψti Ψtt

)

= δℓK (Gℓ−1) , (31)

and where Pi is the number of inducing inputs, and Pt is

the number of train/test inputs. Defining the Schur comple-

ments,

Gℓ
tt·i = Gℓ

tt −Gℓ
ti

(

Gℓ
ii

)−1
Gℓ

it, (32)

Ψtt·i = Ψtt −ΨtiΨ
−1
ii Ψit. (33)

We know that Gℓ
tt·i and

(

Gℓ
ii

)−1
Gℓ

it have distribution,

(Eaton, 1983)

Gℓ
tt·i

∣

∣Gℓ
ii,Gℓ−1 ∼

W−1(Ψtt·i, δℓ+Pi+Pt+1) , (34a)

Gℓ
it

∣

∣Gℓ
tt·i,G

ℓ
ii,Gℓ−1 ∼

MN
(

Gℓ
iiΨ

−1
ii Ψit,G

ℓ
iiΨ

−1
ii Gℓ

ii,G
ℓ
tt·i

)

, (34b)

whereMN is the matrix normal. Now, Gℓ
it and Gℓ

tt, can be

recovered by algebraic manipulation. Finally, because of the

doubly stochastic form for the objective, we do not need to

sample multiple of jointly consistent samples for test points;

instead, (and as in DGPs Salimbeni & Deisenroth, 2017) we

can independently sample each test point (App. I), which

dramatically reduces computational complexity.

The full algorithm is given in Alg. 1, where the P and Q
distributions for Ω and for inducing points are given by

Eq. (18) and (21). We optimize using standard reparam-

eterised variational inference (Kingma & Welling, 2013;

Rezende et al., 2014) (for details on how to reparameterise

samples from the Wishart, see Ober & Aitchison, 2020).

6. Computational complexity

As in non-deep GPs, the complexity is O(P 3) for time

and O(P 2) for space for standard DKPs (the O(P 3) time

dependencies emerge e.g. because of inverses and determi-

nants required for the inverse Wishart distributions). For

DSVI, there is a P 3
i time and P 2

i space term for the induc-

ing points, because the computations for inducing points

are exactly the same as in the non-DSVI case. As we can

treat each test/train point independently (App. I), the com-

plexity for test/training points must scale linearly with Pt,

and this term has P 2
i time scaling, e.g. due to the matrix

products in Eq. (32). Thus, the overall complexity for DSVI

is O(P 3
i + P 2

i Pt) for time and O(P 2
i + PiPt) for space

which is exactly the same as non-deep inducing GPs. Thus,

and exactly as in non-deep inducing-GPs, by using a small

number of inducing points, we are able to convert a cu-

bic dependence on the number of input points into a linear

dependence, which gives considerably better scaling.

Surprisingly, this is substantially better than standard DGPs.

In standard DGPs, we allow the approximate posterior co-

variance for each feature to differ (Salimbeni & Deisen-

roth, 2017), in which case, we are in essence doing stan-

dard inducing-GP inference over N hidden features, which

gives complexity of O(NP 3
i + NP 2

i Pt) for time and

O(NP 2
i + NPiPt) for space (Salimbeni & Deisenroth,

2017). It is possible to improve this complexity by restrict-

ing the approximate posterior to have the same covariance

for each point (but this restriction harms performance).
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Algorithm 1 Computing predictions/ELBO for one batch

P parameters: {δℓ}
L
ℓ=1.

Q parameters: {Vℓ, γℓ}
L
ℓ=1, ({vλ,Λλ}

NL+1

λ=1 ),Xi.

Inputs: Xt; Targets: Y

combine inducing and test/train inputs

X =
(

Xi Xt

)

sample first Gram matrix and update ELBO

Ω ∼ Q (Ω)
L = log P (Ω)− logQ (Ω)
G1 = 1

N0
XΩXT

for ℓ in {2, . . . , L} do

sample inducing Gram matrix and update ELBO

Gℓ
ii ∼ Q

(

Gℓ
ii|G

ℓ−1
ii

)

L ← L+ log P
(

Gℓ
ii|G

ℓ−1
ii

)

− logQ
(

Gℓ
ii|G

ℓ−1
ii

)

sample full Gram matrix from conditional prior

Ψ = δℓK(Gℓ−1)
Ψtt·i = Ψtt −ΨtiΨ

−1
ii Ψit

Gℓ
tt·i ∼ W

(

Ψℓ
tt·i, δℓ+Pi+Pt+1

)

Gℓ
it ∼MN

(

Gℓ
iiΨ

−1
ii Ψit,G

ℓ
iiΨ

−1
ii Gℓ

ii,G
ℓ
tt·i

)

Gℓ
tt = Gℓ

tt·i +ΨtiΨ
−1
ii Ψit.

Gℓ =

(

Gℓ
ii Gℓ

it

Gℓ
ti Gℓ

tt

)

end for

sample GP inducing outputs and update ELBO

FL+1
i ∼ Q

(

FL+1
i |GL

ii

)

L ← L+ log P
(

FL+1
i |GL

ii

)

− logQ
(

FL+1
i |GL

ii

)

sample GP predictions conditioned on inducing points

FL+1
t ∼ Q

(

FL+1
t |GL,FL+1

i

)

add likelihood to ELBO

L ← L+ log P
(

Y|FL+1
t

)

7. Results

We began by comparing the performance of our deep inverse

Wishart process (DIWP) against infinite Bayesian neural

networks (known as the neural network Gaussian process or

NNGP) and DGPs. To ensure sensible comparisons against

the NNGP, we used a ReLU kernel in all models (Cho &

Saul, 2009). For all models, we used three layers (two

hidden layers and one output layer), with three applications

of the kernel. In each case, we used a learned bias and

scale for each input feature, and trained for 8000 gradient

steps with the Adam optimizer with 100 inducing points, a

learning rate of 10−2 for the first 4000 steps and 10−3 for

the final 4000 steps. For evaluation, we used approximate

posterior 100 samples, and for each training step we used

10 approximate posterior samples in the smaller datasets

(boston, concrete, energy, wine, yacht), and 1 in the larger

datasets.

We found that DIWP usually gives better predictive perfor-

mance and (and when it does not, the differences are very

small; Table 1). We expected DIWP to be better than (or the

same as) the NNGP as the NNGP was a special case of our

DIWP (sending δℓ →∞ sends the variance of the inverse

Wishart to zero, so the model becomes equivalent to the

NNGP). We found that the DGP performs poorly in com-

parison to DIWP and NNGPs, and even to past baselines on

all datasets except protein (which is by far the largest). This

is because we used a plain feedforward architecture for all

models. In contrast, Salimbeni & Deisenroth (2017) found

that good performance (or even convergence) with DGPs

on UCI datasets required a complex GP-prior inspired by

skip connections. Here, we used simple feedforward ar-

chitectures, both to ensure a fair comparison to the other

models, and to avoid the need for an architecture search. In

addition, the inverse Wishart process is implicitly able to

learn the network “width”, δℓ, whereas in the DGPs, the

width is fixed to be equal to the number of input features,

following standard practice in the literature (e.g. Salimbeni

& Deisenroth, 2017).

Next, we considered fully-connected networks for small im-

age classification datasets (MNIST and CIFAR-10; Table 2).

We used the same models as in the previous section, with

the omission of learned bias and scaling of the inputs. Note

that we do not expect these methods to perform well relative

to standard methods (e.g. CNNs) for these datasets, as we

are using fully-connected networks with only 100 inducing

points (whereas e.g. work in the NNGP literature uses the

full 60, 000× 60, 000 covariance matrix). Nonetheless, as

the architectures are carefully matched, it provides another

opportunity to compare the performance of DIWPs, NNGPs

and DGPs. Again, we found that DIWP usually gave statis-

tically significant gains in predictive performance (except

for CIFAR-10 test-log-likelihood, where DIWP lagged by

only 0.01). Importantly, DIWP gives very large improve-

ments in the ELBO, with gains of 0.09 against DGPs for

MNIST and 0.08 for CIFAR-10 (Table 2). For MNIST, re-

member that the ELBO must be negative (because both the

log-likelihood for classification and the KL-divergence term

give negative contributions), so the change from −0.301 to

−0.214 represents a dramatic improvement.

8. Related work

Our first contribution was the observation that DGPs with

isotropic kernels can be written as deep Wishart processes

as the kernel depends only on the Gram matrix. We then

gave similar observations for neural networks (App. C.1), in-

finite neural networks (App. C.2) and infinite network with

bottlenecks (App. C.3, also see Aitchison, 2019). These ob-

servations motivated us to consider the deep inverse Wishart

process prior, which is a novel combination of two pre-

existing elements: nonlinear transformations of the kernel

(e.g. Cho & Saul, 2009) and inverse Wishart priors over ker-

nels (e.g. Shah et al., 2014). Deep nonlinear transformations
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Table 1. Performance measured as predictive log-likelihood for a three-layer (two hidden layer) DGP, NNGP and DIWP on UCI benchmark

tasks. We have consider relu and squared exponential kernels. Errors are quoted as two standard errors in the difference between that

method and the best performing method, as in a paired t-test. This is to account for the shared variability that arises due to the use of

different test/train splits in the data (20 splits for all but protein, where 5 splits are used Gal & Ghahramani, 2015) some splits are harder

for all models, and some splits are easier. Because we consider these differences, errors for the best measure are implicitly included in

errors for other measures, and we cannot provide a comparable error for the best method itself.

kernel dataset DGP NNGP DIWP

boston −3.44± 0.13 −2.46± 0.03 −2.40
concrete −3.20± 0.03 −3.13± 0.03 −3.04
energy −0.90± 0.05 −0.71 −0.71± 0.01
kin8nm 1.05± 0.01 1.10 1.09± 0.00

relu naval 2.80± 0.14 5.74± 0.14 5.95
power −2.85± 0.01 −2.83± 0.00 −2.81
protein −2.80 −2.88± 0.01 −2.81± 0.01
wine −1.18± 0.03 −0.96± 0.01 −0.95
yacht −2.45± 0.49 −0.77± 0.07 −0.64

boston −3.63± 0.09 −2.48± 0.04 −2.40
concrete −4.22± 0.05 −3.13± 0.03 −3.08
energy −3.73± 0.06 −0.70 −0.70± 0.01
kin8nm −0.09± 0.01 1.04 1.01± 0.02

sq. exp. naval 2.80± 0.12 5.96 5.92± 0.27
power −2.84± 0.01 −2.80± 0.01 −2.78
protein −3.23± 0.01 −2.88± 0.01 −2.74
wine −1.22± 0.02 −0.96 −1.00± 0.01
yacht −4.12± 0.14 −0.50± 0.13 −0.39

Table 2. Performance in terms of ELBO test log-likelihood and test accuracy for fully-connected three-layer (two hidden layer) DGPs,

NNGP and DIWP on MNIST and CIFAR-10.

metric dataset DGP NNGP DIWP

ELBO MNIST −0.301± 0.001 −0.268± 0.001 −0.198± 0.000
CIFAR-10 −1.735± 0.002 −1.719± 0.001 −1.606± 0.001

test LL MNIST −0.130± 0.001 −0.134± 0.002 −0.089± 0.001
CIFAR-10 −1.516± 0.002 −1.539± 0.002 −1.433± 0.004

test acc. MNIST 96.5± 0.1% 96.5± 0.0% 97.7± 0.0%
CIFAR-10 46.8± 0.1% 47.4± 0.1% 50.5± 0.1%

of the kernel have been used in the infinite neural network

literature (Lee et al., 2017; Matthews et al., 2018) where

they form deterministic, parameter-free kernels that do not

have any flexibility in the lower-layers (Aitchison, 2019).

Likewise, inverse-Wishart distributions have been suggested

as priors over covariance matrices (Shah et al., 2014), but

they considered a model without nonlinear transformations

of the kernel. Surprisingly, without these nonlinear trans-

formations, the inverse Wishart prior becomes equivalent to

simply scaling the covariance with a scalar random variable

(App. L; Shah et al., 2014).

In addition, there are generalised Wishart processes (Wilson

& Ghahramani, 2010, contrasting with our deep Wishart

processes). While the term “generalised Wishart process”

is not yet in widespread use, it allows us to make a dis-

tinction that is very useful in our context. In particular, a

generalised Wishart process is a distribution over infinitely

many finite-dimensional marginally Wishart matrices. For

instance, these might represent the noise in a dynamical

system. In that case, there would in principle be infinitely

covariance matrices, one for each state-space location or

time-point (Wilson & Ghahramani, 2010; Heaukulani &

van der Wilk, 2019; Jorgensen et al., 2020). In contrast,

kernel processes (Dawid, 1981; Bru, 1991) are distributions

over a single infinite dimensional matrix. We stack these

kernel process to form a (non-genearlised) deep kernel pro-
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cess. Importantly, generalised Wishart priors are actually

quite inflexible. They are not capable of capturing a DKP

prior because in a generalised Wishart process, the Wishart

matrices are generated from underlying features, and these

features are jointly multivariate Gaussian at all locations

(Sec. 4 in Wilson & Ghahramani, 2010) and therefore lack

the required nonlinearities between layers. In addition, in-

ference is also very different. In particular, inference for the

generalised Wishart is generally performed on the under-

lying multivariate Gaussian feature vectors (Eq. 1 e.g. Eq.

15-18 in Wilson & Ghahramani 2010, Eq. 12 in Heaukulani

& van der Wilk 2019 or Eq. 24 in Jorgensen et al. 2020).

Unfortunately, variational approximate posteriors defined

over multivariate Gaussian feature vectors fail to capture

symmetries in the true posterior (Eq. 14). In contrast, we

define approximate posteriors directly over the symmetric

positive semi-definite Gram matrices themselves, which re-

quired us to develop new, more flexible distributions over

these matrices.

Further linear (inverse) Wishart processes have been used

in the financial domain to model how the volatility of asset

prices changes over time (Philipov & Glickman, 2006b;a;

Asai & McAleer, 2009; Gourieroux & Sufana, 2010; Wilson

& Ghahramani, 2010; Heaukulani & van der Wilk, 2019).

Importantly, inference in these dynamical (inverse) Wishart

processes is often performed by assuming fixed, integer de-

grees of freedom, and working with underlying Gaussian

distributed features. This approach allows one to leverage

standard GP techniques (e.g. Kandemir & Hamprecht, 2015;

Heaukulani & van der Wilk, 2019), but it is not possible to

optimize the degrees of freedom and the posterior over these

features usually has rotational symmetries (App. D.2) that

are not captured by standard variational posteriors. In con-

trast, we give a novel doubly-stochastic variational inducing

point inference method that operates purely on Gram matri-

ces and thus avoids needing to capture these symmetries.

9. Conclusions

We proposed deep kernel processes which combine non-

linear transformations of the Gram matrix with sampling

from matrix-variate distributions such as the inverse Wishart.

We showed that DGPs, BNNs (App. C.1), infinite BNNs

(App. C.2) and infinite BNNs with bottlenecks (App. C.3)

are all instances of DKPs. We defined a new family of

deep inverse Wishart processes, and give a novel doubly-

stochastic inducing point variational inference scheme that

works purely in the space of Gram matrices. DIWP per-

formed better than fully connected NNGPs and DGPs on

UCI, MNIST and CIFAR-10 benchmarks.
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