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Abstract

This document provides supplementary material,
including proof of theorem and statements in the
main text.

1. Preliminaries

For simplicity, we review some preliminaries described in
the paper.

Definition 1 (Generalization Error). Given a training set S
and staring with a set of random indices R of samples in S,
the generalization error of the output model fg’R, trained by
SGD, is defined as the difference between the empirical risk
and true risk, i.e. E(S,R) = Rtrue(ng) - Renlp(ng).
It should be noted that due to the randomness of S and R,
fg,’/z and consequently E(S,R) are random variable.

Definition 2 (Lipschitzness). A loss function ((y,y) is -
Lipschitz with regard to the estimated output vector ¥, if for
v > 0and Vu,v € RE we have

[f(u,y) = £(v,y)| <~flu—vl, (1

where || - || denotes the {s-norm of vectors. Intuitively, a
Lipschitz loss function is upper-bounded in terms of its rate
of change.

Definition 3 (Smoothness). A loss function ((y,y) is 7-
smooth with regard to the estimated output vectory, if its
gradient VU(y,y) is n-Lipschitz, that is for n > 0 and
Yu, v € R¥ we have

[Ve(u,y) — Vi(v,y)|l < nllu—v]|. )

Intuitively, the curvature of the loss function is upper-
bounded by the n-smoothness property.
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Definition 4 (Bounded Difference Inequality (BDI)). Let Z
be some set and G : Z™ — R be any measurable function.
Consider two sets Q, Q' € Z", such that Q and Q' differ in
at most one element. If there exists constant p such that the
following condition, namely bounded difference condition
(BDC),

sup  |G(Q) — G(Q)| < p, )
Q,Q’ezZn

holds, then Ve > 0
Po[G(Q) —Eo[G(Q)] > €] < exp(—2¢*/np®).  (4)

Definition 5 (Uniform Stability). Let S’ and S denote two
training sets of equal size, following an unknown distribu-
tion P, such that S and S’ vary in one entity. Let fs g and
fs' r be the optimal models obtained by SGD, with the set
of random indices R of the training samples in S and S’,
respectively. SGD is then B-uniformly stable with regard to
a certain loss function ¥, if the following inequality holds:

VS, S supEr[|l(fsr;z) —Ufsm;2)|] <B, (5)

where the expectation is taken over the randomness of SGD
which is a function of the random choice of data S for
training.

2. Proofs

Theorem 1. Let function h : (0,00) — R be convex, such
that h(1) = 0. Let’s define the following function:

K N
I(y,y) =Y uh (z—’z) : ©)
k=1

If h(+) is y-Lipschitz, i.e.

Ih(2) = h(z)| < Ale — 2| Va,z, @)

then 1(y,y) is also ~y-Lipschitz. Furthermore, since h(-)
is convex, 1(y,y) is also convex with regard to its first
argument.

Proof. Letx = “= and z = 2. Then, from (7)), we have
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Multiplying both sides of (8) by yi, and then employ-
ing summation on all the obtained inequalities for all
ke {1,--- L}, we obtain

K
Uk Vk
z:mh()—yw()‘SVE:Wk—wﬁ ©)
Yk Yk =1

k=1
Using the generalised triangle inequality, we get
K U K v
k k
> e (1) -3 (1))
st Yk o Yk
u v X
E E
ykh () — yxh <)‘ < ug — vk -
Yk Yk K Z | |

Finally, we obtain
\I(u7y)71’(v,y)|§'yHu7VH‘ (11)
and the Lipschitz property of I(y,y) is proved.

We now prove that the convexity of h(-) implies the con-
vexity of I(§,y) with respect to its first argument. Let
u,v € ) be two probability distributions with all values
nonzero and ¢ € [0.1]. Then we have

K

It + (1 - tu,y) = Zykh(

tup + (1 — t)vk>
k=1

Yk
(12)

Due to the convexity of h, we have Vk € {1,--- , K’}

h (t“’“ +0- t)”’“) < th (“’“) +(1-t)h (“’“) .
Yk Yk Yk
(13)

Summing over k from 1 to K and utilizing we get
Itu+ (1 =thuy) <tl(w,y)+ (1 -t)I(v,y) (14)
proving the desired result. |

Lemma 1. A function h : (0,00) — R is y-Lipschitz, if vy
satisfies the following condition:

v = sup|h/(z)]. (15)

This implies the value of -y must be equal to the maximum

value of |W'(z)|.
Proof. This lemma can be easily derived from the definition
of Lipschitz property. ]

Corollary 1. Let the GIM and KL loss functions are g jps-
Lipschitz and g ,-Lipschitz, respectively. Then, the follow-
ing inequality holds:

Yaim < YKL (16)

Proof. As hgr(x) = —log(z),z > 0, then obviously
lir(y,y) = I(y,y). Itis also obvious that if hg s (z) =
|1 —z%a,z > 0, then £g (¥, y) = I(§,y). Then, we
have

1
hgr(e) = —— (17)
T
and
/ . [ a—1| « 1o
hara () =sign(z® — 1)z |z = 1| = . (18)

Fig.|l|shows the absolute value of the derivative for the KL
and GJM loss functions as a function of . As can be seen
\hg yar (@) is smaller than | (2)]. From Lemmall] this
implies the inequality in (T6) holds. We also theoretically
prove that |hg j 5, (2)| < |Pp (z)| for o = 0.5, ie.

19)

(19) is equivalent to |z — /x| < 1, which results in x < 2.6
after some mathematical simplification. We experimentally
found that the variable = always satisfies this condition
when the model starts to converge. Note that |hg ()]
and |h (z)| meet each other at some point. For in-
stance, for « = 0.2,0.4,0.5, 0.8, the intersection point is
zp = 22.06,3.75,2.61, 1.42 respectively. After this point,
|hiyas ()] starts to be slightly larger than |/, (x)], but,
the difference in this area is very small and negligible com-
pared with the points smaller than the intersection point. In
addition, since the large values of x usually occur at the
beginning of training (first few epoch), the stability of both
GJIM and KL are close to each other. This can be seen in
Fig. 2 (min paper), where the curves of KL and GJM are
close to each other. However, when training continues GJIM
has better stability, and so better generalization, than KL.

Theorem 2. For two distribution v,y € RX, the GIM
loss function with o = 0.5 is upper-bounded by the KL
divergence, i.e. we have the following inequality:

Laim(y,y) <Lrn(Y,y). (20)

Proof. The use of binomial theorem and Jensen’s inequality
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Figure 1. Absolute value of derivative of loss functions at different
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where inequalities a and b are due to the Binomial theo-
rem and the Jensen’s inequality, respectively. Note that
lkr(y,y) € [0,00) (Gibbs & Su, 2002). The use of
Bernoulli’s inequality exp(z) > 1 4 x gives

Lo (3,y) < (1 — exp(—alir(§,y)) ™

S 1-— eXP(*OégKL()A’aY)) S EKL(yay)v
(22)

and the inequality is proved. |

Theorem 3. Consider a loss function £ : Y x Y — [0, L].
Let fs r denote the optimal model obtained by SGD with
the set of random indices R of the training samples in S.
Let SGD be S-uniformly stable with regard to the employed
loss function £. Furthermore, assume there is a constant p

forwhich ((fs r,2) satisfies the bounded difference condi-
tion (B) with respect to R. Then, with probability at least
1 — 6, the following bounds hold VS, R:

Rtrue(fS,R) - Remp(fS,'R) S
log(2/6)

p\/Tlog(2/6) + B (1 n «/2Nlog(2/6)) + Ly B

(23)

Proof. Let E(S,R) = Rivue(fsr) — Remp(fs,r), be a
random variable depending on & and R. Let fs and
fs, =’ be two output models using the learning algorithm A
applied on the training set S with the two sets of random
parameters R and R/, respectively. We apply the BDI (@)
by considering function G and set () as ¢(fs r;z) and R,
respectively. Assume R and R’ differ only in two elementﬂ
Note the BDI cannot be applied directly in this case. So we
partition each R and R’ in two subsets R1, Rz and R}, R
such that the corresponding subsets, i.e. R1, R} and Ra, RY
differ only in one element. Using the bounded difference
conditions (3)), there would be a constant p = max(p1, p2)
such that for every z and S, we have the following bounded
difference conditions with respect to ¢:

sup |l(fs.r,i2) —Ufsrisz)|<p (24
R1,R)
and
sup |U(fsraiz) —Ufsryiz)| <p,  (25)
R2,R)

"Recall that R is a set of random indices in S. So, if R and
R’ differ in one element, unavoidably R and R’ would differ in
another element as well.
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Then, for every S, R1, R}, we have

|E(S,R1) — E(S,RY)|
Eznp [((fs,R1:2)]

— Eup [((f5,R152)]

1 1 &
N D U fsriiz) + i > Ufsry; )
=1 =1

<E,wp { [0(fsri2) — E(fs,n;;z)@

XN
+ N ; |£(f577€1§zi) - f(fs,R;;Zi)|

< 2p.
(26)

Applying the BDI (4)) results in the following inequality

Pr, [E(S,R1)—Eg, [E(S,R1)] > €] < exp(—€*/2Tp?).

27)

Following the same lines for Rq, RY, the following inequal-

ity also holds

PR, [E(S, Ra)—Er, [E(S,R2)] > €] < exp(—e/2Tp?).

(28)
By combining the above two inequalities, we obtain:

P [E(S,R) — Er [E(S,R)] > ] < exp(—/Tp?).
(29)
By setting the r.h.s. equal to v, the following inequality
holds with probability at least 1 — v:

E(S.R) < p/Tlog(1/v) + Ex [ES.R)].  (30)

To bound the random variable E (S, R), we now provide the
upper bound for Ex [E(S, R)]. To this end, we again apply
the BDI (@) for function G and set @ being Ex [E(S, R)]
and set of training samples S, respectively. Note that, in
this case, the bounded difference condition (3)) equals the
uniform stability (3)), so p = (. Let fsz and fs/ r be
the two output models using the learning algorithm .4 with
the set of random parameters R applied on two training
sets S, &', respectively. Assume S, S’ differ only in j-th

element. For every S, S’, R, we have

'ER (E(S,R)| - Ex [E(S, R)] |

N
Er lEsz [0(fsri2z)] — ]tzf(fs,n;zi)l

N
-Er lEZND [U(fs'r;2)] — Jivzﬁ(fS',R;Zi)] ‘

E,wp |:ER [0(fsr;2) — Ufs R; Z)]}
1 N

~~ D Er[l(fsriz) — ((fsriz)] ’
=1

<E;up [ER“E(JCS,R?Z) —U(fs'r;2)| ]}

a

Er[|0(fsr;2:) — U(fs' R 2:)]|]

b

€Y

where the terms (@) and (b) are upper bounded by 3 using
the definition of uniform stability. Therefore, we have

L
sup |Eg [E(S,R)] - Ex [E(S",R)]| <28+ —.
S,S'€RN N
(32)
Applying the BDI (4)) results in the following inequality

Ps [ER [E(S7 R)] - ES,R [E(Sa R)} 2 6}

< exp(—2Ne?/(2NB + L)?).
(33)

By setting the r.h.s. equal to v, the following inequality
holds with probability at least 1 — v:

(2NB + L)+/log(1/v)
+Esr [E(S,R)].
vy (34

Now, we provide the upper bound for Es » [E(S, R)]. De-
note by 7 = {t;,s = 1,2,--- N}, a set of N training
samples that are independent from S and are drawn from
an unknown distribution D. Denote S’ the set obtained by
replacing the i-th sample in the set S with i-th sample from

Er [E(S,R)] <
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the set 7.

]ES,R [E(S7 R)]
=Esr lEZND [0(fsr;2)]

=Esr [EZ~D[ (fsr;z ]]

N

—ESTR[;,Z (fs,rits ]
N -
JFES,T,R[ Z (fs,rits ]

1 N
~ D s, 3%’)]

=Esr |:Ez~D [U(fs,R; Z)]]

—Esr

—Esr |:Et~D [(fs,r; t)ﬂ

==
e

+Es 7R [ f(fs,n;ti)l

i=1

2=
1=

—Es7Rr l Ufs r; ti)]

=1

N
:E$7T7R [ Z fS Rr;t ‘|
~Es 7R []1, > Ufsr; ti)]
LN
=Es 1 r lNz (fsrit E(fS’,RQti))]
=1

< 561;}) Er[|(fsr;2) = {(fs r:2)|] < B.

(35)

The last line is derived from the uniform stability defini-
tion (3)) and amounts to changing t to z. By combining (30),
and , the following inequality holds with probabil-
ity at least 1 — 2v.

E(S,R)
< p/Tlog(1/0) + (1 + 2N 10g(1/1/)> 4L
(36)
The results follows by setting 6 = 2v. ]

Theorem 4. Assume that SGD is run for T iterations with
an annealing learning rate )\; to find the optimal solution.
Let ((f%(x),y) be convex, y-Lipschitz and n-smooth with

log(1/1)

regard to its first argument for each z = (x,y). Then SGD
is B-uniformly stable and holds the p-BDC @)) with regard
to {(fsr,z) and R. Consequently, we have

T

292 4°
SW; and pSTZAt. (37)

Proof. We first prove the first inequality which is similar
to (Hardt et al.| [2016)[Theorem 3.7]. We include the proof
here for the sake of completeness. Then we show how to
prove the second inequality. For the sake of simplicity of
notation, we represent the output model f& 5 as 0s % in
this proof. We will omit S, R when it is clear from the
context. Given a learning rate A > 0 and a training set S,
SGD performs the gradient descent update rule, defined as
G(0) = 6—A\Vl(0;2), T steps over all samples in S. Here,
sample z is randomly picked from S. Assume the gradient
update G is T-expansive, i.e. SUP,, ,e3 ||W <r,
and o-bounded, i.e. supgcy |0 — G(0)|| < o. Since
((f°(x),y) = (< 6,x >,y) is convex, 7-Lipschitz
and n-smooth with respect to its first argument for ev-
ery z = (x,y), we have |0 — G(0)| < A||Vel(0;2)] =
A|Vel(< 6,x >,y)|| < Avy. Therefore the update rule is
A\y-bounded.

Let 6%,---0% and 6%,,--- 0%, be two sequences of out-
put models resulting respectively from performing two
sequences of the gradient updates G(6%),-- G(6%) and
G(0%),--- G(0%,) applied to two training sets S,S’. As-
sume sets S, S’ differ only in one element and the initial-
isation weights 6% = 0%,. Let A" = ||0% — 6%,||. The
proof is based on the growth recursion concept (Hardt et al.
2016)[Lemma 2.4] which investigates how two distinct se-
quences of update rules applied to a deep neural model
diverge when they start from the same initialisation point
and the training set is perturbed at each step. For simplicity,
we recall here the growth recursion result.

Growth recursion rule. (Hardt et al.} 2016)[Lemma 2.4]
There exists the following relation recurrence between A1
and At:

o If G(0%) and G(0%,) are equal and T-expansive, then
AHHL < A

» G(0%) and G(0%,) are o-bounded and T-expansive,
then AT < min(7, 1)A? + 20,

2N Ateach step ¢, there are two cases when two samples z and

z' are picked by SGD from S and S’ respectively: 1) z and
z' are the same with probability 1 — 1/N, which implies
G% = G%,, 2) z and 7’ are different with probability 1/N.
Further, if the loss function is smooth and convex and the
learning rate \; is small enough, it is proved that the gradient
update rule Gfg is 1-expansive (Hardt et al.,|2016). Beside
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that, as mentioned before, G is \y-bounded. Applying the
growth recursion rule results:

1 1 2y
t+1 . t t
AP < (1 >A + A+ L @38)

N
Considering this inequality recursively through all steps, we
obtain

27y d
T
<32
t=1

Using (38) and the fact that the loss function £( f(x),y) =

¢(< 0,x >,y) is y-Lipschitz with respect to its first argu-
ment, the following inequality is obtained for any z, S, S’:

(39)

Er | 605 552) 065, 5:2) |

<AER [||< 055, x> — < 0% g, x >||]

T
< 1B |t ~ 0% =|] = vE= [A7] s%z

(0)

where the expectation is taken over randomness of the SGD
algorithm, which appears in the random set R. Without
loss of generality, we assume ||x|| < 1 in the last inequality.
The inequality (#0) implies the uniform stability (3), which
renders the desired inequality.

Now, we derive the second inequality. The proof follows the
same reasoning as that used for deriving the first inequal-
ity, except that the sequences of the update rule relate to
R,R’. Let 0%, ---0% and 6L, - - - 6%, be two sequences of
output models resulting respectively from performing two
sequences of the gradient updates G(6%), - G(0%) and
G(0%.),--- G(0%,) applied to the training sets S with two
different random sets R, R’. Assume sets R, R’ differ only
at two element and the initialisation weights 6% = 62,. Let
Al = ||0% — 6%, ||. At each step ¢, there are two cases when
two samples z and z’ are picked by SGD by the permutation
order in R and R’ respectively: 1) z and z’ are the same
with probability 1 — 2/N, which implies G%, = G%,,2) z
and z’ are different with probability 2/N. Following the
same chain of equations (38)-@0) results in:

0(05 r;2) — £(05 13 2)|
< U< 05 . x >,y)) — U< 05z x> y))|

|
2 T

= ’}/AT S 4%2)%,
t=1

(41)

<< 0, x>— <05 p,x>

<~ H9§R - 9;72'

The inequality (@) implies the desired inequality. [ |

Theorem 5. Consider a loss function ¢ such that 0 <
¢(f(-;2) < L for any point z. Suppose that the SGD update
rule is executed for T iterations with an annealing learning
rate \y. Then, we have the following generalization error
bound with probability at least 1 — §:

Rtrue(fS,R) - Remp(fS‘R) S L %

42)
ZWQZA (\/log 2/5)+\/210g}5[2/5)+;]>.

Proof. These inequality immediately follows from combin-
ing Theorem [3]and Theorem [] |

Corollary 2. Consider two models f§5M and f gé trained
under the same settings using the GJM and KL loss func-
tions, respectively, using the training set, S. We have the
following inequality:

E(fSRY) < Ecn(f&%), (43)

where E(fs r) = Riye(fs,r) — R

emp (f S,R)-

Proof. These inequalities immediately follow from Corol-
lary [T and Theorem [2] From Corollary [T while 7" and
N are fixed, the second term is always smaller for GJM.
From Theorem[2] ¢ yn < 1. This implies that Ly <
logm. [ ]
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