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Abstract
Deep learning empirically achieves high perfor-
mance in many applications, but its training dy-
namics has not been fully understood theoreti-
cally. In this paper, we explore theoretical analy-
sis on training two-layer ReLU neural networks
in a teacher-student regression model, in which
a student network learns an unknown teacher
network through its outputs. We show that
with a specific regularization and sufficient over-
parameterization, the student network can identify
the parameters of the teacher network with high
probability via gradient descent with a norm de-
pendent stepsize even though the objective func-
tion is highly non-convex. The key theoretical
tool is the measure representation of the neural
networks and a novel application of a dual certifi-
cate argument for sparse estimation on a measure
space. We analyze the global minima and global
convergence property in the measure space.

1. Introduction
Deep learning empirically achieves high performance in
many applications, such as computer vision and speech
recognition. To explain its success from the theoretical view
point, we need to reveal its optimization dynamics and the
generalization ability of the solution that is obtained by a
particular optimization method such as gradient descent.
However, its training dynamics has not been fully under-
stood theoretically and thus the generalization ability of the
solution is still an open question. One of the difficulties of
this problem is non-convexity of the associated optimization
problem (Li et al., 2018) for the optimization aspect, and
the high dimensionality induced by over-parameterization
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for the generalization aspect. In this study, we tackle these
two problems in a teacher-student problem with the ReLU
activation under an over-parameterized setting. In this set-
ting, we need to take care of the non-differentiability of
the ReLU activation and the over-specification problem due
to the over-parameterization which potentially causes diffi-
culty to show favorable generalization ability such as exact
recovery.

The teacher-student setting is one of the most common set-
tings for theoretical studies, e.g., Tian (2017); Yehudai &
Shamir (2020); Goldt et al. (2019); Safran & Shamir (2018);
Safran et al. (2020); Tian (2020); Suzuki & Akiyama (2021);
Zhang et al. (2019); Zhou et al. (2021) to name a few. Zhong
et al. (2017) studied the case where the teacher and student
have the same width, showed that the strong convexity holds
around the parameters of the teacher network and proposed a
special tensor method for initialization to achieve the global
convergence to the global optimal. However, its global con-
vergence is guaranteed only for a special initialization which
excludes a pure gradient descent method. Moreover, the
over-parameterized setting is not included in their analysis.
Safran & Shamir (2018) empirically showed that gradient
descent is likely to converge to non-global optimal local
minima, even if we prepare a student that has the same size
as the teacher. More recently, Yehudai & Shamir (2020)
showed that even in the simplest case where the teacher and
student have the width one, there exists distributions and
activations in which gradient descent fails to learn. Safran
et al. (2020) showed the strong convexity around the param-
eters of the teacher network in the case where the teacher
and student have the same width for Gaussian inputs. They
also studied the effect of over-parameterization and showed
that over-parameterization will change the spurious local
minima into the saddle points. However, it should be noted
that this does not imply that a gradient descent can reach
the global optima.

To alleviate the non-convexity of neural network optimiza-
tion, over-parameterization is one of the promising ap-
proaches. Indeed, it is fully exploited by (i) Neural Tangent
Kernel (NTK) (Allen-Zhu et al., 2019; Arora et al., 2019;
Jacot et al., 2018; Du et al., 2019; Weinan et al., 2020) and
(ii) mean field analysis (Nitanda & Suzuki, 2017; Chizat &
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Bach, 2018; Chizat, 2019; Suzuki & Akiyama, 2021; Mei
et al., 2019; Tzen & Raginsky, 2020). (i) In the setting of
NTK, the gradient descent of neural networks can be seen
as the convex optimization in RKHS, and thus it is easier
to analyze. On the other hand, in this regime, it is hard to
explain the superiority of deep learning, because the esti-
mation ability of the obtained estimator is reduced to that
of the corresponding kernel. (ii) In the setting of the mean
field analysis, a kind of continuous limit of neural network
is considered and its convergence to some specific target
functions has been analyzed. This regime is more suitable
in terms of a “beyond kernel” perspective, but it essentially
deals with a continuous limit and hence is difficult to show
convergence to a teacher network with a finite width.

In this paper, we make full use of the “measure represen-
tation” of two-layer ReLU networks as in the mean field
analysis, while our approach employs a sparse regulariza-
tion on the measure of parameters to show the convergence
of a gradient descent method to the global optimum where
the teacher network has a finite width. The sparse regular-
ization on a measure space is well studied in a so-called
BLASSO problem (De Castro & Gamboa, 2012). Indeed,
Chizat (2019) analyzed the gradient descent for two layer
neural networks from the view point of BLASSO analyses,
and showed the convergence to the global optimal. However
they assumed several assumptions which are hard to clarify,
and excluded a non-smooth activation such as the ReLU ac-
tivation. On the other hand, we explicitly present a realistic
condition under which a gradient descent converges to the
global optimum. More specifically, our contributions can be
summarized as follows:

• We show that with an appropriate sparse regularization,
the optimal solution of a regularized empirical risk can
be arbitrarily close to the true teacher-parameters for
a sufficiently small regularization parameter. This im-
plies effectiveness of a sparsity inducing regularization
in deep learning.

• We prove that a gradient descent with a norm-
dependent step size can converge to the global opti-
mum of the regularized learning problem if the student
network is appropriately over-parameterized.

• Combining the above results, we show that a gradient
descent method with an over-parameterized initializa-
tion can find a network which is arbitrary close to the
true teacher network. In particular, the size of the es-
timated network becomes “narrow” even though the
initial solution is over-parameterized, which explains
the feature learning ability of neural networks leading
a better performance than shallow methods such as
kernel methods.

1.1. Other Related Works

BLASSO problem The BLASSO problem (De Castro &
Gamboa, 2012) is a regression problem with total varia-
tion regularization on a measure space, which is an exten-
sion of the LASSO problem to the measure space. One of
the main theoretical interests of BLASSO studies (Bredies
& Pikkarainen, 2013; Candès & Fernandez-Granda, 2013;
Duval & Peyré, 2015; Poon et al., 2018; 2019) is to clar-
ify whether the global minima of BLASSO can recover
the “true” measure in the setting where the true measure
is sparse, i.e., given by a sum of Dirac measures. Duval &
Peyré (2015) showed that for a sufficiently small sample
noise and an appropriate regularization, the global mini-
mum will also be sparse and close to the true measure. A
key theoretical tool is a dual certificate, which is motivated
by the Fenchel duality. However, their analysis assumes
smoothness on the objective function and thus is not directly
applied to our setting because of the non-differentiability of
the ReLU activation.

Sparse regularization It has been shown that explicit or
implicit sparse regularization such as L1-regularization is
beneficial to obtain better performances of deep learning
under certain situations (Chizat & Bach, 2020; Gunasekar
et al., 2018; Woodworth et al., 2020; Klusowski & Barron,
2016). However, it is still an open question that a gradient
descent can find the teacher model in a regression setting
with the ReLU non-linear activation. Bach (2017) analyzed
a neural network model with a sparse regularization (L1-
regularization) which can be regarded as an extension of
Barron class (Barron, 1993), and derived its model capac-
ity. It was shown that the Frank-Wolfe type method can
estimate a target function in the neural network model, but
unfortunately this does not imply that a gradient descent
method can estimate the target function. Moreover, it is
not clear that each update of the Frank-Wolfe method is
computationally tractable.

Langevin dynamics approach The gradient Langevin
dynamics (GLD) is a useful approach to obtain a global op-
timum of a non-convex objective function (Welling & Teh,
2011; Raginsky et al., 2017; Erdogdu et al., 2018; Suzuki
& Akiyama, 2021). This approach can be also applied to
neural network optimization but such analysis would not
give any information about the landscape of the neural net-
work training. Among them, Suzuki & Akiyama (2021)
considered an infinite dimensional Langevin dynamics, but
they excluded a non-differentiable activation such as ReLU
and did not give any landscape analysis.

1.2. Notations

Here we give some notations used in the paper. LetM(C)
be the set of the Radon measures on a topological space
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C (we consider the Borel algebra of C as the σ-field on
which the Radon measures are defined). Let δw(·) be the
Dirac measure on w ∈ Rd, i.e.,

∫
f(x)δw(dx) = f(w). Let

[m] := {1, . . . ,m} for a positive integer m. Let the inner
product between x, y ∈ Rd be 〈x, y〉 :=

∑d
j=1 xiyi.

2. Problem Settings
In this section, we give the problem setting and the model
that we consider in this paper. We focus on a regression
problem where we observe n training examples Dn =
{(x1, y1), . . . , (xn, yn)} ⊂ Rd × R generated by the fol-
lowing model:

yi = f◦(xi), (1)

where f◦ : Rd → R is the unknown true function that
we want to estimate, (xi)

n
i=1 are independently identically

distributed from PX . Later on we assume that PX is the
uniform distribution on the unit ball Sd−1 (Assumption 3.1).

Based on the observed data Dn, we construct an esti-
mator f̂ which is supposed to be “close” to the true
function f◦. As its performance measure, we employ
the mean squared error defined by ‖f̂ − f◦‖2L2(PX ) :=

EX∼PX [(f̂(X)−f◦(X))2]. Its empirical version is defined
by ‖f̂ − f◦‖2n := 1

n

∑n
i=1(f̂(xi)− f◦(xi))2.

Teacher-Student Model In this section, we prepare the
teacher-student model that we consider in this paper. The
student model is the two-layer neural network with the
ReLU-activation σ(u) = max{x, 0} (Glorot et al., 2011)
and width M , which is defined as

f(x; Θ) =

M∑
j=1

ajσ(〈wj , x〉), (2)

where Θ = ((a1, w1), . . . , (aM , wM )) ∈ (R×Rd)M is the
trainable parameter. The teacher model is assumed to be
included in the student model but the width could be smaller
than M :

f◦(x) =

m∑
j=1

a◦jσ(〈w◦j , x〉), (3)

where m is the width of the teacher model and (a◦j , w
◦
j ) ∈

R × Rd (j ∈ [m]). We consider an over-parameterized
setting where m ≤ M is assumed to be satisfied. Hence,
the teacher model can be regarded as an element of the
student model by setting aj = 0 for j = m+1, . . . ,M . For
notational simplicity, we denote by Θ◦ := (a◦j , w

◦
j )mj=1 ∈

(R× Rd)m.

For a neural network model, it is generally difficult to write
the close form of the (regularized) empirical risk minimizer.
Therefore, we typically optimize Θ via the gradient descent
technique, but due to the non-convexity of the objective

function, it is far from trivial that the global minima can be
obtained by gradient descent.

Sparse Regularized Empirical Risk To estimate the true
parameter Θ◦, we define the following regularized empirical
risk minimization problem on the parameter space (R ×
Rd)M :

min
Θ∈(R×Rd)M

1

2n

n∑
i=1

(yi − f(xi; Θ))2+λ

M∑
j=1

|aj |‖wj‖, (4)

where λ ≥ 0 is a regularization parameter. The
regularization term λ

∑M
j=1 |aj |‖wj‖ can be seen as

an L1-regularization which induces sparsity. Indeed,
by the scale homogeneity of ReLU (ajσ(〈wj , x〉) =
aj‖wj‖σ(〈wj/‖wj‖, x〉)), we may reset the parameter as
a′j = aj‖wj‖ and w′j = wj/‖wj‖ and then the regulariza-
tion term can be rewritten as λ

∑M
j=1 |a′j |. Apparently, this

is the L1-norm of (a′j)
M
j=1.

In practice, we typically use the L2-regularization
λ
2

∑M
j=1(a2

j + ‖wj‖2) instead of the L1-regularization as
induced above. However, the arithmetic-geometric mean
relation yields that

|aj |‖wj‖ = min
(a′j ,w

′
j)∈R×Rd:

|aj |‖wj‖=|a′j |‖w
′
j‖

1
2 (|a′j |2 + ‖w′j‖2). (5)

Therefore, our sparse regularization can be replaced by the
L2-regularization. In this paper, we directly consider the
sparse regularization instead just for simplicity.

Remark 2.1. We will see that the regularization term
λ
∑M
j=1 |aj |‖wj‖ corresponds to the total-variation norm

regularization for the measure representation of the network
which we refer to in the next section. The same type of
regularization has been considered in several studies, e.g.,
E et al. (2019); Neyshabur et al. (2015). In those studies,
it plays an important role to show a better performance of
deep learning compared with kernel methods. We further
make full use of the sparsity to show the exact recovery of
the true parameter Θ◦ even under the over-parameterized
setting.

3. Global Minima in the Teacher-Student
Setting

In this section, we show that the minimizer of the regularized
empirical risk (4) is arbitrarily close to the teacher network
f◦ for a sufficiently large sample size n. Note that we are
not arguing here that the optimal solution can be obtained
by the gradient descent, but the computational issue will
be addressed in the next section. We make the following
assumptions for our analysis.
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Assumption 3.1. (xi)
n
i=1 are i.i.d. observations from the

uniform distribution on Sd−1, that is, PX = Unif(Sd−1).

Assumption 3.2. The teacher network f◦ =∑m
j=1 a

◦
jσ(〈w◦j , ·〉) satisfies the following conditions:

1. a◦j > 0 (∀j ∈ [m]).

2. 〈w◦j1 , w
◦
j2
〉 = 0 (∀j1, j2 ∈ [m], j1 6= j2).

The second assumption could be a bit strong, but the same
assumption has been considered in several previous re-
searches (Zhong et al., 2017; Tian, 2017; Safran & Shamir,
2018; Safran et al., 2020; Li et al., 2020). For exam-
ple, Safran et al. (2020) analyzed the landscape of the
objective under this assumption and showed a negative
result that the loss landscape around the global minima
is not even locally convex. On the other hand, they also
showed that an over-parameterization turns a non-global
optimal point into a saddle-point. However, they have
not shown that a gradient descent can reach the optimal
solution. Li et al. (2020) showed a global optimality of
gradient descent in a specific teacher student setting un-
der this condition. They consider a specific teacher model
f◦(x) =

∑M
j=1 a

◦
j |〈x, θ◦j 〉| for a◦j > 0 and a student model

f(x;W ) = 1
M

∑M
j=1 ‖wj‖σ(〈wj , x〉). This is relevant to

ours, but specification of the teacher network is quite differ-
ent from our setting.

The main ingredient of our analysis is the measure repre-
sentation of the two layer ReLU-neural network. Using this
representation, one can regard the neural network training
as a sparse regularized learning on the measure space. This
enables us to show (near) exact recovery. In particular, the
Beurling-LASSO (BLASSO) analysis (De Castro & Gam-
boa, 2012) which could be seen as an infinite dimensional
extension of sparse regularization theory is helpful.

3.1. Mesure Representation of Two-Layer Neural
Networks and BLASSO Problem

We introduce the measure representation of the two-layer
ReLU neural network. By using 1-homogeneity of the
ReLU activation, it holds that

M∑
j=1

ajσ(〈wj , x〉) =

M∑
j=1

aj‖wj‖σ
(〈

wj
‖wj‖

, x

〉)
=

∫
Sd−1

σ(〈θ, x〉)dν(θ)

(6)

with ν =
∑m
j=1 aj‖wj‖δwj/‖wj‖ ∈M(Sd−1). We call this

ν a measure representation of the two-layer ReLU neural
network. In the following, we write

f(x; ν) =

∫
Sd−1

σ(〈θ, x〉)dν(θ). (7)

Under this representation, the teacher network is repre-
sented as ν◦ =

∑m
j=1 r

◦
j δθ◦j with rj = a◦j‖w◦j ‖ and

θ◦j = w◦j /‖w◦j ‖.
Remark 3.3. For a more general activation σ, we need to
consider a measure on the product space R × Rd. How-
ever, thanks to the 1-homogeneity of ReLU, we only need
to consider a measure on Sd−1 which is a compact metric
space.

With this measure representation, we may consider the fol-
lowing regression problem on the measure space instead:

min
ν∈M(Sd−1)

1

2n

n∑
i=1

(yi − f(xi; ν))
2

+ λ‖ν‖TV, (8)

where ‖ · ‖TV is the total variation norm of ν ∈M(Sd−1)
that is defined by ‖ν‖TV = ν+(Sd−1) + ν−(Sd−1) for the
Hahn–Jordan decomposition ν(·) = ν+(·)−ν−(·). This can
be seen as the continuous version of the original problem (4),
which is called a BLASSO problem (De Castro & Gamboa,
2012). Since the measure representation covers any finite-
width neural network, the following proposition holds.
Proposition 3.4. Assume that a global minimum of (8) is
obtained by a measure which is represented as a finite sum
of Dirac measures:

ν∗ =
∑m∗

j=1 r
∗
j δθ∗j ,

then for the student network satisfying M ≥ m∗, the global
minima of (4) can be obtained by the form whose measure
representation is written by ν∗.

There have been several studies that focused on the global
minimum of the BLASSO problem (8). Duval & Peyré
(2015) analyzed this problem in the context of sparse spike
deconvolution, in which f is a Gaussian convolution fil-
ter and is an element of L2(T) (where T denotes the 1-
dimensional torus), and showed that under the so-called
NDSC condition, the global minima can be close to under-
lying measure. Poon et al. (2018; 2019) analyzed a more
general setting and derived a sufficient condition for the
NDSC condition. However, these analyses have required
smoothness on the objective. Therefore, they can not be ap-
plied directly to our setting because of non-differentiability
of the ReLU activation. We overcome this difficulty by
directly deriving the dual certificate of the optimization
problem.

3.2. Main Result 1: Global Minima of Regularized
Empirical Risk

We prove that with a sufficiently small regularization pa-
rameter, the global minimizer of (8) is close to the teacher
network with an arbitrarily small gap. We state this as the
following theorem.
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Theorem 3.5. Assume that Assumptions 3.1 and 3.2 are
satisfied. Suppose that n > poly(m, d, log 1/δ) for δ > 0.
Then, with probability at least 1− δ, we have that, for any
ε > 0, with sufficiently small λ > 0, the optimal solution
of (8) is uniquely determined and written by the form ν∗ =∑m
j=1 r

∗
j δθ∗j where (r∗j , θ

∗
j )mj=1 ⊂ R× Sd−1 satisfy

{∑m
j=1 |r◦j − r∗j |2 ≤ O(mλ2)∑m
j=1 dist2(θ∗j , θ

◦
j ) ≤ O(mλ2)

. (9)

The proof can be found in Appendix A. From this theorem
and Proposition 3.4, we immediately obtain the following
corollary.

Corollary 3.6. Under the same assumption with Theo-
rem 3.5, for the student network model with more than m
nodes, the optimal solution of (4) achieves the same prop-
erty with Theorem 3.5, i.e., the measure representation of
the optimal network satisfies (9).

Therefore, as long as the network sizeM is sufficiently large
such that M ≥ m, we can recover the true network with
arbitrarily small error by tuning the regularization parameter.
The event of this property is uniform over the choice of the
accuracy ε and corresponding regularization parameter λ.
Hence, by decreasing λ gradually, we can finally recover
the teacher model exactly. This result only characterizes the
globally optimal solution and it does not say anything about
the algorithmic convergence of a gradient descent method.
In the next section, we address this issue.

Proof Strategy: Dual Certificate Theorem 3.5 can be
shown through a dual certificate characterization of the opti-
mal solution. Let the optimization problem (8) be Pλ. By
the Fenchel’s duality theorem (Rockafeller, 1967; Borwein
& Zhu, 2005; Duval & Peyré, 2015), its dual problem Dλ is
given by

(Dλ) max
p∈Rn:‖f∗(p)‖∞≤1

1

n2

n∑
i=1

yipi −
λ

2n2
‖p‖2,

where f∗(p)(·) ∈ C(Sd−1)1 that is defined by f∗(p)(θ) :=
1
n

∑n
i=1 σ(〈θ, xi〉), and the strong duality holds, that is, ν∗λ

is the optimal solution of Pλ if the following optimality
condition is satisfied for the unique solution pλ of Dλ (the
uniqueness of the dual solution follows from the strong
convexity of the dual problem):{

f∗(pλ) ∈ ∂‖ν∗λ‖TV,

pλ,i = − 1
λ (f(xi; ν

∗
λ)− yi) (∀i ∈ [n]).

1C(S) is the set of continuous functions on a topological space
S.

We call f∗(pλ) a dual certificate for ν∗λ. Conversely, if this
condition is satisfied by (ν∗λ, pλ) ∈M(Sd−1)×Rn, then the
pair is the optimal solution of both Pλ and Dλ. Therefore,
our strategy is to show that the dual certificate f∗(pλ) admits
only a primal optimal solution ν∗λ that satisfies the condition
in the theorem, i.e., the support of ν∗λ consists of only m
distinct points each of which is close to the true parameters
(θ◦j )mj=1. To prove this, we show that there exist (θ∗j )mj=1

such that (dist(θ∗j , θ
◦
j ))mj=1 are sufficiently small and satisfy{

f∗(pλ)(θ∗j ) = 1 (∀j ∈ [m]),

|f∗(pλ)(θ)| < 1 (∀θ ∈ Sd−1/{θ∗1 , . . . , θ∗m})
(10)

for sufficiently small λ. From this inequality, we can show
that (|r∗j − r◦j |)mj=1 will also be sufficiently small. Finally
by using the form ν∗ =

∑m
j=1 r

∗
j δθ∗j and strong convexity

of the empirical risk term in Pλ w.r.t. r∗j and θ∗j around
the teacher parameters (r◦j , θ

◦
j )mj=1, we get the quantitative

bound as Eq. (9).

For that purpose, we particularly consider a setting where
λ = 0, and consider the minimal norm certificate:

p0 := min{‖p‖ | p ∈ Rn is a feasible solution of D0}.

The most difficult pint in our analysis is to show the property
(10) for the minimal norm certificate p0. This is accom-
plished by carefully evaluating the analytic form of f∗(p0).
Indeed, by using the orthogonality of (θ◦j )mj=1 and the fact
that the input distribution is the uniform distribution, we can
write down the minimal norm certificate and analyze it.

4. Global Convergence of Gradient Method
In this section, we investigate a gradient descent method
for the optimization problem (4). We show that under some
assumptions, a gradient descent with a norm-dependent step
size converges to the global optimum of the problem. We
also show that these assumptions for the global convergence
are satisfied under the conditions we made in the previ-
ous section, which implies the identifiability of the teacher
parameters through the gradient descent method.

4.1. Norm-Dependent Gradient Descent

We consider a standard gradient descent for optimizing the
objective (4). To incorporate the 1-homogeneity of the
ReLU activation function, we employ a step size that can
be dependent on the norm of each parameter. As we see in
proof of the global convergence, this norm dependency is
helpful to describe an update in the measure space. Let F be
the regularized empirical risk given in (4), that is, F (Θ) :=
1

2n

∑n
i=1(yi − f(xi; Θ))2 + λ

∑M
j=1 |aj |‖wj‖. Then, the

update rule of the norm-dependent gradient descent can be
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written as

aj,k+1 = aj,k − ηj,kgj(Θk) for gj(Θk) ∈ ∂ajF (Θk),

wj,k+1 = wj,k − ηj,khj(Θk) for hj(Θk) ∈ ∂wj
F (Θk),

where Θk = ((a1,k, wj,k), . . . , (aM,k, wM,k)) is the param-
eter after k iterations, ηj,k > 0 is the norm-dependent step
size which will be specified below. ∂aF (Θ) denotes the
sub-gradient of F (Θ) as a function of a. The sub-gradient
is not always a singleton, but we employ the following one
as g, h:

gj(Θ)=
1

n

n∑
i=1

(f(xi; Θ)−yi)σ(〈wj , xi〉)+λ sgn(aj)‖wj‖,

hj(Θ)=
1

n

n∑
i=1

(f(xi; Θ)−yi)ajxi1l{〈wj , xi〉≥0}+λ |aj |wj
‖wj‖

,

As for the norm-dependent step size ηj,k, we employ the
following representation:

ηj,k = α
|aj,k|‖wj,k‖
a2
j,k + ‖wj,k‖2

, (11)

where α > 0 is a fixed constant. For the initialization, we
consider the mean-field setting where each aj,0 = O(1/M):

aj,0 =
2

M
(1 ≤ j ≤M/2),

aj,0 = − 2

M
(M/2 + 1 ≤ j ≤M),

wj,0
i.i.d.∼ Unif(Sd−1).

With the norm-dependent step size, the sign of aj,k will not
be changed during the optimization, and thus we need the
both positive and negative sign initializations for (aj,0)Mj=1.
As pointed out by several authors (Chizat & Bach, 2018;
Chizat, 2019; Suzuki & Akiyama, 2021; Mei et al., 2019),
it is essentially important to analyze the dynamics of “fea-
ture learning” in the mean field regime where each node
is adaptively updated to represent the target function effi-
ciently. This is in contrast to NTK analysis (a.k.a., lazy
training regime) where the basis functions are almost fixed
during the optimization. The algorithm is summarized in
Algorithm 1.

The global optimality of the gradient descent can be shown
through the measure representation of the neural network.
Indeed, we have seen in the previous section that the opti-
mization problem of a neural network model can be general-
ized to the BLASSO problem on the measure space as pre-
sented in Eq. (8). Let J be the BLASSO objective function
on the measure space: J(ν) = 1

2n

∑n
i=1 (yi − f(xi; ν))

2
+

λ‖ν‖TV. Note that in the over-parameterized setting, we
cannot formally define the convergence of the parameter Θk

Algorithm 1 Norm-Dependent Gradient Descent

Input: student width M (even), max iteration K, stepsize
parameter α > 0.
Initialization : aj,0 = 2/M, 1 ≤ j ≤ M/2, aj,0 =
−2/M,M/2 + 1 ≤ j ≤M , wj,0 ∼ Unif(Sd−1)

1: for k = 1, 2, . . . ,K do
2: for j = 1, . . . ,M do
3: ηj,k = α

|aj,k|‖wj,k‖
a2j,k+‖wj,k‖2

4: choose gj(Θk) ∈ ∂ajF (Θk)
5: choose hj(Θk) ∈ ∂wjF (Θk)
6: aj,k+1 = aj,k − ηj,kgj(Θk)
7: wj,k+1 = wj,k − ηj,khj(Θk)
8: end for
9: end for

to the true one Θ◦ because they have different dimension-
ality. Therefore, we consider convergence of the measure
corresponding to the parameter Θ instead. We assume “spar-
sity” of the global minima of J on the measure space to
ensure the convergence of the measure representation as
follows.

Assumption 4.1. ar The global minimum of J is uniquely
attained by a sum of Dirac measures:

ν∗ :=

m∗∑
j=1

r∗j δθ∗j , (12)

where m∗ is a positive integer, r∗j 6= 0, θ∗j ∈ Sd−1 (j ∈
[m∗]) and θ∗j 6= θ∗j′ for any j 6= j′.

Remark 4.2. Note that this condition can be satisfied under
Assumptions 3.1 and 3.2 by Theorem 3.5.

By the same argument as Proposition 3.4, if we setM ≥ m∗,
the sparsity and uniqueness of the global minimum of J
leads to the existence of the global minimum of F , which
is essentially represented by m∗ nodes. Even in this case,
by the non-convexity of F , it is far from trivial to show the
convergence of the gradient method to the global optimal
solution. As we have stated, we show this through the
measure representation of the network.

To show the result, we prepare some additional notations.
For the intermediate solution Θk = {(aj,k, wj,k)}Mk=1, we
define rj,k = aj,k‖wj,k‖, θj,k =

wj,k

‖wj,k‖ (if ‖wj,k‖ = 0, we
set θj,k be arbitrary fixed point in Sd−1). Accordingly, the
measure representation corresponds to Θk be

νk :=
∑M
j=1 rj,kδθj,k .

For two Radon measures µ1, µ2 ∈M(Sd−1), W∞(µ1, µ2)
denotes the Wasserstein distance between them:
W∞(µ1, µ2) := inf

γ∈Π(µ1,µ2)
sup

(θ1,θ2)∈supp(γ)

dist(θ1, θ2),
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where Π(µ1, µ2) is a set of product measures with
marginals µ1 and µ2, supp(γ) is the support of γ, and
dist(θ1, θ2) := arccos(〈θ1, θ2〉) for θ1, θ2 ∈ Sd−1.

Since f(x; ν) is a linear model with respect to ν and the
squared loss is differentiable, the Fréchet subdifferential of
J(ν) onM(Sd−1) can be defined and be represented as a
set of functions G(·) : Sd−1 → R defined by

G(θ) =
1

n

n∑
i=1

(f(xi; ν)− yi)σ(〈θ, xi〉) + λη(θ),

where η ∈ C(Sd−1) satisfies ‖η‖∞ ≤ 1 and
∫
ηdν =

‖ν‖TV. Note that we have that ∂J(νk) := {G ∈ C(Sd−1) |
J(µ)− J(νk) ≥

∫
G(θ)d(µ− νk) for any µ ∈M(Sd−1)}

which is well defined because J(·) is a convex function on
the measure spaceM(Sd−1).

4.2. Main Result 2: Global Optimality of Gradient
Method

Here, we give the global convergence property of the norm-
dependent gradient descent under a bit milder conditions
than those assumed in the previous section. The analysis
basically follows that of Chizat (2019), but they assumed
smoothness on the activation and excluded the ReLU activa-
tion. To overcome this difficulty, our norm-dependent step
size (Eq. (11)) plays the important role. Moreover, we care-
fully divide the parameter space into “smooth region” and
“non-smooth irrelevant-region” to show a descent property
of the objective. The assumptions below are made under a
condition of a training data observation Dn = (xi, yi)

n
i=1.

Assumption 4.3 (Non-orthogonality between x and θ). For
any i ∈ [n], j ∈ [m]∗, we have 〈xi, θ∗j 〉 6= 0.

Assumption 4.4 (Strong convexity w.r.t. r). There ex-
ists a constant κ > 0 such that for any r1, . . . , rm ∈ R,
‖
∑m
j=1 rjσ(〈θ∗j , ·〉)‖2n ≥ κ(r2

1 + · · ·+ r2
m).

Assumption 4.5 (Non-degeneracy). There exists no θ /∈
supp(ν∗) such that J ′(ν∗)(θ) = 0.

Assumption 4.6 (Boundedness). There exists a constant
CF > 0 such that, for any k, it holds that F (Θk) ≤ CF .

Assumption 4.7 (Boundedness of input). ‖xi‖ ≤ 1 for all
i ∈ [n].

Assumption 4.3 is satisfied almost surely if xi ∼
Unif(Sd−1). This is required to ensure the smoothness
of the objective around the optimal parameter (r∗j , θ

∗
j )m

∗

j=1.
Otherwise the objective function F is non-differentiable at
the global optimal with respect to θj , which causes difficulty
to show the local convergence around the global optimal.
Assumption 4.4 is also almost surely satisfied if the nodes
x 7→ σ(〈x, θ∗j 〉) (j ∈ [m∗]) are linearly independent in
L2(PX ). Assumption 4.5 is a bit tricky but is assumed in
several existing work (Duval & Peyré, 2015; Chizat, 2019;

Flinth et al., 2020) ensures that the true parameters (θ∗j )m
∗

j=1

are uniquely determined. Assumption 4.5 is also needed to
ensure that in a local convergence phase, which we describe
in Theorem 4.8, νk vanishes rapidly far away from (θj)

m∗

j=1.
This assumption can be verified under the same setting as
Theorem 3.5 by utilizing a dual certificate argument. As-
sumption 4.7 is just fixing the scaling factor and is satisfied
under the setting xi ∼ Unif(Sd−1) (Assumption 3.1).

Theorem 4.8. Assume that Assumptions 4.1, 4.3–4.7 hold.
Let τ = Unif(Sd−1), ν+

0 = 2/M
∑M/2
j=1 δwj,0

, ν−0 =

2/M
∑M
j=M/2+1 δwj,0

and J∗ = J(ν∗). Then, for any
0 < ε < 1/2, there exist constants ρ, C,C ′, CM > 0,
J0 > J∗, κ0 > 0 such that if α > 0 satisfies

α < min{(J0 − J∗)1+ε/2/C,1/8C1,

1/10C2, ρ/C2, λ
2/8C2

F }

with C1 = 2
√
nCF +λ and C2 = 2

√
nCF , the width M is

sufficiently over-parameterized as M ≥ CM exp(α−2)/α,
and the initial solution satisfies

max{W∞(τ, ν+
0 ), W∞(τ, ν−0 )} ≤ (J0 − J∗)/C,

then we have the following convergence properties:
(1) Global exploration: There exists k0 ≥ C ′(J0 −
J∗)−(2+ε) such that for any k ≥ k0, it holds that

J(νk)− J∗ ≤ J0 − J∗.

(2) Local convergence: For any k ≥ k0, it holds that

J(νk)− J∗ ≤ (J(ν0)− J∗)(1− κ0)k−k0 .

Therefore, combining these results, we see that J(νk) con-
verges to J(ν∗).

The proof can be found in Appendix B. This theorem im-
plies that the norm-dependent gradient descent can converge
to the global optimal solution in terms of both the measure
on parameters and the function value. Its dynamics consists
of two phases: (1) the global exploration regime, and (2)
the local linear convergence regime. In the first phase, the
gradient descent explores the parameter space to roughly
capture the location of the optimal parameters. In the sec-
ond phase, the dynamics enters a local region around the
optimal parameters where the objective is locally strongly
convex. After entering this phase, the parameters converge
to the optimal solution linearly. In that sense, J0 represents
a threshold that separates the global region and local near
strongly convex region. During the optimization, the sparse
regularization works for eliminating the amplitudes of nodes
that are far away from the optimal parameters. This kind of
“two phase” dynamics has been pointed out by several au-
thors (e.g., Li & Yuan (2017); Chizat (2019)), but it has not
been shown for the ReLU fully connected neural networks.
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The condition max{W∞(τ, ν+
0 ), W∞(τ, ν−0 )} ≤

(J0 − J∗)/C requires that M is sufficiently over-
parameterized. It is known that W∞(τ, ν±0 ) =
Op((logM)1/(d−1)M−1/(d−1)) for d > 3 (Trillos &
Slepčev, 2015). Therefore, it is implicitly assumed that
M ≥ Ω((J0 − J∗)−(d−1) log+(1/(J0 − J∗))(d−1))2. The
condition M ≥ CM exp(α−2)/α also requires the over-
parameterization and the right side may be quite large. This
condition is only required for the global exploration ((1)
in Theorem 4.8). The over-parameterization and the
norm-dependency of stepsize ensure that (θj,k)Mj=1 do not
move far away from initialization until the function value
decrease enough. By this property, the gradient descent can
“identify” an informative subset of parameters (θj,k)Mj=1,
which are close to the optimal parameters (θ∗j )m∗j=1. It
may be possible to ensure that under the less number
of parameters M , the gradient descent “automatically”
reaches around each of the optimal parameters and can
accomplish the global exploration. We leave this issue for
future work. Finally, we mention a remark on a condition
on the constant ρ and the regularization parameter λ for
Theorem 4.8. Roughly speaking, ρ represents a diameter
of a local smooth region around each optimal parameter
θ∗j . Under Assumptions 3.1 and 3.2, it suffices to take
ρ = Op(1/nm) if θ∗j and θ◦j are sufficiently close for any
j ∈ [m] (see Lemma B.18). It can be shown that this
closeness condition between θ∗j and θ◦j holds with high
probability by setting λ = O(1/nm3/2) by Theorem 3.5.
These estimates are derived from conservative evaluations
and could be larger for each concrete realization of (xi)

n
i=1.

In addition to this convergence property in terms of the
objective function, we can show convergence in terms of
the L∞-norm.

Theorem 4.9. Under Assumptions 4.1, 4.3–4.7, there exists
C ′′ > 0 such that for all k ≥ k0, it holds that

‖f(x; νk)− f(x; ν∗)‖∞ ≤ C ′′(J(ν0)− J∗)(1− κ0)k−k0 ,

where k0 and κ0 are those introduced in Theorem 4.8.

To show this, we prove that the measure representation νk
converges to the optimal representation ν∗ in terms of a
modified 2-Wasserstein distance. The details can be found
in Section B.6.

Near Exact Recovery by Gradient Descent Finally,
combining Theorem 3.5 and Theorem 4.9, we obtain the
following corollary that asserts that the student network
converges near the teacher network by the gradient descent
method. To show this, we need to prove that Assumptions
3.1 and 3.2 implies Assumptions 4.1, 4.3–4.7. The proof
can be found in Section B.6.

2log+(x) denotes max{log(x), 1}.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Illustration of the optimization dynamics with d = 2 and
m = 2. The true parameters are indicated by ?, the initial solution
of each node is indicated by an orange +, and its final state is
indicated by the red ◦.

Corollary 4.10. Under Assumptions 3.1 and 3.2, suppose
that n > poly(m, d, log 1/δ) for δ > 0, then, with probabil-
ity at least 1 − δ, it holds that the L2(PX )-norm between
f(·; νk) and f◦ can be bounded as

‖f(·; νk)− f◦‖2L2(PX )

≤ 2C ′′
2
(J(ν0)− J∗)2(1− κ0)2(k−k0) + O(mλ2),

dependent on the observation Dn. for all k ≥ k0 where k0

and κ0 are constants introduced in Theorem 4.8 that could
depend on the observation Dn.

5. Numerical Experiments
In this section, we conduct numerical experiments to justify
our theoretical results.

Illustration in two dimensional space. First, we give an
illustrative example in which the dynamics of the student
network is depicted in a two dimensional setting d = 2. In
this experiment, we employ m = 2 with r◦1 = r◦2 = 1 and
θ◦1 = (1, 0)>, θ◦2 = (0, 1)>, M = 15, and n = 100. Figure
1 shows the optimization trajectory of (aj,k, wj,k)Mj=1. We
can see that the nodes with initialization near to a teacher
parameter approaches one of the nodes in the teacher net-
work and, on the other hand, the nodes with initialization
far away from any teacher node finally vanish. This be-
havior is induced by the sparse regularization, that is, the
sparse regularization “selects” informative nodes and dis-
card non-informative nodes. We also see that the selected
nodes explore a wide area in the early stage and after that
they finally head to the direction of one of the teacher nodes.
This well justifies our theoretical analysis.

Effect of over-parameterization for convergence. Next,
we investigate how the over-parameterization affects the
dynamics. In this experiment, we employ m = 5 for the
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Figure 2. Convergence of the training/test loss for different student
width M = 5, 10, 100.

teacher width, d = 5 for the dimensionality and n = 100
for the sample size. As for the student network, we compare
the dynamics between M = 5, 10, 100. Figure 2 depicts the
training loss and test loss against the number of iterations.
Each line corresponds to different setting of M . We can see
that a sufficiently over-parameterized network (M = 100)
appropriately estimates the true function while a narrow
network (M = 5) does not reach the global optimal solution.
We also note that the test loss is almost same as the training
loss in the over-parameterized setting while we observe
over-fitting for M = 5 and M = 10. This means that
the solution in the over-parameterized setting (M = 100)
finally converges to the optimal “sparse” solution that avoids
the over-fitting. This is consistent to the findings by the
existing studies (Safran & Shamir, 2018; Safran et al., 2020).

Comparison of L1 and L2 Regularization Inspired by
Eq. (5), we also conduct norm-dependent gradient descent
for the L2-regularized problem:

min
Θ∈(R×Rd)M

1

2n

n∑
i=1

(yi − f(xi; Θ))2+
λ

2

M∑
j=1

(a2
j + ‖wj‖2).

(13)

We give a comparison of the loss evolution between the
L1-regularization and L2-regularization in Figure 3. In
this experiment, we employ m = 5 for the teacher width,
d = 5 for the dimensionality, n = 100 for the sample size
and M = 10 for the student width. We can see that both
regularizations show the almost same trajectory of the loss
functions. This indicates the usefulness of the practical use
of the L2-regularization.

6. Conclusion
In this paper, we have investigated identifiability of the true
target function via the gradient descent method for two-layer
ReLU neural networks in teacher-student settings. We have
shown that with the sparse regularization, the global minima

0 500 1000 1500 2000 2500 3000
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0 500 1000 1500 2000 2500 3000
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10−2

10−1

100
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Figure 3. Comparison of L1 and L2- regularizations.

can be arbitrarily close to the teacher network. Furthermore,
we have proposed a gradient method with norm-dependent
step size which is guaranteed to converge to the global
minima, and shown that this framework can be applied
to the teacher-student setting. The key ingredient in this
analysis is the measure representation of the ReLU network.
With this perspective, the gradient method can be associated
with gradient descent in the measure space. We believe
that this analysis gives a new insight into learnability in the
teacher-student setting.
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Trillos, N. G. and Slepčev, D. On the rate of convergence of
empirical measures in-transportation distance. Canadian
Journal of Mathematics, 67(6):1358–1383, 2015.

Tropp, J. A. An Introduction to Matrix Concentration In-
equalities, volume 8 of Foundations and Trends in Ma-
chine Learning. Now Publishers Inc. Hanover, MA, USA,
2015.

Tzen, B. and Raginsky, M. A mean-field theory of lazy
training in two-layer neural nets: entropic regularization
and controlled McKean-Vlasov dynamics. arXiv preprint
arXiv:2002.01987, 2020.

Weinan, E., Ma, C., and Wu, L. A comparative analysis of
optimization and generalization properties of two-layer
neural network and random feature models under gradient
descent dynamics. Science China Mathematics, pp. 1–24,
2020.

Welling, M. and Teh, Y.-W. Bayesian learning via stochastic
gradient Langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning, pp. 681–
688, 2011.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E.,
Savarese, P., Golan, I., Soudry, D., and Srebro, N. Kernel
and rich regimes in overparametrized models. volume
125 of Proceedings of Machine Learning Research, pp.
3635–3673. PMLR, 09–12 Jul 2020.

Yehudai, G. and Shamir, O. Learning a single neuron
with gradient methods. arXiv preprint arXiv:2001.05205,
2020.

Zhang, X., Yu, Y., Wang, L., and Gu, Q. Learning one-
hidden-layer relu networks via gradient descent. In
Chaudhuri, K. and Sugiyama, M. (eds.), Proceedings of
Machine Learning Research, volume 89 of Proceedings
of Machine Learning Research, pp. 1524–1534. PMLR,
2019.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,
I. S. Recovery guarantees for one-hidden-layer neural
networks. arXiv preprint arXiv:1706.03175, 2017.

Zhou, M., Ge, R., and Jin, C. A local convergence theory
for mildly over-parameterized two-layer neural network.
arXiv preprint arXiv:2102.02410, 2021.



On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting

A. Proof of Theorem 3.5 and related topics
In this section, we give the proof of Theorem 3.5 and auxiliary lemmas to prove it.

A.1. Preliminaries

In this section, we give the proof of the main result I (Theorem 3.5). The key tool is the dual certificate and the NDSC
condition (Definition A.5) which were introduced by Duval & Peyré (2015). We firstly introduce these concepts, and then
prove the assertion by using them.

A.1.1. DUAL PROBLEM AND OPTIMALITY CONDITION

As described in Eq. (8), we consider the following optimization problem on the measure space:

min
ν∈M(Sd−1)

1

2n

n∑
i=1

(yi − f(xi; ν))
2

+ λ‖ν‖TV. (Pλ)

By regarding f as a linear operator f(·) : M(Sd−1) → Rn, ν 7→ (f(x1; ν), . . . , f(xn; ν))T, we can define its adjoint
operator f∗ : Rn → C(Sd−1) as

f∗(p)(θ) =
1

n

n∑
i=1

piσ(〈θ, xi〉).

Then, we can obtain the dual problem of (Pλ) through the Fenchel duality theorem (Rockafeller, 1967; Borwein & Zhu,
2005; Duval & Peyré, 2015):

max
p∈Rn:‖f∗(p)‖∞≤1

1

n2

n∑
i=1

yipi −
λ

2n2
‖p‖2. (Dλ)

This dual problem (Dλ) can be reformulated as

min
p∈Rn:‖f∗(p)‖∞≤1

1

n2

∥∥∥∥∥∥∥p−
1

λ

 y1

...
yn


∥∥∥∥∥∥∥

2

. (D̃λ)

Note that solutions of this problem are expressed by a projection of (y1, . . . , yn)T ∈ Rn onto a closed convex subset
{p ∈ Rn | ‖f∗(p)‖∞ ≤ 1} which is uniquely determined by the Hilbert projection theorem.

By taking the limit of λ→ +0 in Eq. (8), we obtain the following problem:

min
µ∈M(Sd−1)

‖µ‖TV s.t. f(xi;µ) = yi (∀i ∈ [n]). (P0)

The dual problem of this is given by

max
‖f∗(p)‖∞≤1

1

n2

n∑
i=1

yipi. (D0)

The strong duality between these problems can be characterized by the subdifferential of the object function. In particular,
we require the subdifferential ∂‖ν‖TV of the total variation norm which is expressed by

∂‖ν‖TV =

{
η ∈ C(Sd−1) | ‖η‖∞ ≤ 1,

∫
ηdµ = ‖ν‖TV

}
.

For λ > 0, we can show that the strong duality holds between (Pλ) and (Dλ), which means that both problems have the
same optimal value and any solution ν of (Pλ) is linked with the unique solution p of (Dλ) by{

f∗(p) ∈ ∂‖ν‖TV,

pi = − 1
λ (f(xi; ν)− yi) (∀i ∈ [n]).

(14)
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Conversely, if there exists a pair (ν, p) ∈M(Sd−1)× Rn satisfying Eq. (14), then ν is an optimal solution of (Pλ) and p is
the unique solution of (Dλ).

Strong duality also holds between (P0) and (D0). If an optimal solution p∗ of (D0) exists, then it is linked to any solution ν
of (P0) by {

f∗(p) ∈ ∂‖ν‖TV,

f(xi;µ) = yi (∀i ∈ [n]),
(15)

and similarly, if there exists a pair (ν, p) ∈M(Sd−1)× Rn satisfying Eq. (15), then ν is an optimal solution of (P0) and p
is a solution of (D0).

In particular when ν is written by a sum of Dirac measures as ν =
∑m
j=1 rjδθj , f∗(p) ∈ ∂‖ν‖TV is equivalent to{

f∗(p)(θj) = sgn(rj) (∀j ∈ [m]),

|f∗(p)(θ)| ≤ 1 (∀θ ∈ Sd−1).
(16)

We use the next proposition to prove the main theorem. The proof is remained to the latter of this section.

Proposition A.1. Let n > poly(m, d, log 1/δ). Then, with probability at least 1− δ, for any ε > 0, there exists λ = λ(ε)
such that the optimal solution pλ of (Dλ) satisfies{

f∗(p)(θ∗j ) = 1 (∀j ∈ [m]),

|f∗(p)(θ)| < 1 (∀θ ∈ Sd−1, θ 6= θ∗j ),

where (θ∗j )j∈[m] ⊂ Sd−1 satisfying ‖θ◦j − θ∗j ‖ < ε (∀j ∈ [m]). Moreover, the global minima of (Pλ) is written by
ν∗ =

∑m
j=1 r

∗
j δθ∗j , where (r∗j , θ

∗
j )∈[m] satisfies Eq. (9).

Remark A.2. Since f∗(p) is piecewise-linear function for any p (following from the same property of ReLU), we know that
the global minima of (Pλ) is expressed by a sum of at most O(nd+1) Dirac measures independently of the sample (xi)

n
i=1.

This result can be extended to any other 1-homogeneous activation function. The same result is derived in de Dios & Bruna
(2020) by another approach, our argument above gives another perspective to the characterization of the optimal solution.

A.1.2. NON DEGENERATE SOURCE CONDITION

Unlike (Dλ), (D0) does not always have a unique solution. Then we consider the following concept, which is crucial in this
proof.

Definition A.3 (minimal norm certificate (Duval & Peyré, 2015)). The minimal norm certificate associated with (Pλ) is
defined as f∗(p0), where p0 is the minimum norm solution of (D0) if it exists, i.e.,

p0 = arg min {‖p‖ | p is a solution of (D0)}.

Minimum norm certificate is linked with the unique solution of (Dλ) in the following sense:

Lemma A.4 (Duval & Peyré (2015)). Let pλ be the unique solution of (Dλ). Then pλ converge to p0 as λ→ +0, where p0

is the minimal norm solution of D0.

Using this Lemma, we can show that under λ→ +0, the global minima of (Pλ) has its support which is arbitrary close to
that of (P0). Therefore we focus on (P0) and introduce the following concept. Let ∇Sd−1 := (Id − θθT)∇ which represents
the derivative on Sd−1. We note that∇Sd−1f(θ) = 0 means∇f(θ) = aθ for some a ∈ R.

Definition A.5 (NDSC (Non-Degenerate Source Condition) (Duval & Peyré, 2015)). We say that ν =
∑m
j=1 rjδθj satisfies

NDSC if the minimal norm certificate f∗(p0) satisfies the following condition:

• f∗(p0)(θj) = sgn(rj) (∀j ∈ [m]),

• |f∗(p0)(θ)| < 1 for any θ ∈ Sd−1 such that θ 6= θj (∀j ∈ [m]),

• ∇2
Sd−1f

∗(p0)(θj) is invertible for any j ∈ [m].
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Through the second and the third conditions, we can verify that for the unique solution pλ of (Dλ) f∗(pλ)(θ) = 1 holds
only in the neighborhood of θ = θj . Hence, the optimal solution of (Pλ) has its support only around θj . This yields that θ∗j
is close to the teacher parameter θ◦j for sufficiently small λ. Therefore, we just need to show NDSC for p0, but it is hard to
obtain the closed form of p0. To overcome this difficulty, we consider a “loose” version of p0, which is called pre-certificate.

Definition A.6 (pre-certificate (Duval & Peyré, 2015)). The pre-certificate associated with (Pλ) is defined as f∗(p†), where

p† = arg min {‖p‖ | 1 ≤ ∀j ≤ m, f∗(p)(θj) = 1,∇Sd−1f∗(p)(θj) = 0}.

Pre-certificate can be expressed by the minimal norm solution of a linear equation as we see below. If the pre-certificate
f∗(p†) satisfies the conditions in NDSC by replacing p0 with p†, then p† is an optimal solution of D0 by the optimality
condition (16). Moreover, by noticing that ‖p†‖ ≤ ‖p0‖, if f∗(p†) achieves the conditions in NDSC, it holds that p† = p0

and thus the NDSC condition holds for ν, which yields the optimality of ν. Therefore, we show that the pre-certificate
f∗(p†) satisfies the conditions in NDSC instead of directly showing it for the minimal norm certificate f∗(p0).

A.2. NDSC in the teacher-student settings

As we discussed in the previous section, we show the following property:

Proposition A.7 (NDSC in the teacher-student setting). Under Assumptions 3.1 and 3.2, for n > poly(m, d, log(1/δ)) with
δ > 0, the pre-certificate associated with the teacher-student settings satisfies the following conditions with probability at
least 1− δ:

• f∗(p†)(θ◦j ) = 1 (∀j ∈ [m]).

• |f∗(p†)(θ)| < 1 for any θ 6= θ◦j (∀j ∈ [m]).

• f∗(p†) is strictly concave at θ = θ◦j (∀j ∈ [m]).

From now on, we show this proposition. At first, we consider how the pre-certificate can be characterized in this setting.
When f∗(p)(·) is differentiable at θ◦j as a function of θ (⇔ there is no xi that is orthogonal to θ◦j , which holds a.s. for all
j ∈ [m]), the extremality condition is given as follows:{

f∗(p)(θ◦j ) = 1,

∇f∗(p)(θ◦j ) = αθ◦j .

For the ReLU activation, these are equivalent to

∇f∗(p0)(θ◦j ) = θ◦j , (17)

since it holds that 〈θ◦j ,∇f∗(p0)(θ◦j )〉 = f∗(p0)(θ◦j ). By writing down this equation, we get

1

n

n∑
i=1

pixi1l〈θ◦j , xi〉 ≥ 0} = θ◦j .

By considering the same equation for all j ∈ [m] and combining them, we get a linear equation about p as

1

n


x11l{〈θ◦1 , x1〉 ≥ 0} x21l{〈θ◦1 , x2〉 ≥ 0} . . . xn1l{〈θ◦1 , xn〉 ≥ 0}
x11l{〈θ◦2 , x1〉 ≥ 0} x21l{〈θ◦2 , x2〉 ≥ 0} . . . xn1l{〈θ◦2 , xn〉 ≥ 0}

...
...

. . .
...

x11l{〈θ◦m, x1〉 ≥ 0} x21l{〈θ◦m, x2〉 ≥ 0} . . . xn1l{〈θ◦m, xn〉 ≥ 0}




p1

p2

...
pn

 =


θ◦1
θ◦2
...
θ◦m

 .

By definition, p† is the minimum norm solution of this equation and represented by

p† = nX†0


θ◦1
θ◦2
...
θ◦m

 ,
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where

X0 =


x11l{〈θ◦1 , x1〉 ≥ 0} x21l{〈θ◦1 , x2〉 ≥ 0} . . . xn1l{〈θ◦1 , xn〉 ≥ 0}
x11l{〈θ◦2 , x1〉 ≥ 0} x21l{〈θ◦2 , x2〉 ≥ 0} . . . xn1l{〈θ◦2 , xn〉 ≥ 0}

...
...

. . .
...

x11l{〈θ◦m, x1〉 ≥ 0} x21l{〈θ◦m, x2〉 ≥ 0} . . . xn1l{〈θ◦m, xn〉 ≥ 0}

 ∈ Rmd×n

and X†0 denotes the Moore-Penrose inverse. Especially when X0 has full row rank (which we verify in the latter w.h.p.), it
holds that

p† = nXT
0 (X0X

T
0 )−1


θ◦1
θ◦2
...
θ◦m

 . (18)

Therefore, we get the closed form of f∗(p†) as follows.

Lemma A.8. Suppose that X0 has full row rank. Let X(θ) be

X(θ) =
(
x11l{〈θ, x1〉 ≥ 0}, x21l{〈θ, x2〉 ≥ 0}, . . . , xn1l{〈θ, xn〉 ≥ 0}

)
.

Then the following equality holds:

f∗(p†)(θ) =
1

n
θT
(
X(θ)XT

0

)(
1

n
X0X

T
0

)−1


θ◦1
θ◦2
...
θ◦m

 .

Each matrix in the expression of f∗(p†) of the above lemma can be written as follows:

1

n
X0X

T
0 =


K1,1 K1,2 . . . K1,m

K2,1
. . .

...
...

. . . Km−1,m

Km,1 . . . Km,m−1 Km,m

 ∈ Rdm×dm,

where

Kj1,j2 =
1

n

n∑
i=1

xix
T
i 1l{〈θ◦j1 , xi〉 ≥ 0, 〈θ◦j2 , xi〉 ≥ 0} ∈ Rd×d,

and

1

n
X(θ)XT

0 = (K1(θ),K2(θ), . . . ,Km(θ)) ∈ Rd×dm,

where

Kj(θ) =
1

n

n∑
i=1

xix
T
i 1l{〈θ◦j , xi〉 ≥ 0, 〈θ, xi〉 ≥ 0} ∈ Rd×d.

Since these two matrices 1
nX0X

T
0 and 1

nX(θ)XT
0 depend on the sample observation (xi)

n
i=1, it is hard to obtain its close

form expression. On the other hand, these are empirical versions of EDn

[
1
nX0X

T
0

]
and EDn

[
1
nX(θ)XT

0

]
, respectively.

Fortunately, we can write them down by closed forms, and thus we consider the population version f̄(θ) of f∗(p†)(θ)
instead, i.e.,

f̄(θ) = θTEDn

[
1

n
X(θ)XT

0

]
EDn

[
1

n
X0X

T
0

]−1


θ◦1
θ◦2
...
θ◦m

 . (19)
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Lemma A.9. Under the Assumption 3.1, the matrices in (19) are written by follows:

EDn

[
1

n
X0X

T
0

]
=

1

d


1
2 Id

1
4 Id . . . 1

4 Id
1
4 Id

1
2 Id . . . 1

4 Id
...

...
. . .

...
1
4 Id

1
4 Id . . . 1

2 Id

+
1

2πd


0d E1,2 . . . E1,m

E2,1
. . .

...
...

. . . Em−1,m

Em,1 . . . Em,m−1 0d

 ,

where Ej1,j2 is the symmetric matrix θ◦j1θ
◦T
j2

+ θ◦j2θ
◦T
j1

.

θTEDn

[
1

n
X(θ)XT

0

]
=

1

2d

(
π−φ1

π θT + sinφ1

π θ◦T1 , π−φ2

π θT + sinφ2

π θ◦T2 , . . . , π−φm

π θT + sinφm

π θ◦Tm
)

where φj = arccos(〈θ, θ◦j 〉).

We know the matrix EDn

[
1
nX0X

T
0

]
is a positive definite. Indeed, Safran et al. (2020, Theorem 3.2) shows that

1
2 Id

1
4 Id . . . 1

4 Id
1
4 Id

1
2 Id . . . 1

4 Id
...

...
. . .

...
1
4 Id

1
4 Id . . . 1

2 Id

+
1

2π


0d E1,2 . . . E1,m

E2,1
. . .

...
...

. . . Em−1,m

Em,1 . . . Em,m−1 0d

 �
(

1

4
− 1

2π

)
Imd,

which leads to

EDn

[
1

n
X0X

T
0

]
� 1

d

(
1

4
− 1

2π

)
Imd. (20)

By the straight forward calculation, we can check that

(
EDn

[
1

n
X0X

T
0

])−1


θ◦1
θ◦2
...
θ◦m

 = ad


θ◦1
θ◦2
...
θ◦m

+ bd


∑m
j=1 θ

◦
j∑m

j=1 θ
◦
j

...∑m
j=1 θ

◦
j

 , (21)

where a and b satisfy { (
1 + m−1

π

)
a+

(
m+1

2 + m−1
π

)
b = 1,

a+
(

2
π +m+ 1

)
b = 0.

(22)

By solving the equation(22), we get the closed form of a, b as

a =
2π(πm+ π + 2)

2πm2 + (π2 − 2π + 4)m+ π2 + 4π − 4
, b = − 2π2

2πm2 + (π2 − 2π + 4)m+ π2 + 4π − 4
.

Note that for any integer m, it holds that a > 0, b < 0 and a = −
(

2
π +m+ 1

)
b.

By combining Lemma A.9 and Eq. (21), we can write f̄ by an explicit form given as

f̄(θ) = (a+ b)

m∑
j=1

(
π − φj
π

cosφj +
sinφj
π

)
+ b

m∑
j=1

∑
j′ 6=j

π − φj
π

cosφj′ .

By the construction, it is expected that the function f∗(p†) converges to f̄ with n→∞. Indeed, we can show that

1. f̄ satisfies the conditions of NDSC.

2. f∗(p†) converges to f̄ while satisfying the conditions in NDSC.
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At first, we give the first assertion.

Lemma A.10. f̄(·) satisfies {
f̄(θ◦j ) = 1 (∀j ∈ [m]),

0 < f̄(θ) < 1 (θ 6= θ◦j (∀j ∈ [m]), θ ∈ Sd−1).

Proof. Let us consider the induction on m. If m = 1, Lemma holds clearly with

f̄(θ) =
π − φ1

π
cosφ1 +

sinφ1

π
.

Below we consider the case m ≥ 2 and assume that the conclusion holds for m − 1. At first, if θ = θ◦j for a j ∈ [m], it
holds that

f̄(θ) = (a+ b)

(
π − 0

π
cos 0 +

sin 0

π

)
+ (a+ b)

∑
j 6=j

(
π − π/2

π
cosπ/2 +

sinπ/2

π

)

+ b
∑
j′ 6=j

π − π/2
π

cos 0

=

(
1 +

m− 1

π

)
a+

(
m+ 1

2
+
m− 1

π

)
b = 1,

which gives the first equality. To prove the other case, we consider the expansion

θ =

m∑
j=1

kjθ
◦
j + (orthogonal term to span{θ◦1 , θ◦2 , . . . , θ◦m}) .

Because of the orthogonality of (θ◦j )mj=1, for each θ ∈ Sd−1, (kj)
m
j=1 are uniquely determined and satisfy the inequality∑m

j=1 k
2
j ≤ 1.

Then, because the orthogonal term does not affect the value of f̄ , we can write

f̄(k1, . . . , km) = (a+ b)

m∑
j=1

π − arccos(kj)

π
kj +

√
1− k2

j

π

+ b

m∑
j=1

∑
j′ 6=j

π − arccos(kj)

π
kj′ .

Firstly we show f̄ < 1. Suppose that there exists j ∈ [m] such that kj = 0. Without loss of generality, we consider the case
km = 0. Then we have

f̄(k1, . . . , km−1, 0)

= (a+ b)

m−1∑
j=1

π − arccos(kj)

π
kj +

√
1− k2

j

π


+ (a+ b)

1

π
+ b

m−1∑
j=1

∑
j′ 6=j

1≤j′≤m−1

π − arccos(kj)

π
kj′ +

1

2
b

m−1∑
j=1

kj

≤ −b


(
m− 1 +

2

π

)m−1∑
j=1

π − arccos(kj)

π
kj +

√
1− k2

j

π

− m−1∑
j=1

∑
j′ 6=j

1≤j′≤m−1

π − arccos(kj)

π
kj′


− b

m−1∑
j=1

π − arccos(kj)

π
kj +

√
1− k2

j

π

+ (a+ b)
1

π
+

1

2
b

m−1∑
j=1

kj .
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By the induction assumption, the first term takes maximum value only when kj = 1 for some 1 ≤ j ≤ m− 1. For the rest
term, we have

−b
m−1∑
j=1

π − arccos(kj)

π
kj +

√
1− k2

j

π

+ (a+ b)
1

π
+

1

2
b

m−1∑
j=1

kj

= −b


m−1∑
j=1

π − arccos(kj)

π
kj +

√
1− k2

j

π

− (m+
2

π

)
1

π
− 1

2

m−1∑
j=1

kj


≤ −b


m−1∑
j=1

(
1

π
+

1

2
kj +

(
1

2
− 1

π

)
k2
j

)
−
(
m+

2

π

)
1

π
− 1

2

m−1∑
j=1

kj


= −b

{
−
(

1 +
2

π

)
1

π
+

(
1

2
− 1

π

)}
,

where we use the inequality

π − arccos(kj)

π
kj +

√
1− k2

j

π
≤ 1

π
+

1

2
k +

(
1

2
− 1

π

)
k2,

which holds with equality if k = 0 or 1. Therefore f̄ takes maximum value at θ = θ◦j for some 1 ≤ j ≤ m, which gives
the conclusion. Then we consider the case where kj 6= 0 for all j ∈ [m]. We only need to consider a case

∑m
j=1 kj ≥ 0.

Indeed, it holds that

f̄(k1, . . . , km)− f̄(−k1, . . . ,−km)

= (a+ b)

m∑
j=1

π − arccos(kj)

π
kj +

√
1− k2

j

π
− arccos(kj)

π
(−kj)−

√
1− k2

j

π


+ b

m∑
j=1

∑
j′ 6=j

(
π − arccos(kj)

π
kj′ −

arccos(kj)

π
(−kj′)

)

= (a+ b)

m∑
j=1

kj + b

m∑
j=1

∑
j′ 6=j

kj = −b
(

1 +
2

π

) m∑
j=1

kj > 0.

Now we consider the conversion (k1, . . . , kj1 , . . . , kj2 , . . . , km) 7→ (k1, . . . ,
√
k2
j1

+ k2
j1
, 0, . . . , km) for some j1 6= j2. For

the notation simplicity, we consider that j1 = 1, j2 = 2. Since f̄ is permutation-invariant, this does not lose the generality.
Let r :=

√
k2

1 + k2
2 > 0, then

f̄(k1, . . . , kj1 , . . . , kj2 , . . . , km)− f̄(k1, . . . ,
√
k2
j1

+ k2
j1
, 0, . . . , km)

= (a+ b)

(
π − arccos(k1)

π
k1 +

√
1− k2

1

π
+
π − arccos(k2)

π
k2 +

√
1− k2

2

π

−π − arccos(r)

π
r +

√
1− r2

π
− 1

π

)
+ b

(
π − arccos(k1)

π
k2 +

π − arccos(k2)

π
k1

)

− b1

2
kr + b

 m∑
j=3

π − arccos(kj)

π

 (k1 + k2 − r)

+ b

m∑
j=3

kj
− arccos(k1)− arccos(k2) + arccos(r) + π/2

π
.
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By using Lemma C.5, this value is upper bounded by

(a+ b)
1

2
(k1 + k2 − r)

+ b

(
π − arccos(k1)

π
k2 +

π − arccos(k2)

π
k1

)
− b1

2
r + b

 m∑
j=3

π − arccos(kj)

π

 (k1 + k2 − r)

+ b

m∑
j=3

kj
− arccos(k1)− arccos(k2) + arccos(r) + π/2

π

=− b
{(

m+
2

π

)
1

2
(k1 + k2 − r)

−
(
π − arccos(k1)

π
k2 +

π − arccos(k2)

π
k1

)
+

1

2
r −

 m∑
j=3

π − arccos(kj)

π

 (k1 + k2 − r)

−
m∑
j=3

kj
− arccos(k1)− arccos(k2) + arccos(r) + π/2

π

 .

=− b


m+

2

π
−

 m∑
j=3

π − arccos(kj)

π

− 1

2

 1

2
(k1 + k2 − r)

−
(
π/2− arccos(k1)

π
k2 +

π/2− arccos(k2)

π
k1

)

−
m∑
j=3

kj
− arccos(k1)− arccos(k2) + arccos(r) + π/2

π

 .

(23)

In the latter we ignore the multiplied constant −b > 0. Then we consider the two cases: (i) we can take k1 > 0,k2 < 0 (ii)
kj > 0 for all j ∈ [m]. Note that since

∑m
j=1 kj ≥ 0, there must be a integer j ∈ [m] such that kj > 0. Firstly we consider

the case (i). In this case it holds that
∑m
j=3 kj ≥ −1.

Firstly, we consider to evaluate the term

1

2

(
m+

2

π

)
−

 m∑
j=3

π − arccos(kj)

π

− 1

2

Firstly, we have an inequality for k ≥ 0,

1

2
+

1

π
k ≤ π − arccos(k)

π
≤ 1

2
+

1

π
k +

(
1

2
− 1

π

)
k2

and for for k ≤ 0,

1

2
+

1

π
k −

(
1

2
− 1

π

)
k2 ≤ π − arccos(k)

π
≤ 1

2
− 1

π
k, (24)

which gives

m− 2

2
+

1

π

m∑
j=3

kj −
(

1

2
− 1

π

)
≤

m∑
j=3

π − arccos(k)

π
≤ m− 2

2
+

1

π

m∑
j=3

kj +

(
1

2
− 1

π

)
.

Then it follows that

2

π
− 1

π

m∑
j=3

kj ≤
1

2

(
m+

2

π

)
−

 m∑
j=3

π − arccos(kj)

π

− 1

2
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and

1

2

(
m+

2

π

)
−

 m∑
j=3

π − arccos(kj)

π

− 1

2
≤ 1− 1

π

m∑
j=3

kj .

Then by using the inequality k1 + k2 − r < 0 and − arccos(k1) − arccos(k2) + arccos(r) + π/2 < 0, we can get the
inequality (23) ≤ 0. For the case (ii), we consider the case k1 ≤ k2 ≤ · · · ≤ km Then using Lemma C.7, we can show that

(23) ≤

1

2

(
m+

2

π

)
−

 m∑
j=3

π − arccos(kj)

π

− 1

2

 (k1 + k2 − r)

−
(

1

2
− arccos(k1)

π

)
k2 −

(
1

2
− arccos(k2)

π

)
k1

≤ 0.

Thus we only need to treat the case where there exists j such that kj = 0, which gives the conclusion.

Then we give the proof to the closeness of f∗(p†) and f̄ . We show this in two perspective, global and local. In global we
show that ‖f∗(p†)− f̄‖∞ will be small with sufficiently large n. We need another explanation to local, where θ close to θj
for j ∈ [m], because only the global discussion, there may be the point where f∗ takes the value larger than 1. Firstly we
give the global result.
Lemma A.11 (Global concentration). Under the Assumption 3.1, there exists a constant C independent with m,n, d, for
any 0 < δ < 1, with probability more than 1− δ, it holds

sup
θ
|f∗(p†)(θ)− f̄(θ)| ≤ C

(
md

√
d log n

n
+md

√
md log 1/δ

n

)
.

Remark that f̄ is defined as the expected function of f∗(p†), in the sense that we take expected value of two matrices,
1
nX(θ)XT

0 and 1
nX0X

T
0 . Therefore we aim to concentration inequalities for these respectively.

Lemma A.12 (The concentration of 1
nX0X

T
0 ). We assume the Assumption 3.1 holds. Let K̂0 = 1

nX0X
T
0 , then for any

0 < t < 1/12d, we have

Pr

(∥∥∥K̂0 − EDn

[
K̂0

]∥∥∥
op
≥ t
)
≤ 2md exp

(
− nt2

4(2m2 + 2mt/3)

)
, (25)

Pr

(∥∥∥∥K̂0
−1
− EDn

[
K̂0

]−1
∥∥∥∥

op

≥ t

)
≤ 2md exp

(
− nt2

600(300d4m2 + 2d2mt/3)

)
. (26)

Proof. Note that K̂0 is decomposed as

K̂0 =
1

n

n∑
i=1

Ai :=
1

n

n∑
i=1

(
xix

T
i 1l{〈θj1 , xi〉 ≥ 0 ∩ 〈θj2 , xi〉 ≥ 0}

)
(j1−1)d≤i≤j1d
(j2−1)d≤j≤j2d

.

For each component Ai ∈ Rmd×md, it holds that EDn [ 1
n (Ai − EDn [Ai])] = 0d and∣∣∣∣ 1n (Ai − EDn

[Ai])

∣∣∣∣ ≤ 2

n
m,

which is obtained by ∥∥∥∥ 1

n
(Ai − EDn

[Ai])

∥∥∥∥
op

≤
∥∥∥∥ 1

n
Ai

∥∥∥∥
op

+

∥∥∥∥ 1

n
EDn

[Ai]

∥∥∥∥
op

≤
∥∥∥∥ 1

n
Ai

∥∥∥∥
F

+
1

n
EDn

[‖Ai‖F] ≤ 2

n
m,
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where we use Jensen’s inequality,‖A‖op ≤ ‖A‖F for a matrix A and ‖xi‖ = 1. Therefore we can apply Lemma C.8 with
Xi = 1

n (Ai − EDn [Ai]). As a consequence, it holds that for any t > 0,

Pr
(
‖K̂0 − EDn [K̂0]‖op ≥ t

)
≤ 2md exp

(
− nt2

4(2m2 + 2mt/3)

)
.

This gives Eq. (25). Next we consider Eq. (26). Since it holds that EDn
[K̂0] � (1/4 − 1/2π)1/dImd by Eq. (20), if∥∥∥K̂0 − EDn

[
K̂0

]∥∥∥
2
≤ t holds, we have K̂0 � ((1/4− 1/2π)1/d− t)Imd, which gives

∥∥∥K̂−1
0 − EDn [K̂0]−1

∥∥∥
op
≤
∥∥∥K̂0

∥∥∥−1

op

∥∥∥K̂0 − EDn [K̂0]
∥∥∥

op

∥∥∥EDn [K̂0]
∥∥∥−1

op
≤ d2t

(1/4− 1/2π)(1/4− 1/2π − dt)

≤ 144d2t

1− 12dt
,

where we use 1/6 > 1/2π. This leads to

Pr

(∥∥∥∥K̂0
−1
− EDn

[
K̂0

]−1
∥∥∥∥

op

≥ 144d2t

1− 12dt

)
≤ 2md exp

(
− nt2

4(2m2 + 2mt/3)

)
.

By replacing t by t
144d2+12dt ≤

t
150d2 , we get the conclusion.

Lemma A.13 (The concentration of 1
nX(θ)XT

0 ). Let K̂(θ) = 1
nX(θ)XT

0 ∈ Rd×md. Then there exists a constant C > 0
independent of n and d, for any δ > 0, with probability at least 1− δ, it holds that

sup
θ

∥∥∥K̂(θ)− EDn

[
K̂(θ)

]∥∥∥
op
≤ C

√
md log n

n
+ 2

√
m log(1/δ)

2n
.

Proof. At first, we remark that

sup
θ

∥∥∥K̂(θ)− EDn

[
K̂(θ)

]∥∥∥
op

= sup
θ,‖w‖≤1,‖v‖≤1

w∈Rmd,v∈Rd

〈
v,
(
K̂(θ)− EDn

[
K̂(θ)

])
w
〉

= sup
θ,‖w‖≤1,‖v‖≤1

w∈Rmd,v∈Rd

{〈
v, K̂(θ)w

〉
− EDn

[〈
v, K̂(θ)w

〉]}
.

In the above equation, it holds that

〈
v, K̂(θ)w

〉
=

1

n

n∑
i=1

〈v, xi〉〈w, x̃i〉1l{〈θ, xi〉 ≥ 0},

where x̃i := (xTi 1l{〈θ∗1 , xi〉 ≥ 0}, . . . , xTi 1l{〈θ∗m, xi〉 ≥ 0}) ∈ Rmd. Therefore we consider to bound the Rademacher
complexity of

F :=

{
r(θ, v, w) =

1

n

n∑
i=1

〈v, xi〉〈w, x̃i〉1l{〈θ, xi〉 ≥ 0} | (θ, v, w) ∈ Sd−1 × Rd × Rmd, ‖v‖ ≤ 1, ‖w‖ ≤ 1

}
.
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Let ‖f‖n =
√

1
nf

2(xi). For two pairs (θ, v, w), (θ′, v′, w′) ∈ (Sd−1 × Rd × Rmd)2, we have

‖r(θ, v, w)− r(θ′, v′, w′)‖2n =
1

n

n∑
i=1

(〈v, xi〉〈w, x̃i〉1l{〈θ, xi〉 ≥ 0} − 〈v′, xi〉〈w′, x̃i〉1l{〈θ′, xi〉 ≥ 0})2

=
1

n

n∑
i=1

(
〈v − v′, xi〉〈w, x̃i〉1l{〈θ, xi〉 ≥ 0}

+ 〈v′, xi〉〈w − w′, x̃i〉1l{〈θ, xi〉 ≥ 0}

+ 〈v′, xi〉〈w − w′, x̃i〉(1l{〈θ, xi〉 ≥ 0} − 1l{〈θ′, xi〉 ≥ 0})
)2

≤ 3

(
‖v − v′‖2m+ ‖w − w′‖2m+

∣∣∣1l{〈θ′, xi〉 ≥ 0} − 1l{〈θ, xi〉 ≥ 0}
∣∣∣2m) ,

where we use ‖xi‖ = 1 and ‖x̃i‖ ≤
√
m for any i ∈ [n], and (a+ b+ c)2 ≤ 3(a2 + b2 + c2). By this inequality, we get an

upper bound of the covering number of F as

N (F , ε, ‖ · ‖n) ≤

C0n
d+1

(
1
ε

√
1
m

)md+d

ε < 3√
m
,

1 otherwise,

for a some constant C0 > 0 which is independent of the other parameters. Note that the term nd+1 is derived by the covering
over θ ∈ Sd−1 and the term 1

ε

(√
n
m

)md+d
is derived by the covering over (v, w) ∈ Rd × Rmd. Therefore by using Dudley

integral argument, we get an upper bound of Rademacher complexity as

Rn(F) ≤ c√
n

∫ 3√
m

0

√
(d+ 1) log n+

md+ d

2
log

1

m
− (md+ d) log ε+ logC0dε ≤ C

√
md log n

n
(27)

for a some constant C > 0. Finally by using the standard Rademacher complexity bound, we get the conclusion.

Combining these concentration inequalities, we give the proof to global concentration.

Proof of Lemma A.11. We consider the decomposition as

sup
θ
|f∗(p†)(θ)− f̄(θ)| = sup

θ

∣∣∣∣∣∣∣∣∣θ
TK̂(θ)

(
K̂0
−1
− EDn

[
K̂0

]−1
)

θ◦1
θ◦2
...
θ◦m



+θT
(
K̂(θ)− E[K̂(θ)]

)
EDn

[
K̂0

]−1


θ◦1
θ◦2
...
θ◦m


∣∣∣∣∣∣∣∣∣

≤
∥∥∥∥K̂0

−1
− EDn

[
K̂0

]−1
∥∥∥∥

op

m+ sup
θ

∥∥∥K̂(θ)− EDn [K̂(θ)]
∥∥∥

op

√
m

(
1

4
− 1

2π

)−1

d,

By using Eq. (26) in Lemma A.12 with t = C
√

md2 log 1/δ
n and Lemma A.13, we get the conclusion.

Next we show the local evaluation. More precisely, we show that it holds that f∗(p†)(θ) ≤ 1 around θ◦j and equality holds
only at θ = θ◦j .

Lemma A.14 (Local evaluation). Let C > 0 be a constant and n > poly(m, d, log 1/δ). Then with probability at least
1− δ, for all j ∈ [m], if dist(θ, θj) < Cn−1/4 and θ 6= θ◦j it holds that f̄(θ) < 1 .
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To prove Lemma A.14, we focus on the gradient ∇f∗(p†)(θ) and utilize an equality 〈θ,∇f∗(p†)(θ)〉 = f∗(p†)(θ), which
is derived by the 1-homogeneity of ReLU. For simplicity, we p as p† in the latter of this section. At first, we see that p is
given by the form

pi =
(
xTi 1l{〈θ◦1 , xi〉 ≥ 0}, . . . , xTi 1l{〈θ◦m, xi〉 ≥ 0}

)( 1

n
X0X

T
0

)−1


θ◦1
θ◦2
...
θ◦m

 ,

if the matrix 1
nX0X

T
0 is invertible, where pi denotes the i’s component of p. As a preliminary, we consider the “expected

value” of p as

qi =
(
xTi 1l{〈θ◦1 , xi〉 ≥ 0}, . . . , xTi 1l{〈θ◦m, xi〉 ≥ 0}

)(
EDn

[
1

n
X0X

T
0

])−1


θ◦1
θ◦2
...
θ◦m

 .

Lemma A.15. For any i ∈ [n], it holds that 0 ≤ qi ≤ (a− bm)d
√
m.

Proof. Using Eq. (21), qi is expressed by

qi =
(
xTi 1l{〈θ◦1 , xi〉 ≥ 0}, . . . , xTi 1l{〈θ◦m, xi〉 ≥ 0}

)
ad


θ◦1
θ◦2
...
θ◦m

+ bd


∑m
j=1 θ

◦
j∑m

j=1 θ
◦
j

. . .∑m
j=1 θ

◦
j




= ad

m∑
j=1

σ(〈θ◦j , xi〉) + bd

m∑
j1=1

m∑
j2=1

〈θ◦j1 , xi〉1l{〈θ
◦
j2 , xi〉 ≥ 0}.

Then the upper bound is obtained clearly. For the lower bound, we have that

qi ≥ ad
m∑
j=1

σ(〈θj , xi〉) + bd

m∑
j1=1

m∑
j2=1

σ(〈θj1 , xi〉)

= d

m∑
j=1

(
aσ(〈θj , xi〉) +mbσ(〈θj , xi〉)

)

= −
(

2

π
+ 1

)
b

m∑
j=1

σ(〈θj , xi〉) ≥ 0.

In the last inequality we use fact that b < 0 and a+mb = −
(

2
π + 1

)
b.

Next we give a bound on the distance between pi and qi, which can be evaluated trough the concentration inequality of
1
nX0X

T
0 (Lemma A.12).

Lemma A.16. On the distance between pi and qi, we have the following inequality:

Pr

(
max
i∈[n]
{|pi − qi|} ≥ t

)
≤ 2md exp

(
− nt2

600(300d4m2 + 2d2mt/3)

)
.

Proof. By Lemma 26, it holds that

Pr

(∥∥∥∥K̂0
−1
− EDn

[
K̂0

]−1
∥∥∥∥

op

≥ t

)
≤ 2md exp

(
− nt2

600(300d4m3 + 2d2m2t/3)

)
.
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Since

∥∥∥∥∥∥∥∥∥


θ1

θ2

...
θm


∥∥∥∥∥∥∥∥∥ =
√
m and

∥∥∥∥∥∥∥∥∥


xi1l{〈θ◦1 , xi〉 ≥ 0}
xi1l{〈θ◦2 , xi〉 ≥ 0}

...
xi1l{〈θ◦m, xi〉 ≥ 0}


∥∥∥∥∥∥∥∥∥ ≤
√
m, we get

Pr

(
max
i∈[n]
{|pi − qi|} ≥ mt

)
≤ 2md exp

(
− nt2

600(300d4m2 + 2d2mt/3)

)
.

By replacing t by t/m, we get the conclusion.

We prepare another Lemma, which is needed to evaluate variation of the gradient∇f∗(p)(θ) around each θ◦j .

Lemma A.17. Assume the Assumption 3.1 holds. For any θ ∈ Sd−1 and τ > 0, let Aτ := {xi |
∣∣dist(x, θ)− π

2

∣∣ < τ},
then for 0 ≤ t ≤ 1, it holds that

Pr

(
#Aτ
n
≥ t+

dτ√
π

)
≤ exp

(
− nt2

2(dτ/
√
π + t/3)

)
.

Proof. For any given θ ∈ Sd−1, Cai et al. (2013, Lemma 12) shows that for each i, dist(θ◦j , xi) is distributed on [0, π] with
density

h(ϕ) =
1√
π

Γ
(
d
2

)
Γ
(
d−1

2

) (sinϕ)d−2.

This has a maximum value h(π/2) = 1√
π

Γ( d
2 )

Γ( d−1
2 )

. This leads to

Pr
(∣∣∣dist(θ◦j , xi)−

π

2

∣∣∣ ≤ τ) ≤ 1√
π

Γ
(
d
2

)
Γ
(
d−1

2

)2τ ≤ dτ√
π

for any t ∈ [0, π2 ]. This gives that #Aτ ∼ B(n,prob) with prob ≤ dτ√
π

, where B(·, ·) denotes the Binomial distribution.
Then by using Bernstein’s inequality, we get the conclusion.

Combining Lemma A.15–A.17, we give a proof of Lemma A.14.

Proof of Lemma A.14. At first, we have

θ◦j =
1

n

∑
i:〈θj ,xi〉≥0

pixi.

At the place θ, let I1(resp. I2) be the subset of [n] such that 〈θ◦j , xi〉 ≥ 0 and 〈θ, xi〉 < 0 (resp. 〈θ◦j , xi〉 < 0 and 〈θ, xi〉 ≥ 0),
the gradient at θ is expressed as

〈θ,∇f∗(p)〉 =

〈
θ, θj −

1

n

∑
I1

pixi +
1

n

∑
I2

pixi

〉

= 〈θ, θj〉 −
1

n

∑
I1

pi 〈θ, xi〉+
1

n

∑
I2

pi 〈θ, xi〉

= 〈θ, θj〉−
1

n

∑
I1

qi 〈θ, xi〉+
1

n

∑
I2

qi 〈θ, xi〉

− 1

n

∑
I1

(pi − qi) 〈θ, xi〉+
1

n

∑
I2

(pi − qi)〈θ, xi〉

.

Let
〈
θ, θ◦j

〉
:= 1− T for T > 0, then we have ‖θ − θ◦j ‖ ≤ T and it holds that
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• For i ∈ I1, −T ≤ 〈θ, xi〉 < 0,

• For i ∈ I2, 0 ≤ 〈θ, xi〉 ≤ T .

Then by using the fact qi ≥ 0 and Lemma A.16, we get

〈θ,∇f∗(p)(θ)〉 ≤ 1− T + T
max qi
n

#{I1 ∪ I2}

+

∣∣∣∣∣ 1n∑
I1

(pi − qi) 〈θ, xi〉

∣∣∣∣∣+

∣∣∣∣∣ 1n∑
I2

(pi − qi) 〈θ, xi〉

∣∣∣∣∣
(28)

≤ 1− T
{

1−
(

max qi
n + t

n

)
#{I1 ∪ I2}

}
(29)

with probability at least RHS of Lemma A.16. It remains to show that 1−
(

max qi
n + t

n

)
#{I1∪ I2} > 0 while T ≤ C/n1/4.

By the definition, #{I1 ∪ I2} is upper bounded by #AT associated with θ◦j . Thus we can show that
(

max qi
n + t

n

)
#{I1 ∪

I2} = O(T ) w.h.p. under n > poly(m, d, log 1/δ) and this gives the conclusion.

A.3. Proof of Theorem 3.5

Combining the discussion in the previous section, we give the proof of Theorem 3.5. At first, we show that NDSC holds in
the teacher student setting w.h.p. (Proposition A.7).

proof of Proposition A.7. At first, by Eq. (25) in Lemma A.12, 1
nX0X

T
0 is positive definite with probability at least

1 − Cm
√

log(md)/n for a constant C > 0. Suppose that this holds, p† exists and is written by Eq. (18). In this case,
f∗(p†)(θ◦j ) = 1 holds clearly by the construction for any j ∈ [m].

Next we show the concavity around θ◦j for each j. Note that ∇f∗(p†)(θ◦j ) = θ∗j . Therefore it holds that∇f∗(p†)(θ) = θ∗j
for θ sufficiently close to θ◦j to satisfy sgn(〈θ, xi〉) = sgn(〈θ◦j , xi〉) for all i ∈ [n], since

∇f∗(p†)(θ) =
1

n

∑
i:〈θ,xi〉≥0

p†xi =
1

n

∑
i:〈θ◦j ,xi〉≥0

p†ixi = ∇f∗(p†i )(θ
◦
j ).

Hence, it holds that 〈θ,∇f∗(p†)(θ)〉 = 〈θ, θ◦j 〉 around θ◦j and this is clearly a concave. Finally we show the second
condition, i.e., |f∗(p†)(θ)| < 1 for any θ 6= θ◦j (∀j ∈ [m]). By Lemma A.11, we know for sufficiently large n, if there exists
a point where |f∗(p†)(θ)| ≥ 1, it must be around θ◦j . Moreover, by Lemma A.14, we can ensure that there must be no
point other than θ◦j until the function value decreases to 1− O(T ) = 1− O(n−1/4). Combining these results, we get the
conclusion.

proof of Proposition A.1. Assume that the NDSC holds, which is ensured by Proposition A.7. Let pλ be the unique solution
of (Pλ). By Lemma A.4, for sufficiently small λ > 0, it holds that f∗(pλ)(θ) only takes value 1 at θ = θ∗j (j ∈ [m]) which
satisfies sgn(〈θ∗j , xi〉) = sgn(〈θ◦j , xi〉) for all i ∈ [n]. Moreover, since ‖θ◦j − θ∗j ‖ can be arbitrary small as λ→ +0, we get
the first conclusion. To complete the proof, we discuss (r∗j )mj=1.

Firstly, we show that (r∗j )mj=1 are uniquely determined. By the optimality condition (14), it holds that

(pλ)i = − 1

λ
(f(xi; ν

∗)− yi) (∀i ∈ [n]).

Remind that pλ is uniquely determined. Let ν∗ =
∑m
j=1 r

∗
j δθ∗j and rearranging this equation, we have

m∑
j=1

r∗jσ(〈θ∗j , xi〉) = −λ(pλ)i + yi (∀i ∈ [n]). (30)

This can be seen as a linear equation about r∗ := (r∗1 , . . . , r
∗
m)T, that is,

Ar∗ = −λpλ + y,
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where y = (y1, . . . , yn) ∈ Rn and A = (σ(〈θ∗j , xi〉))i,j ∈ Rn×m. We can show that n ≥ poly(m, d, log 1/δ) and
sufficiently small λ, A has column full rank with probability at least 1− δ. Indeed, A can be decomposed as

A = XT
0


θ∗1 0 · · · 0
0 θ∗2 · · · 0
...

...
. . .

...
0 · · · 0 θ∗m

 ,

where the second matrix has column full rank and we have already shown that X0 has column full rank w.h.p.. Consequently,
we can show the uniqueness of (r∗j )mj=1. Moreover, taking the limit λ→ +0 in Eq. (30), we have

∑m
j=1 r

∗
jσ(〈θ∗j , xi〉)→

yi =
∑m
j=1 r

◦
jσ(〈θ◦j , xi〉) (i ∈ [n]). Then, by using θ∗j → θ◦j and linear independent of (σ(〈θ◦j , ·〉))mj=1 which holds w.h.p.,

we get (r∗j )mj=1 → (r◦j )mj=1 as λ→ +0. This gives the conclusion.

To complete the proof, we need to evaluate how close (r∗j , θ
∗
j )mj=1 and teacher parameters (r◦j , θ

◦
j )mj=1 will be. This

quantitative evaluation is obtained by using the form ν∗ =
∑m
j=1 r

∗
j δθ∗j and strong convexity of the empirical risk, as we see

in the proof below.

proof of Theorem 3.5. For sufficiently large n and small λ > 0, we can assume that the optimal solution is written by a
form ν∗ =

∑m
j=1 r

∗
j δθ∗j , as we have shown in Proposition A.1. Then, by the optimality of ν∗, it holds that

1

2n

n∑
i=1

(f(xi; ν
∗)− f(xi; ν

◦))2 + λ

m∑
j=1

|r∗j | ≤
1

2n

n∑
i=1

(f(xi; ν
◦)− f(xi; ν

◦))2 + λ

m∑
j=1

|r◦j |.

This yields that

1

2n

n∑
i=1

(f(xi; ν
∗)− f(xi; ν

◦))2 ≤ λ
m∑
j=1

(|r◦j | − |r∗j |) ≤ λ
m∑
j=1

|r◦j − r∗j |.

To get the lower bound on the left side, we evaluate its expected value over (xi)
m
i=1, i.e., 1

2‖f(·; ν∗)− f(·; ν◦)‖2L2(PX ). Now
we have

‖f(·; ν∗)− f(·; ν◦)‖2L2(PX ) =

m∑
j=1

‖r◦jσ(〈θ◦j , ·〉)− r∗jσ(〈θ∗j , ·〉)‖2L2(PX )

+
∑
j 6=j′

〈
r◦jσ(〈θ◦j , ·〉)− r∗jσ(〈θ∗j , ·〉), r◦j′σ(〈θ◦j′ , ·〉)− r∗j′σ(〈θ∗j′ , ·〉)

〉
L2(PX )

.

Then we evaluate the each term. For j ∈ [m], let φ = dist(θ◦j , θ
∗
j ). Then, we obtain

‖r◦jσ(〈θ◦j , ·〉)− r∗jσ(〈θ∗j , ·〉)‖2L2(PX )

=r◦j
2EX [σ(〈θ◦j , X〉)2]− 2r◦j r

∗
jEX [σ(〈θ◦j , X〉)σ(〈θ∗j , X〉)] + r∗j

2EX [σ(〈θ∗j , X〉)2]

=
1

2d
r◦j

2 +
1

2d
r∗j

2 − 2r◦j r
∗
j

1

2d

(
π − φ
π
〈θ∗j , θ◦j 〉+

sinφ

π

)
=

1

2d

[
r◦j

2 − 2r◦j r
∗
j + r∗j

2 + 2r◦j r
∗
j

(
1− π − φ

π
〈θ∗j , θ◦j 〉 −

sinφ

π

)]
=

1

2d

[
(r◦j − r∗j )2 + 2r◦j r

∗
j

(
1− 〈θ∗j , θ◦j 〉 −

φ

π
(1− 〈θ∗j , θ◦j 〉) +

φ− sinφ

π

)]
=

1

2d

[
(r◦j − r∗j )2 + 2r◦j r

∗
j

(
1− φ

π

)
(1− 〈θ∗j , θ◦j 〉)

]
+O(φ3),

where EX denotes the expectation over PX . Since 1 − 〈θ∗j , θ◦j 〉 = Θ(φ2), the higher order term O(φ3) is negligible for
sufficiently small ε > 0, which is the same as Proposition A.1.



On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting

For j 6= j′ and x,y ∈ {◦, ∗}, let φxy
j,j′ = dist(θx

j , θ
y
j′). Then, we have that〈

r◦jσ(〈θ◦j , ·〉)− r∗jσ(〈θ∗j , ·〉), r◦j′σ(〈θ◦j′ , ·〉)− r∗j′σ(〈θ∗j′ , ·〉)
〉
L2(PX )

=
1

2d

[
r◦j r
◦
j′

(
π − φ◦◦j,j′

π
〈θ◦j , θ◦j′〉+

sinφ◦◦j,j′

π

)
− r◦j r∗j′

(
π − φ◦∗j,j′

π
〈θ◦j , θ∗j′〉+

sinφ◦∗j,j′

π

)

− r∗j r◦j′
(
π − φ∗◦j,j′

π
〈θ∗j , θ◦j′〉+

sinφ∗◦j,j′

π

)
+ r∗j r

∗
j′

(
π − φ∗∗j,j′

π
〈θ∗j , θ∗j′〉+

sinφ∗∗j,j′

π

)]

=
1

2πd

{
(r◦j − r∗j )(r◦j′ − r∗j′)

+ r◦j r
◦
j′
[
(π − φ◦◦j,j′)〈θ◦j , θ◦j′〉+ sinφ◦◦j,j′ − 1

]
− r◦j r∗j′

[
(π − φ◦∗j,j′)〈θ◦j , θ∗j′〉+ sinφ◦∗j,j′ − 1

]
− r∗j r◦j′

[
(π − φ∗◦j,j′)〈θ∗j , θ◦j′〉+ sinφ∗◦j,j′ − 1

]
+ r∗j r

∗
j′
[
(π − φ∗∗j,j′)〈θ∗j , θ∗j′〉+ sinφ∗∗j,j′ − 1

]}
.

Here, we note that 〈θ◦j , θ∗j′〉 = cosφ◦∗j,j′ = −(φ◦∗j,j′ − π/2) + O((φ◦∗j,j′ − π/2)3) and sinφ◦∗j,j′ = 1 − (φ◦∗j,j′ − π/2)2 +

O((φ◦∗j,j′ − π/2)4). Therefore, it holds that

r◦j r
∗
j′
[
(π − φ◦∗j,j′)〈θ◦j , θ∗j′〉+ sinφ◦∗j,j′ − 1

]
= r◦j r

∗
j′

[π
2
〈θ◦j , θ∗j′〉+ (π/2− φ◦∗j,j′)〈θ◦j , θ∗j′〉+ sinφ◦∗j,j′ − 1

]
=
π

2
r◦j r
∗
j′〈θ◦j , θ∗j′〉+ r◦j r

∗
j′
[
(π/2− φ◦∗j,j′)2 +O((φ◦∗j,j′ − π/2)4)− (φ◦∗j,j′ − π/2)2 + O((φ◦∗j,j′ − π/2)4)

]
=
π

2
r◦j r
∗
j′〈θ◦j , θ∗j′〉+ O((φ◦∗j,j′ − π/2)4).

By applying the same argument to the all cross terms, we obtain that〈
r◦jσ(〈θ◦j , ·〉)− r∗jσ(〈θ∗j , ·〉), r◦j′σ(〈θ◦j′ , ·〉)− r∗j′σ(〈θ∗j′ , ·〉)

〉
L2(PX )

=
1

2πd

{
(r◦j − r∗j )(r◦j′ − r∗j′) +

π

2

(
r◦j r
◦
j′〈θ◦j , θ◦j′〉 − r◦j r∗j′〈θ◦j , θ∗j′〉 − r∗j r◦j′〈θ∗j , θ◦j′〉+ r∗j r

∗
j′〈θ∗j , θ∗j′〉

)}
+ O(higher order)

=
1

2πd

{
(r◦j − r∗j )(r◦j′ − r∗j′) +

π

2
〈r◦j θ◦j − r∗j θ∗j , r◦j′θ◦j′ − r∗j′θ∗j′〉

}
+ O(higher order).

Combining all evaluations, we have that

‖f(·; ν∗)− f(·; ν◦)‖2L2(PX )

=
1

2d

m∑
j=1

[
(r◦j − r∗j )2 + 2r◦j r

∗
j

(
1− φ

π

)
(1− 〈θ∗j , θ◦j 〉)

]

+
∑
j 6=j′

1

2πd

{
(r◦j − r∗j )(r◦j′ − r∗j′) +

π

2
〈r◦j θ◦j − r∗j θ∗j , r◦j′θ◦j′ − r∗j′θ∗j′〉

}
+ O(higher order)

=

m∑
j=1

m∑
j′=1

[
1

2πd
(r◦j − r∗j )(r◦j′ − r∗j′) +

1

4d
〈r◦j θ◦j − r∗j θ∗j , r◦j′θ◦j′ − r∗j′θ∗j′〉

]

+

m∑
j=1

[(
1

2d
− 1

2πd
− 1

4d

)
(r◦j − r∗j )2 +

(
1

d

(
1−

φ◦∗j,j
π

)
− 1

2d

)
r◦j r
∗
j (1− 〈θ∗j , θ◦j 〉)

]
+ O(higher order).
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Note that the second term in the right hand side can be lower bounded by
1
d

(
1
4 −

1
2π

)∑m
j=1(r◦j − r∗j )2,

min
{

1
12d ,

1
2d

(
1
2 −

φ◦∗j,j
π

)}
min
j

(r◦j r
∗
j )
∑m
j=1 dist2(θ◦j , θ

∗
j ).

In addition to this evaluation, by noticing

‖f(·; ν∗)− f(·; ν◦)‖2L2(PX ) − ‖f(·; ν∗)− f(·; ν◦)‖2n = Op

 m∑
j=1

(r∗j − r◦j )2 + dist2(θ◦j , θ
∗
j )

√
n

 ,

and

‖f(·; ν∗)− f(·; ν◦)‖2n ≤ λ
m∑
j=1

|r◦j − r∗j | ≤
1

2µ
mλ2 +

µ

2

m∑
j=1

(r◦j − r∗j )2,

for µ = 1
d

(
1
4 −

1
2π

)
, we finally obtain that

m∑
j=1

(r◦j − r∗j )2 = O
(
mλ2

)
,

m∑
j=1

dist2(θ◦j , θ
∗
j ) = O

(
mλ2

)
,

with high probability.
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B. Proof of Theorem 4.8
In this section, we give the proof of Theorem 4.8.

B.1. Preliminaries

First, we ensure boundedness of the gradients during the optimization, which is required in the proof. These follow from the
boundedness of the objective function (Assumption 4.6).

Lemma B.1. Under Assumptions 4.6 and 4.7, it holds that for any j ∈ [M ] and k = 0, 1, 2, . . . ,

1

n

n∑
i=1

|f(xi; Θk)− yi|+ λ ≤ 2
√
nCF + λ =: C1, (31)∥∥∥∥∥ 1

n

n∑
i=1

(f(xi; Θk)− yi)xi1l{〈wj,k, xi〉 ≥ 0}

∥∥∥∥∥ ≤ 2
√
nCF =: C2. (32)

These bounds are used several times throughout the proof. From this, we can derive the following relationship between the
norms of aj,k and wj,k.

Lemma B.2. Under Assumptions 4.6 and 4.7, if α < 2/C2, it holds that for any j, k,

1. |aj,k| ≤ ‖wj,k‖,

2. |wj,k|2 ≤ a2
j,k + 1.

Proof. We prove these inequalities by induction on k. In the case k = 0, it holds clearly by the initialization rule. Assume
that each inequality holds for k = k0, then for any j, we have

|aj,k0+1|2 − ‖wj,k0+1‖2 = |aj,k0 − ηj,k0gj(Θk0)|2 − ‖wj,k0 − ηj,k0hj(Θk0)‖2

= |aj,k0 |2 − ‖wj,k0‖2

+ η2
j,k0(‖wj,k0‖2 − a2

j,k0)

∥∥∥∥∥ 1

n

n∑
i=1

(f(xi; Θk0)− yi)xi1l{〈wj,k0 , xi〉 ≥ 0}

∥∥∥∥∥
2

≤

1− α2

4

∥∥∥∥∥ 1

n

n∑
i=1

(f(xi; Θk0)− yi)xi1l{〈wj,k0 , xi〉 ≥ 0}

∥∥∥∥∥
2
 (|aj,k0 |2 − ‖wj,k0‖2), (33)

where we used the inequality ηj,k0 ≤ α/2. By Lemma B.1, we get the inequality of k = k0 + 1 under the assumption
α < 2/C2.

B.2. Conic Gradient Descent

In this section, we explain our proof strategy to show Theorem 4.8. The key technical tool in our proof is to fully make use
of the update in the measure space. At first, we consider the update of (rj,k, θj,k) ∈ R× Sd−1, which are amplitude and
location of each Dirac measure. By the update rule of the parameters, we obtain the following recursive expression of each
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parameter:

rj,k+1 = (aj.k − ηj,kg(aj,k))‖wj,k − ηj,khj(Θk)‖

= (aj.k − ηj,kg(aj,k))

(
‖wj,k‖ − ηj,k

〈wj,k, hj(Θk)〉
‖wj,k‖

+ δwj,k

)
= rj,k − ηj,k

a2
j,k + ‖wj,k‖2

|aj,k|‖wj,k‖

(
1

n

n∑
i=1

(f(xi; ν)− yi)σ(〈θj,k, xi)〉) + λ sgn(rj,k)

)
rj,k + δrj,k,

θj,k+1 =
wj,k+1

‖wj,k+1‖
=

wj,k − ηj,khj(Θk)

‖wj,k − ηj,khj(Θk)‖

= θj,k − ηj,k
1

‖wj,k‖
(Id − θj,kθTj,k)hj(Θk) + δθj,k

= θj,k − ηj,k
aj,k
‖wj,k‖

(Id − θj,kθTj,k)

(
1

n

n∑
i=1

(f(xi; Θk)− yi)xi1l{〈θj,k, xi〉 ≥ 0}

)
+ δθj,k,

where δwj,k, δrj,k, δθj,k are residual higher-order terms. From the view point of the measure space, this can be expressed as

rj,k+1 = rj,k − ηj,k
a2
j,k + ‖wj,k‖2

|aj,k|‖wj,k‖
Gνk(θj,k)rj,k + δrj,k,

θj,k+1 = θj,k − ηj,k
aj,k
‖wj,k‖

∇Sd−1Gνk(θj,k) + δθj,k,

where Gνk ∈ ∂J(νk). Here, the subdifferential ∂J(νk) is defined as ∂J(νk) := {G ∈ C(Sd−1) | J(µ) − J(νk) ≥∫
G(θ)d(µ − νk) (∀µ ∈ M(Sd−1))} which is well defined because J(·) is a convex function on the measure space
M(Sd−1). Furthermore, by the definition of ηj,k, this iteration can be rewritten as

rj,k+1 = rj,k − αGνk(θj,k)rj,k + δrj,k, (34)

θj,k+1 = θj,k − α sgn(rj,k)
a2
j,k

a2
j,k + ‖wj,k‖2

∇Sd−1Gνk(θj,k) + δθj,k. (35)

We note that the term δrj,k and δθj,k can be seen as “higher order” term by the following lemma.

Lemma B.3. Under Assumption 4.6, if α < 1/C1, it holds that for any j, k,

|δrj,k| ≤ C1α
2|Gνk(θj,k)rj,k|,

‖δθj,k‖ ≤ 5C2α
2

a2
j,k

a2
j,k + ‖wj,k‖2

‖∇Sd−1Gνk(θj,k)‖.

Proof. At first, by the straight-forward calculation, we have that ‖Gνk‖∞ ≤ C1 and supθ∈Sd−1 ‖∇Sd−1Gνk(θ)‖ ≤ C2.
This gives that ‖ηj,khj(Θk)‖ ≤ α‖wj,k‖‖Gνk‖∞/2 < ‖wj,k‖/2. By using Lemma B.2 and Lemma C.1, we have

|δrj,k| = |aj,k − ηj,kgj(Θk)|‖δwj,k‖ ≤ 2|aj,k|
η2
j,kh

2(wj,k)

‖wj,k‖
≤ C1α

2|Gνk(θj,k)rj,k|.

Moreover, by Lemma C.2, it holds that

‖δθj,k‖ ≤
5‖ηj,khj(Θk)‖2

‖w‖2
≤ 5C2α

2
a2
j,k

a2
j,k + ‖wj,k‖2

‖∇Sd−1Gνk(θj,k)‖.

These give the conclusion.

By this lemma, we can see that δrj,k and δθj,k are O(α2) which is smaller than other terms.
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Remark B.4. In the case ∃j, j′ ∈ [m] (j 6= j′), θj,k = θj,k′ , we cannot represent the update by the subgradient in the
measure space. However, we can avoid this problem almost surely by perturbing the step size infinitesimally. In the following,
we assume this does not happen for any j, k.

Chizat (2019) considered a conic gradient descent, which is represented as follows:

(rj,k+1, θj,k+1) = Ret(rj,k,θj,k)(−2αGνk(θj,k)rj,k,−β∇Sd−1Gνk(θj,k))

where α, β > 0 are constants and Ret denotes a retraction mapping, which is defined on the manifold R × Sd−1 and its
tangent bundle (Absil et al., 2009). The retraction mapping and updates in Eq. (34) and Eq. (35) are almost equivalent in
a sense that both of them represent first order approximations of the gradient descent in the manifold. Motivated by this
point, we borrow the proof technique developed in Chizat (2019). They have shown that under several assumptions with
sufficient over-parameterization and under the condition β . α2, convergence of the gradient descent to the global optimum
is achieved through the following two phase:

Phase I: Global exploration. Objective value decreases until it reaches a threshold J0,

Phase II: Local convergence. The solution converges linearly to the global minimum locally around the true parameter.

There are some different points between our approach and Chizat (2019). One is that the step-size in the iteration of θj,k is
not a constant. Indeed, by (35), the step size of the update in the measure space is given by

βj,k = α
a2
j,k

a2
j,k + ‖wj,k‖2

. (36)

This step size depends on a2
j,k and ‖wj,k‖2 and is not constant. Note that by the initialization rule, βj,0 = α

1+M2 � α for
any j ∈ [m], and we will show that the inequality βj,k � α for all j, k, which means that the step size for θj,k is much
smaller than that of rj,k.

Another difference is that our analysis deals with the non-differentiable ReLU activation while Chizat (2019) analyzed
differentiable activation functions. We avoid this difficulty by utilizing Assumption 4.3.

Moreover, Chizat (2019) only considered a positive measure (more precisely, their argument cannot be applied to the settings
where the measure ν has both positive and negative parts). In this paper, we consider this situation and overcome this
difficulty by utilizing the following lemma which states that a positive (resp. negative) part of the updated measure remains
positive (resp. negative) throughout the iterations.

Lemma B.5. Under Assumptions 4.6 and 4.7, if α < 1/C1, the signs of (aj,k)j∈[M ] (i.e., those of (rj,k)j∈[M ]) do not
change throughout the iteration.

Proof. By the update rule of aj,k, we have

aj,k+1 = aj,k − α
‖w2

j,k‖
a2
j,k + ‖wj,k‖2

(
1

n

n∑
i=1

(f(xi; ν)− yi)σ(〈θj,k, xi)〉) + λ sgn(aj,k)

)
aj,k

=

{
1− α

‖w2
j,k‖

a2
j,k + ‖wj,k‖2

(
1

n

n∑
i=1

(f(xi; ν)− yi)σ(〈θj,k, xi)〉) + λ sgn(aj,k)

)}
aj,k.

By using the inequalities
‖w2

j,k‖
a2j,k+‖wj,k‖2

≤ 1 and | 1n
∑n
i=1(f(xi; ν) − yi)σ(〈θj,k, xi)〉) + λ sgn(aj,k)| ≤ C1, we get the

conclusion.

B.3. Proof of Phase I

In this section, we show the following inequality.
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Proposition B.6 (Global exploration). Assume that Assumption 4.6 holds. Then there exists a constant C, CM > 0 such
that for any J0 > J∗ and 0 < ε < 1/2, by setting M sufficiently large as M ≥ CM exp(α−2)/α for each α > 0 and
assuming the following conditions,

W∞(τ, ν+
0 ) ≤ (J0 − J∗)/C, W∞(τ, ν−0 ) ≤ (J0 − J∗)/C, α ≤ (J0 − J∗)1+ε/2/C, (37)

then it holds that
min

0≤k′≤α−2
J(νk′) ≤ J0. (38)

Here we utilize the bound by Chizat (2019), which considered a positive measure, i.e., rj,k > 0 for any j and k. By
Lemma B.5, the signs of (rj,k)j∈[M ] will not change throughout the iterations. Therefore, we can apply the same argument
to ν+

k and ν−k separately, where νk := ν+
k − ν

−
k is the Hahn-Jordan decomposition. Then we get the following proposition.

Proposition B.7. Suppose that Assumption 4.6 holds. In addition, suppose that βmax := max
j∈[M ],1≤k≤α−2

βj,k ≤ α3. Let

B := sup
ν:J(ν)<CF

‖ν‖BL, then there exists a constant C ′ > 0 such that, for α < 1/C1, it holds that

min
1≤k≤α−2

J(νk)− J∗ ≤ C ′(log(4Bα−1) + 1)α+B‖ν∗‖TV(W∞(τ, ν+
0 ) +W∞(τ, ν−0 )).

Proof. Following the essentially same argument as Lemma F.1 of Chizat (2019), it holds that

min
1≤k≤α−2

J(νk)− J∗ ≤ C ′ log(4Bαk′)

4Bαk′
+ βmaxB

2k′ + Cα+B‖ν∗‖TV(W∞(τ, ν+
0 ) +W∞(τ, ν−0 )).

In particular, in the case k′ = α−2, we get an upper bound as

C ′
log(4Bα−1)

4B
α+

βmax

α2
B2 + C ′α+B‖ν∗‖TV(W∞(τ, ν+

0 ) +W∞(τ, ν−0 )).

With the condition βmax ≤ α3, we get the conclusion.

Proof of Proposition B.6. For 0 < ε < 1/2, there exists a constant Cε > 0 such that log(u) ≤ Cεuε. Then we have

min
1≤k≤α−2

J(νk)− J∗ ≤ C ′(CεB−1+εα−ε + 1)α+B‖ν∗‖TV(W∞(τ, ν+
0 ) +W∞(τ, ν−0 ))

This yields the conclusion that there exists a constant C > 0 which depends on C ′, Cε, B,B, ‖ν∗‖ and the inequality (38) is
satisfied under the condition (37).

In the following, we show the inequality βmax ≤ α3. This intuitively means that the “location” θj,k does not move
compared with the “amplitude” rj,k. We can verify this in the setting we consider, in which aj,k is much smaller than wj,k.
Note that βj,k ≤ α|aj,k|2/‖wj,k‖2. Inspired by this inequality, we evaluate |aj,k| and ‖wj,k‖, and prove the inequality
|aj,k| � ‖wj,k‖ for k ≤ α−2.

Lemma B.8. Assume that Assumption 4.6 holds. Let ξj,k =
(
1 + 2

M

){∏k−1
k′=0(1 + ηj,k′C1)− 1

}
(j ∈ [M ], k =

1, 2, . . . ), it holds that

|aj,k| ≤
2

M
+ ξj,k, (39)

‖wj,k − wj,0‖ ≤ ξj,k. (40)

Proof. By the update rules of aj,k and wj,k, we have that

|aj,k+1| ≤ |aj,k|+ ηj,k

(
1

n

n∑
i=1

|f(xi; Θk)− yi|+ λ

)
‖wj,k‖, (41)

‖wj,k+1‖ ≤ ‖wj,k‖+ ηj,k

(
1

n

n∑
i=1

|f(xi; Θk)− yi|+ λ

)
|aj,k|. (42)
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By Lemma B.1, 1
n

∑n
i=1 |f(xi; Θk)− yi|+ λ ≤ C1 for all k. By summing up the both sides, it holds that

|aj,k|+ ‖wj,k‖ ≤ (1 + ηj,kC1) (|aj,k|+ ‖wj,k‖).

Then we have

max{|aj,k|, ‖wj,k‖} ≤ |aj,k|+ ‖wj,k‖ ≤
(

1 +
2

M

) k−1∏
k′=0

(1 + ηj,kC1).

Combining with (41), |aj,k| is bounded as

|aj,k| ≤ |aj,0|+
k−1∑
k′=0

ηj,k′C1

(
1 +

2

M

) k′−1∏
k′′=0

(1 + ηj,k′′C1)

=
2

M
+

(
1 +

2

M

){ k−1∏
k′=0

(1 + ηj,kC1)− 1

}
, (43)

which gives the first inequality Eq. (39). In addition, similar to Eq. (42), we have

‖wj,k+1 − wj,0‖ ≤ ‖wj,k − wj,0‖+ ηj,kC1|aj,k|.

Combining with the bound of |aj,k|, we get the second inequality (40).

From this bound, we obtain a bound on |aj,k|/‖wj,k‖ as we state as follows.

Lemma B.9. Under Assumption 4.6, for any j, k satisfying ξj,k < 1, it holds that

|aj,k|
‖wj,k‖

≤ 2/M + ξj,k
1− ξj,k

.

Moreover, there exists a constant CM > 0 such that if M ≥ CM exp(α−2)/α, it holds that |aj,k|/‖wj,k‖ ≤ α for any
j ∈ [M ] and k satisfying 1 ≤ k ≤ α−2.

Proof. The first conclusion holds clearly by Lemma B.8. Then we consider the second assertion. Let ζj,k :=
|aj,k|
‖wj,k‖ .

Suppose that ξj,k ≤ 1/2 (which we verify later), it holds that

ζj,k ≤ 2

(
2

M
+ ξj,k

)
.

In addition, since ηj,k = α|aj,k|‖wj,k‖/(|aj,k|2 + ‖wj,k‖2) ≤ αζj,k, we have

ξj,k ≤
(

1 +
2

M

){ k−1∏
k′=0

(1 + αζj,k′C1)− 1

}
.

by the formulation of ξj,k. Combining these inequality, we get

ζj,k ≤
4

M
+ 2

(
1 +

2

M

){ k−1∏
k′=0

(1 + αζj,k′C1)− 1

}
,

where we used k ≤ α−2. By this inequality, let c & log(α−1) and M & exp(cα−2), then we have ζj,k ≤ 2
M exp(ck) for

any 0 ≤ k ≤ α−2 and we prove this by the induction. When k = 0 this holds with equality. Suppose that for k0 ≥ 1,
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ζj,k ≤ 2
M exp(ck) is satisfied for any k < k0. Then, we have

ζj,k0 ≤
4

M
+ 2

(
1 +

2

M

){k0−1∏
k′=0

(1 + αζj,k′C1)− 1

}

≤ 4

M
+ 2

(
1 +

2

M

){(
1 +

2αC1

M
exp(c(k0 − 1))

)k0
− 1

}

≤ 4

M
+ 2

(
1 +

2

M

)
4αC1k0

M
exp(c(k0 − 1))

≤ 2

M

(
2 + 8αC1k0 exp(c(k0 − 1))

)
≤ 2

M
exp(ck0),

where the third inequality follows from(
1 +

2

M
exp(c(k0 − 1))

)k0
≤ 1 +

2k0

M
exp(c(k0 − 1)) + 2k0

4

M2
exp(2c(k0 − 1))

≤ 1 +
4k0

M
exp(c(k0 − 1)),

where we use
∑k0
j=2

(
k0
j

)
≤ 2k0 . Taking M ≥ 2α−1 exp(cα−2), we get ζj,k ≤ α. Finally, in this case the condition

ξj,k ≤ 1/2 remains and this gives the conclusion.

By this Lemma, it holds that for sufficiently large M , |aj,k|/‖wj,k‖ will be small. By this inequality, we get a bound of βj,k,
which is supposed in the Proposition B.7.

Lemma B.10. Under Assumption 4.6, there exists a constant CM > 0 such that if M ≥ CM exp(α−2)/α, it holds that
βj,k ≤ α3 for any j ∈ [M ] and k satisfying 1 ≤ k ≤ α−2.

Proof. By the definition of βj,k, it holds that

βj,k = α
a2
j,k

a2
j,k + ‖wj,k‖2

≤ αζ2
j,k.

Combining this with Lemma B.9, we get the conclusion.

B.4. Proof of Phase II

In this section, we prove linear convergence to the optimal solution after a specific number of iterations. A key ingredient is
a local analysis around the optimal parameters (θ∗j )m

∗

j=1 (remark that the global minimum is obtained by a sparse measure).
We consider a local region around each θ∗j which we define below and prove a “sharpness inequality” (Proposition B.15)
through evaluating the function value and the norm of the gradient by using a distance from the optimal parameter.

We first divide Sd−1 by the sign of inner product with each xi, i.e., each division is written by the form {θ ∈ Sd−1 |
sgn(〈θ, x1〉) = s1, . . . , sgn(〈θ, xn〉) = sn} for (si)

n
i=1 ∈ {−1,+1}n. Let Hj be the region that contains θ∗j and Rj :=

sup
θ∈Hj

dist(θ, θj∗), where Rj > 0 by Assumption 4.3. Then we take a a value ρ which satisfies 0 < ρ <
minRj

2 and define

Nj(ρ) to be an open ball around θ∗j with radius ρ and N0 := Sd−1\ ∪j Nj(ρ).

To prove the linear convergence, we define a kind of distance between νk and the global minima ν∗. Our definition of the
distance follows that of Chizat (2019) but they are different in that we deal with a singed measure and their definition did
not properly deal with average on the manifold Sd−1 while ours avoid such an average.

Definition B.11. Let νk =
∑M
j=1 rj,kδθj,k be the measure after k iterations. For each j ∈ [m∗], we define a local mass

by r̄j,k = νk(Nj(ρ)), a local gap on Sd−1 with ∆θj,k =
∑

θj ′,k∈Nj(ρ)

sgn(rj′,k)=sgn(r∗j )

|rj′,k|dist2(θj ′,k ) and a local “different signed”
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mass with ∆rj ,k =
∑

θk∈Nj(ρ)
sgn(rj′,k)6=sgn(r∗j )

|rj ′,k |. Furthermore, we define a mass of the remaining region with r0,k := |νk|(N0).

Finally, according to these values, we define a “distance” between νk and ν∗ by

Dρ(νk) =

m∗∑
j=1

(r̄j,k − r∗j )2 + r0,k +

m∗∑
j=1

(∆θj,k + ∆rj).

As we see below, the term (r̄j,k − r∗j )2 and r0,k mainly affect the gap between f(·, νk) and f(·, ν∗). The term ∆θj,k + ∆rj
is related to the regularization term and will vanish due to the sparse regularization. In the following, we see that this
distance upper-bounds the Wasserstein distance between νk and ν∗.

For the local evaluation, we firstly remark the optimality condition w.r.t. a measure.

Lemma B.12. Let f∗ := f(·, ν∗), under Assumption 4.3, for each j ∈ [m∗], it holds that

− 1

n

n∑
i=1

(f∗(xi)− yi)xi1l{〈θ∗j , xi〉 ≥ 0} = λ sgn(r∗j )θ∗j . (44)

Furthermore, under Assumption 4.5, for any θ ∈ Sd−1 satisfying θ 6= θ∗j for all j ∈ [m∗], it holds that∣∣∣∣∣ 1n
n∑
i=1

(f∗(xi)− yi)σ(〈θ, xi〉)

∣∣∣∣∣ < λ. (45)

Remark that Eq. (44) is derived from 0 ∈ ∂J(ν∗), where

∂J(ν∗) =
1

n

n∑
i=1

(f∗(xi)− yi)σ(〈·, xi〉) + λ∂‖ν∗‖TV ⊂ C(Sd−1). (46)

Indeed, the necessary condition for 0 ∈ ∂J(ν∗) is that{
− 1
n

∑n
i=1(f∗(xi)− yi)σ(〈θ∗j , xi〉) = λ sgn(r∗j ),

− 1
n

∑n
i=1(f∗(xi)− yi)xi1l{〈θ∗j , xi〉 ≥ 0} = λajsgn(r∗j )θ∗j ,

for some aj ∈ R for each j ∈ [m∗], where we used the same argument to show Eq. (17). By putting together these equations
and using the 1-homogeneity of ReLU, we obtain Eq. (44).

Now we introduce a characterization of subgradient ∂J(ν∗) for the proof. By the construction, we know that θ 7→
− 1
n

∑n
i=1(f∗(xi)− yi)xi1l{〈θ, xi〉 ≥ 0} takes a constant value λ sgn(r∗j )θ∗j in each Nj(ρ). This leads to

− 1

n

n∑
i=1

(f∗(xi)− yi)σ(〈θ, xi〉) = 〈θ,− 1

n

n∑
i=1

(f∗(xi)− yi)xi1l{〈θ∗j , xi〉 ≥ 0}〉 = λ sgn(r∗j )〈θ, θ∗j 〉. (47)

for θ ∈ Nj(ρ). This equality plays an important role in the proof.

By using Dρ(νk), we can evaluate a gap between J(νk) and J∗.

Proposition B.13. Under Assumption 4.3–4.7, there exists a constant cρ > 0, Cρ > 0 that depends on ρ and a constant J0,
if J(νk) < J0 it holds that

cρDρ(νk) ≤ J(νk)− J∗ ≤ CρDρ(νk). (48)

Proof. First, we derive the first inequality cρDρ(νk) ≤ J(νk)− J∗. Let G∗(θ) ∈ ∂J(ν∗), i.e.,

G∗(·) ∈ 1

n

n∑
i=1

(f∗(xi)− yi)σ(〈·, xi〉) + λ∂‖ν∗‖TV.
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Here, we take η ∈ ∂‖ν∗‖TV which satisfies η(θj,k) = sgn(rj,k) (if necessary, we apply the modification as Remark B.4).
In this case, by the straight-forward calculation and noticing

∫
Sd−1 G

∗(θ)dν∗ = 0, it holds that

J(νk)− J∗ =

∫
Sd−1

G∗(θ)dνk︸ ︷︷ ︸
(I)

+
1

2
‖f(·; νk)− f∗‖2n︸ ︷︷ ︸

(II)

. (49)

We evaluate each term. For the term (I), we have

(I) =

m∗∑
j=1

∫
Nj(ρ)

G∗(θ)dνk +

∫
N0

G∗(θ)dνk.

Now we have C ′ρ := inf
θ∈N0

{
λ−

∣∣ 1
n

∑n
i=1(f∗(xi)− yi)σ(〈θ, xi〉)

∣∣} > 0 by the inequality (45) in Lemma B.12 and

compactness of N0. Then the second term of the right hand side is evaluated as∫
N0

G∗(θ)dνk ≥ r0,kC
′
ρ. (50)

For the term
∫
Nj(ρ)

G∗(θ)dνk, Eq. (47) and the definition of η yield that∫
Nj(ρ)

G∗(θ)dνk ≥
∫
Nj(ρ)

(λ sgn(r∗j )〈θ∗j , θ〉+ λ sgn(η(θ)))dνk(θ)

≥ λ
∫
Nj(ρ)

min{1− sgn(r∗j η(θ))〈θ∗j , θ〉, 1}d|νk|

≥ λ(c∆θj,k + ∆rj), (51)

where c > 0 is a constant which does not depend on other parameters, which is derived from Lemma C.3. Combining
Eq. (50) and Eq. (51), we get

(I) ≥ λ
m∗∑
j=1

(c∆θj,k + ∆rj,k) + r0,kC
′
ρ.

Next for the term (II), we consider the decomposition f(·; νk) =:
∑m∗

j=1 fj,k + f0,k, where fj,k(·) =
∫
Nj(ρ)

σ(〈θ, ·〉)dνk.
Then we have

‖f(·; νk)− f∗‖2n =

∥∥∥∥∥∥
m∗∑
j=1

(
r∗jσ(〈θ∗j , ·〉)− fj,k

)
+ f0,k

∥∥∥∥∥∥
2

n

≥

∥∥∥∥∥∥
m∗∑
j=1

(
r∗jσ(〈θ∗j , ·〉)− fj,k

)∥∥∥∥∥∥
2

n

− 2

∥∥∥∥∥∥
m∗∑
j=1

(r∗jσ(〈θ∗j , ·〉)− fj,k)

∥∥∥∥∥∥
n

‖f0,k‖n

≥

∥∥∥∥∥∥
m∗∑
j=1

(
r∗jσ(〈θ∗j , ·〉)− fj,k

)∥∥∥∥∥∥
2

n

− 2

∥∥∥∥∥∥
m∗∑
j=1

(r∗jσ(〈θ∗j , ·〉)− fj,k)

∥∥∥∥∥∥
n

r0,k, (52)

where the last inequality follows from
∫
A
σ(〈θ, x〉)dνk ≤ |νk|(A) for A ⊂ Sd−1 if ‖x‖ = 1. For the first term, we have

r∗jσ(〈θ∗j , ·〉)− fj,k = r∗jσ(〈θ∗j,k, ·〉)−
∑

j′:θj′∈Nj(ρ)

rj′,kσ(〈θj′,k, ·〉)

= (r∗j − r̄j,k)σ(〈θ∗j , ·〉)−
∑

j′:θj′∈Nj(ρ)

rj′,k(σ(〈θj′,k, ·〉)− σ(〈θ∗j , ·〉)),
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which gives∥∥∥∥∥∥
m∗∑
j=1

(
r∗jσ(〈θ∗j , ·〉)− fj,k

)∥∥∥∥∥∥
2

n

≥κ
m∗∑
j=1

(r∗j − r̄j,k)2 − 2

m∗∑
j=1

|r∗j − r̄j,k|

m∗∑
j=1

(∆θj,k + ∆rj,k)


where the first term is derived by Assumption 4.4. Combining with Eq. (52), we have a lower bound of (II) as

(II) ≥ κ
m∗∑
j=1

(r̄j,k − r∗j )2 − 2

∥∥∥∥∥∥
m∗∑
j=1

(r∗jσ(〈θ∗j , ·〉)− fj,k)

∥∥∥∥∥∥
n

r0,k − 2

m∗∑
j=1

|r̄j,k − r∗j |

m∗∑
j=1

(∆θj,k + ∆rj,k)

 .

Finally, we have max{r0,k,
∑m∗

j=1(∆θj,k + ∆rj,k)} ≤ max
{

1/(cλ), 1/λ, 1/C ′ρ
}

(J(νk)− J∗) by the lower bound of (I).
For sufficiently small J(νk)− J∗, by transposing the minus term and using the arithmetic-geometric mean relation, this
leads to a bound

m∗∑
j=1

(r̄j,k − r∗j )2 ≤ C(J(νk)− J∗)

for some constant C > 0. Combining (I) and (II), we get the conclusion.

To get the upper bound we use the equality Eq. (49) as

(I) =

∫
N0

G∗(θ)dνk +

m∗∑
j=1

∫
Nj(ρ)

G∗(θ)dνk

≤ r0,k‖G∗(·)‖∞ +

m∗∑
j=1

∫
Nj(ρ)

λ(−sgn(r∗j )〈θ, θ∗j 〉+ sgn(η(θ)))dνk

≤ r0,k‖G∗(·)‖∞ +

m∗∑
j=1

2λ(∆θj,k + ∆rj,k)

≤ C1r0,k +

m∗∑
j=1

2λ(∆θj,k + ∆rj,k).

For the term (II), we follow the similar argument to the lower bound as

‖f(·; νk)− f∗‖2n =

∥∥∥∥∥∥
m∗∑
j=1

(
r∗jσ(〈θ∗j , ·〉)− fj,k

)
+ f0,k

∥∥∥∥∥∥
2

n

≤ 2

∥∥∥∥∥∥
m∗∑
j=1

(
r∗jσ(〈θ∗j , ·〉) + fj,k

)∥∥∥∥∥∥
2

n

+ 2 ‖f0,k‖2n

≤ 4κmax

m∗∑
j=1

(r∗j − r̄j,k)2 + 4

m∗∑
j=1

(∆θj,k + ∆rj,k)

2

+ 2r2
0,k,

where κmax is the largest eigenvalue of a matrix
(

1
n

∑n
j=1 σ(〈θ∗j1 , xi〉)σ(〈θ∗j2 , xi〉)

)
j1,j2

∈ Rm∗×m∗ which only depends

on m∗. This gives the conclusion.

To ensure the linear convergence in the local region, we evaluate how much J(νk) decrease in each iteration as in the
following lemma.
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Lemma B.14. Under Assumptions 4.3, 4.6, 4.6 and 4.7, if α < min{1/8C1, ρ/C2, 1/(10C2), (λ/CF )2/8}, then for any
positive integer k, it holds that

J(νk+1)− J(νk) ≤ −1

2
g2
νk

+ αr0,k‖f∗(·)− f(·, νk)‖2n, (53)

where g2
νk

:=
∫
Sd−1(αG2

νk
(θ) + ‖∇Sd−1Gνk(θ)‖2β(θ))d|νk| and β(θ) =

{
βj,k θ = θj,k

0 o.w.
.

Proof. For a continuous function φ : Sd−1 → R, we have that

∫
Sd−1

φ(θ)d(νk+1 − νk) =

M∑
j=1

(rj,k+1φ(θj,k+1)− rj,kφ(θj,k))

=

M∑
j=1

(rj,k+1φ(θj,k+1)− rj,kφ(θj,k+1)) +

M∑
j=1

(rj,kφ(θj,k+1)− rj,kφ(θj,k))

In particular if we take φ ≡ Gνk = 1
n

∑n
i=1(f(xi; νk)− yi)σ(〈·, xi〉) + ληk(·) ∈ ∂J(νk) where η satisfies ηk(θj,k+1) =

sgn(rj,k+1) for any j ∈ [M ], we have

J(νk+1)− J(νk) =

∫
Sd−1

Gνk(θ)d(νk+1 − νk) +
1

2
‖f(·; νk+1)− f(·; νk)‖2n

=−
M∑
j=1

α|rj,k||Gνk(θj,k)|2 +

M∑
j=1

2C2
1α

2|rj,k||Gνk(θj,k)|2

+

M∑
j=1

rj,k(Gνk(θj,k+1)−Gνk(θj,k)) +
1

2
‖f(·; νk+1)− f(·; νk)‖2n,

where we used Lemma B.3 and ‖Gνk‖∞ ≤ C1 to bound the term related to δrj,k. For the term 1
2‖f(·; νk+1)− f(·; νk)‖2n,

by taking φ ≡ σ(〈·, xi〉) for (xi)
n
i=1 and using the 1-Lipschitz continuity of σ(·), we have

‖f(·; νk+1)− f(·; νk)‖2n =

∥∥∥∥∫
Sd−1

σ(〈θ, ·〉)d(νk+1 − νk)

∥∥∥∥2

n

=
1

n

n∑
i=1

(∫
Sd−1

σ(〈θ, xi〉)d(νk+1 − νk)

)2

≤

 M∑
j=1

(|rj,k+1 − rj,k|+ ‖θj,k+1 − θj,k‖|rj,k|)

2

≤
(∫

Sd−1

(α|Gνk(θj,k)|+ βj,k‖∇Sd−1Gνk(θj,k)‖)d|νk|
)2

and this can be upper bounded by

‖νk‖2TV

∫
Sd−1

(α|Gνk(θj,k)|+ βj,k‖∇Sd−1Gνk(θj,k)‖)2d|νk|/‖νk‖TV

≤ 2

(
CF
λ

)2

αg2
νk
,

by the Jensen’s inequality and the inequalities (a+ b)2 ≤ 2a2 + 2b2, βj,k ≤ α and ‖νk‖TV ≤ CF /λ which is derived from
Assumption 4.6. Finally we consider the term

∑M
j=1 rj,k(Gνk(θj,k+1)−Gνk(θj,k)). If we take α < ρ/C2, θj,k ∈ Nj(ρ)
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means that θj,k+1 remains in Hj in which Gνk is an (locally) affine function. For θj,k ∈ N0, we note ‖∇Sd−1Gνk(θj,k)‖ ≤
‖f∗(·)− f(·, νk)‖n and ‖Gνk(·)‖Lip ≤ ‖f∗(·)− f(·, νk)‖n. Then combining all of them, we get

J(νk+1)− J(νk) ≤−
M∑
j=1

α|rj,k||Gνk(θj,k)|2 +

M∑
j=1

1

4
α|rj,k||Gνk(θj,k)|2

−
∑

j:θj,k∈∪j′≥1Nj′ (ρ)

1

2
βj,k|rj,k|‖∇Sd−1Gνk(θj,k)‖2 + αr0,k‖f∗(·)− f(·, νk)‖2n +

1

4
g2
νk

=− 1

2
g2
νk

+ αr0,k‖f∗(·)− f(·, νk)‖2n,

which gives the conclusion.

Then we give a lower bound of g2
νk

, in terms of J(νk)− J∗.
Proposition B.15 (sharpness inequality). Under Assumptions 4.3–4.7, there exist constants J0 > J∗ and κ1 > 0 such that
if J(νk) ≤ J0, it holds that

κ1(J(νk)− J∗) ≤ g2
νk
. (54)

To prove this inequality, we prepare a lemma which ensures the sharpness of the gradient in terms of the distance Dρ(νk).

Lemma B.16. Under Assumption 4.3–4.7, there exists a constant J0 > J∗ and a constant Cg > 0 that depends on α, if
J(νk) ≤ J0, it holds that

g2
νk
≥ CgDρ(νk). (55)

Proof. At first, let 0 < β0 < α/4 and we consider a decomposition

g2
νk

=

∫
Sd−1

(αG2(θ) + ‖∇Sd−1Gνk(θ)‖2β(θ))d|νk|

≥
∫
Sd−1

(αG2(θ) + β0‖∇Sd−1Gνk(θ)‖2)d|νk| −
∫
Sd−1∪{β(θ)≤β0}

β0‖∇Sd−1Gνk(θ)‖2d|νk|. (56)

For the second term of the right hand side, βj,k ≤ β0 means

α
a2
j,k

a2
j,k + ‖wj,k‖2

≤ β0.

By using an inequality ‖wj,k‖2 ≤ |aj,k|2 + 1, which is derived from Lemma B.2, we obtain

α
a2
j,k

2a2
j,k + 1

≤ β0.

Rearranging this inequality, we get |aj,k| ≤
√

2β0

α−2β0
<
√
β0/α, therefore |rj,k| ≤ |aj,k|(|aj,k|+ 1) ≤ 2|aj,k| ≤ 2

√
β0/α.

Then we have∫
Sd−1∪{β(θ)≤β0}

‖∇Sd−1Gνk(θ)‖2β0d|νk| ≤ 2Mβ0
β0

α
‖f(·, νk)− f∗‖2n ≤ 4CρMβ0

√
β0

α
Dρ(νk). (57)

For evaluating the first term of the right hand side of Eq. (56), we have∫
Sd−1

(αG2(θ) + ‖∇Sd−1Gνk(θ)‖2β0)d|νk| ≥ min{α, β0}
∫
Sd−1

(G2(θ) + ‖∇Sd−1Gνk(θ)‖2)d|νk|
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Now we take η(θ) ∈ ‖νk‖TV, then if θ ∈ Nj(ρ), it holds that

Gνk(θ) =
1

n

n∑
i=1

(f(xi; νk)− yi)σ(〈θ, xi〉) + λ sgn(η(θ))

=
1

n

n∑
i=1

(f(xi; ν
∗)− yi)σ(〈θ, xi〉) + λ sgn(η(θ)) +

n∑
i=1

f(xi; νk − ν∗)σ(〈θ, xi〉)

= −λ sgn(r∗j )〈θ, θ∗j 〉+ λ sgn(η(θ)) +

n∑
i=1

f(xi; νk − ν∗)σ(〈θ, xi〉)

and

∇Sd−1Gνk(θ) = (Id − θθT)
1

n

n∑
i=1

(f(xi; νk)− yi)xi1l{〈θ, xi〉 ≥ 0}

= (Id − θθT)

(
θ∗j +

1

n

n∑
i=1

(f(xi; νk − ν∗)− yi)xi1l{〈θ, xi〉 ≥ 0}

)
.

Then we have∫
Sd−1

(G2(θ) + ‖∇Sd−1Gνk(θ)‖2)d|νk| ≥
m∗∑
j=1

∫
Nj(ρ)

(G2(θ) + ‖∇Sd−1Gνk(θ)‖2)d|νk|

=

m∗∑
j=1

∫
Nj(ρ)

((
−λ sgn(r∗j )〈θ, θ∗j 〉+ λ sgn(η(θ))

)2
+ ‖(Id − θθT)θ∗j ‖2︸ ︷︷ ︸

(I)

+ 2(−λ sgn(r∗j )〈θ, θ∗j 〉+ λ sgn(η(θ)))

(
1

n

n∑
i=1

f(xi; νk − ν∗)σ(〈θ, xi〉)

)
︸ ︷︷ ︸

(II)

+ 2θ∗Tj (Id − θθT)
1

n

n∑
i=1

f(xi; νk − ν∗)xi1l{〈θ, xi〉 ≥ 0}︸ ︷︷ ︸
(III)

+

∣∣∣∣∣ 1n
n∑
i=1

f(xi; νk − ν∗)xi1l{〈θ, xi〉 ≥ 0}

∣∣∣∣∣
2

︸ ︷︷ ︸
(IV)

)
d|νk|.

Now we evaluate each term in the right hand side. The term (I) can be evaluated as

(I) =

(
−λ sgn(r∗j )〈θ, θ∗j 〉+ λ sgn(η(θ))

)2

+ ‖(Id − θθT)θ∗j ‖2

=

(
−λ sgn(r∗j )〈θ, θ∗j 〉+ λ sgn(η(θ))

)2

+ 1− 〈θ, θ∗j 〉2

≥

{
(1 + λ2)(1− 〈θ, θ∗j 〉) (sgn(η(θ)) = sgn(r∗j )),

λ2 (otherwise),

which gives ∫
Nj(ρ)

(I)d|νk| ≥ λ2(∆θj,k + ∆rj,k).
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For the terms (II) and (III), we have for any θ ∈ Sd−1,∥∥∥∥∥ 1

n

n∑
i=1

f(xi; νk − ν∗)xi1l{〈θ, xi〉 ≥ 0}

∥∥∥∥∥ ≤ ‖f(·; νk)− f∗‖n ≤ (CρDρ(νk))
1
2 ,

by Lemma B.13. Then it holds that have

∣∣∣∣∣
∫
Nj(ρ)

(II)d|νk|

∣∣∣∣∣ = 2

∣∣∣∣∣
∫
Nj(ρ)

(
−λ sgn(r∗j )〈θ, θ∗j 〉+ λ sgn(η(θ))

)(
1

n

n∑
i=1

f(xi; νk − ν∗)σ(〈θ, xi〉)

)
d|νk||

∣∣∣∣∣
≤ 2λ(∆θj,k + ∆rj,k) (CρDρ(νk))

1
2 ,∣∣∣∣∣

∫
Nj(ρ)

(III)d|νk|

∣∣∣∣∣ = 2

∣∣∣∣∣
∫
Nj(ρ)

θ∗Tj (Id − θθT)
1

n

n∑
i=1

f(xi; νk − ν∗)xi1l{〈θ, xi〉 ≥ 0}d|νk||

∣∣∣∣∣
≤ 2(∆θj,k + ∆rj,k) (CρDρ(νk))

1
2 .

For the term (IV), we consider the decomposition f(·; νk) =
∑m∗

j=0 fj,k as Lemma B.13. Then it holds that

m∗∑
j=1

∫
Nj(ρ)

(IV)d|νk| =
m∗∑
j=1

|r∗j ||

∣∣∣∣∣ 1n
n∑
i=1

(f(xi; νk)− f∗(xi))xi1l{〈θ∗j , xi〉 ≥ 0}

∣∣∣∣∣
2

≥

∥∥∥∥∥∥(f(·; νk)− f∗)
m∗∑
j=1

(
|r∗j |

1
2σ(〈θ∗j , ·〉)

)∥∥∥∥∥∥
2

n

≥ c0 ‖f(·; νk)− f∗‖2n ≥ c0κ
m∗∑
j=1

(r̄j,k − r∗j )2 + o(Dρ(νk)),

where c0 := min
i

∑m∗

j=1

(
|r∗j |

1
2σ(〈θ∗j , xi〉)

)
> 0. Combining the evaluations of (I)-(IV) and Eq. (57), we have

g2
νk
≥ min{α, β0}CDρ(νk) + o(Dρ(νk))− 4CρMβ0

√
β0

α
Dρ(νk),

for a some constant C > 0. Therefore, with taking sufficiently small β0 to satisfy 4CρMβ0

√
β0

α ≤ min{α, β0}C/2, we
have

g2
νk
≥ min{α, β0}

2
CDρ(νk).

This gives the conclusion.

Proof of Proposition B.15. Combining Lemma B.13 and Lemma B.16, we get the conclusion easily.

Finally, we give the proof which ensures the linear convergence.

Proposition B.17 (Local convergence). Under Assumption 4.3–4.7, there exist constants J0 > J∗ and 0 < κ0 < 1 such
that if J(νk) < J0, it holds that

J(νk+1)− J∗ ≤ (1− κ0)(J(νk)− J∗).

Proof. Combining Lemma B.14 and Lemma B.13, we have

J(νk+1)− J(νk) ≤ −Cg(J(νk)− J∗) + O((J(νk)− J∗)2).
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Then for sufficiently small J(νk)− J∗, there exists a constant κ̃ > 0 such that

J(νk+1)− J(νk) ≤ −Cg(J(νk)− J∗) + κ̃(J(νk)− J∗)2.

By rearranging this inequality, we obtain

J(νk+1)− J∗ ≤ (1− κ0)(J(νk)− J∗)

for a constant 0 < κ0 < 1. This gives the conclusion.

B.4.1. EVALUATION OF ρ

In the previous section, we have considered a division of Sd−1 with the parameter ρ. We have seen that the step-size
parameter α needs to be as small as ρ (Lemma B.14). Therefore we need to evaluate how small ρ should be, i.e., how small
minj Rj will be, which is evaluated by the angles between the sample (xi)

n
i=1 and the optimal parameters (θ∗j )m

∗

j=1, i.e.,
min
i,j

dist(xi , θ
∗
j ).

Lemma B.18 (Evaluation of ρ). Assume that d ≥ 3, with probability at least 1− δ over the sample (xi)
n
i=1, it holds that

min
i,j

∣∣∣dist(θ◦j , xi)−
π

2

∣∣∣ > √
π

2nm∗
Γ
(
d−1

2

)
Γ
(
d
2

) δ. (58)

Proof. Lemma 12 in Cai et al. (2013) shows that for each i, j, dist(θ◦j , xi) is distributed on [0, π] with density

h(ϕ) =
1√
π

Γ
(
d
2

)
Γ
(
d−1

2

) (sinϕ)d−2.

This has a maximum value h(π/2) = 1√
π

Γ( d
2 )

Γ( d−1
2 )

. This leads to

Pr
(∣∣∣dist(θ◦j , xi)−

π

2

∣∣∣ ≤ t) ≤ 1√
π

Γ
(
d
2

)
Γ
(
d−1

2

)2t

for any t ∈ [0, π2 ]. Therefore we have

Pr

(
min
i,j

∣∣∣dist(θ◦j , xi)−
π

2

∣∣∣ ≤ t) ≤ nm∗√
π

Γ
(
d
2

)
Γ
(
d−1

2

)2t,

which gives the conclusion with taking t =
√
π

2nm∗
Γ( d−1

2 )
Γ( d

2 )
δ.

This shows that if θ◦j and θ∗j are sufficiently close for any j ∈ [m∗], we have minj Rj = Op(1/nm∗).

B.5. Convergence inM(Sd−1)

Theorem 4.8 only ensures the convergence of function value. In this section, we give a convergence in a measure space. At
first, we introduce a distance inM(Sd−1).

Definition B.19 (Wasserstein-Fisher-Rao metric (Chizat, 2019)).

W̃2(ν1, ν2) := inf{W2(µ1, µ2)|(µ1, µ2) ∈ P2(R+ × Sd−1)2 satisfy (hµ1,hµ2) = (ν1, ν2)}.

where h : P2(R+ × Sd−1)→M+(Sd−1) is a homogeneous projection operator, i.e., hµ satisfies∫
Sd−1

φ(θ)d(hµ)(θ) =

∫
R+×Sd−1

rφ(θ)dµ(r, θ)

for any continuous function φ : Sd−1 → R.
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In above definition, W2(µ1, µ2) = inf
γ∈Π(µ1,µ2)

∫
R+×Sd−1 d̃ist

2
((r1, θ1), (r2, θ2))dγ, where Π(µ1, µ2) is a set of product

measures with marginals µ1 and µ2, where d̃ist is a distance defined in R+ × Sd−1. In this section we especially consider
the cone metric (Chizat, 2019), which is expressed by

d̃ist
2
((r1, θ1), (r2, θ2)) = (r1 − r2)2 + 2r1r2(1− 〈θ1, θ2〉).

Then we can show that a distance between νk and ν∗ induced by this metric is upper bounded by Dρ(νk), which we utilize
in the proof of local convergence.

Lemma B.20. Let ν∗ = ν∗+ − ν∗−, νk = νk+ − νk− be Hahn-Jordan decomposition, then it holds that

max{W̃ 2
2 (νk+, ν

∗
+), W̃ 2

2 (νk−, ν
∗
−)} ≤ Dρ(νk).

Proof. Remark that Dρ(νk) is given by

Dρ(νk) =

m∗∑
j=1

(r̄j,k − r∗j )2 + r0,k +

m∗∑
j=1

(∆θj,k + ∆rj,k).

Let I+ := { j | r∗j > 0}, I− := { j | r∗j < 0} be subsets of [m∗]. Then it holds that ν∗+ =
∑
j∈I+ r

∗
j δθ∗j , ν∗− =

∑
j∈I− r

∗
j δθ∗j .

We only consider the bound of W̃ 2
2 (νk+, ν

∗
+) since we can follow the same argument for W̃ 2

2 (νk−, ν
∗
−). For each j ∈ I+,

we define a “local positive mass with” r̄j,k,+ =
∑

θk∈Nj(ρ)
sgn(rj′,k)>0

rj ′,k . Note that by the definition, r̄j,k = r̄j,k,+ + ∆rj,k. For

Dρ(νk) small enough, it holds that ∆rj,k ≤ 1 for all j. Therefore it holds that

Dρ(νk) ≥
∑
j∈I+

((r̄j,k − r∗j )2 + ∆r2
j,k) + r0,k +

∑
j∈I−

∆rj,k +
∑
j∈I+

∆θj,k

≥
∑
j∈I+

(r̄j,k,+ − r∗j )2 + r0,k +
∑
j∈I−

∆rj,k +
∑
j∈I+

∆θj,k.

Then by using the similar argument as Chizat (2019), we get the conclusion.

B.6. Evaluation of Estimation Error

In this section, we give a result to the estimation error ‖f(·; νk)− f◦‖L2(PX ), i.e., Corollary 4.10. This is a straightforward
consequence of Theorem 4.9 and this can be verified by the following Lemmas and Lemma B.20.

Lemma B.21.

‖f(·; νk)− f∗‖∞ ≤ 2
√

2 max{W̃2(νk+, ν
∗
+), W̃2(νk−, ν

∗
−)} (59)

Proof. Firstly, for any x ∈ Sd−1, r, r′ ∈ R+ and θ, θ′ ∈ Sd−1, we have

|rσ(〈θ, x〉)− r′σ(〈θ′, x〉)|2 ≤ 2(r − r′)2 + 2 min{r, r′}2‖θ − θ′‖2

≤ 2(r − r′)2 + 2rr′(2− 2〈θ, θ′〉) ≤ 2d̃ist
2
((r, θ), (r′, θ′)),

where we use (a+ b)2 ≤ 2a2 + 2b2 for the first inequality. By using this inequality, let f̃(x; (·, ·)) : (r, θ) 7→ rσ(〈θ, x〉),
then we have for any x ∈ Sd−1,

‖f̃(x; (·, ·))‖Lip ≤
√

2.

Let (µk+, µ
∗
+) and (µk−, µ

∗
−) be any element of P2(R+ × Sd−1)2 which satisfy (hµk+,hµ∗+) = (νk+, ν

∗
+) and

(hµk−,hµ∗−) = (νk−, ν
∗
−) respectively. By the above inequality, the triangle inequality and the Kantorovich-Rubinstein
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duality, we have

‖f(·; νk)− f∗‖∞ = sup
x∈Sd−1

|f(x; νk)− f∗(x)|

≤ sup
x∈Sd−1

|f(x; νk+)− f(x; ν∗+)|+ sup
x∈Sd−1

|f(x; νk−)− f(x; ν∗−)|

= sup
x∈Sd−1

∣∣∣∣∫
Sd−1

σ(〈θ, x〉)(dνk+ − dν∗+)(θ)

∣∣∣∣+ sup
x∈Sd−1

∣∣∣∣∫
Sd−1

σ(〈θ, x〉)(dνk− − dν∗−)(θ)

∣∣∣∣
= sup
x∈Sd−1

∣∣∣∣∫
Sd−1

f̃(x; (·, ·))(dµk+ − dµ∗+)(r, θ)

∣∣∣∣+ sup
x∈Sd−1

∣∣∣∣∫
Sd−1

f̃(x; (·, ·))(dµk− − dµ∗−)(r, θ)

∣∣∣∣
≤
√

2 sup
‖f̌‖Lip≤1

∣∣∣∣∣
∫
R+×Sd−1

f̌(dµk+ − dµ∗+)(r, θ)

∣∣∣∣∣+
√

2 sup
‖f̌‖Lip≤1

∣∣∣∣∣
∫
R+×Sd−1

f̌(dµk− − dµ∗−)(r, θ)

∣∣∣∣∣
=
√

2(W2(µk+, µ
∗
+) +W2(µk−, µ

∗
−))

≤ 2
√

2 max{W2(µk+, µ
∗
+),W2(µk−, µ

∗
−)},

which gives the conclusion.

proof of Corollary 4.10. Firstly, we have

‖f(·; νk)− f◦‖2L2(PX ) ≤ 2‖f(·; νk)− f(·; ν∗)‖2L2(PX ) + 2‖f(·; ν∗)− f◦‖2L2(PX ).

For the first term, it holds that

‖f(·; νk)− f(·; ν∗)‖2L2(PX ) ≤ ‖f(·; νk)− f(·; ν∗)‖2∞.

The second term can be bounded by

‖f(·; ν∗)− f◦‖2L2(PX ) ≤ O(mλ2),

which is derived by
∑m
j=1 |r◦j − r∗j |2 ≤ O(mλ2) and

∑m
j=1 dist2(θ∗j , θ

◦
j ) ≤ O(mλ2). Then by using Theorem 4.9 for the

first term and combining them, we get the conclusion.

C. Auxiliary Lemmas
In this section we introduce some auxiliary Lemmas.

Lemma C.1. For w,∆w ∈ Rd, if w 6= 0 and ‖∆w‖ ≤ ‖w‖/2, it holds that

0 ≤ ‖w −∆w‖ −
(
‖w‖ − 〈w,∆w〉

‖w‖

)
≤ ‖∆w‖

2

‖w‖

Proof. At first, we note that

‖w‖ − 〈w,∆w〉
‖w‖

≥ ‖w‖ − ‖∆w‖ ≥ ‖∆w‖
2

2‖w‖
.

By the straightforward calculation, it holds that

‖w −∆w‖2 = ‖w‖2 − 2〈w,∆w〉+ ‖∆w‖2

=

(
‖w‖ − 〈w,∆w〉

‖w‖

)2

+ ‖∆w‖2 − 〈w,∆w〉
2

‖w‖2

≤
(
‖w‖ − 〈w,∆w〉

‖w‖

)2

+ ‖∆w‖2.
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Then we have (
‖w −∆w‖ −

(
‖w‖ − 〈w,∆w〉

‖w‖

))(
‖w −∆w‖+

(
‖w‖ − 〈w,∆w〉

‖w‖

))
≤ ‖∆w‖2.

Furthermore, because ‖w −∆w‖+
(
‖w‖ − 〈w,∆w〉‖w‖

)
≥ ‖w‖, we get

‖w −∆w‖ −
(
‖w‖ − 〈w,∆w〉

‖w‖

)
≤ ‖∆w‖

2

‖w‖

and this gives the conclusion.

Lemma C.2. For w,∆w ∈ Rd, if w 6= 0 and ‖∆w‖ ≤ ‖w‖/2, it holds that∥∥∥∥ w −∆w

‖w −∆w‖
− w

‖w‖
+

1

‖w‖

(
Id −

wwT

‖w‖2

)
∆w

∥∥∥∥ ≤ 5‖∆w‖2

‖w‖2
.

Proof. By putting ‖w −∆w‖ = ‖w‖ − 〈w,∆w〉‖w‖ + δ, we have

w −∆w − ‖w −∆w‖
‖w‖

(
w −

(
Id −

wwT

‖w‖2

)
∆w

)

= w −∆w −
‖w‖ − 〈w,∆w〉‖w‖ + δ

‖w‖

(
w −∆w +

〈w,∆w〉
‖w‖2

w

)
= − δ

‖w‖
w − 〈w,∆w〉 − δ‖w‖

‖w‖2

(
∆w − 〈w,∆w〉

‖w‖2
w

)
.

Then by the triangle inequality, an upper bound of the norm of this vector is obtained by

|δ|+ ‖∆w‖+ |δ|
‖w‖

‖∆w‖.

Divided by ‖w −∆w‖ and by using inequalities δ ≤ ‖∆w‖/2 and ‖w −∆w‖ ≥ ‖w‖/2, we get the conclusion.

Lemma C.3. Let θ, θ′ ∈ Sd−1, then it holds that

dist2(θ, θ′)

6
≤ 1− 〈θ, θ′〉 ≤ dist2(θ, θ′)

2

Proof. Let d := dist(θ, θ′) = arccos(〈θ, θ′〉), then we have cos d = 〈θ, θ′〉. By using the inequality 1− d2/2 ≤ cos d ≤
1− d2/6 for d ∈ [0, π], we get the conclusion.

Lemma C.4. For k ∈ [−1, 1], it holds that

π − arccos(k)

π
k +

√
1− k2

π
≤ 1

π
+
k

2
+

(
1

2
− 1

π

)
k2

Lemma C.5. For k1, k2 satisfying r :=
√
k2

1 + k2
2 ≤ 1, it holds that

π − arccos(k1)

π
k1 +

√
1− k2

1

π
+
π − arccos(k2)

π
k2 +

√
1− k2

2

π
− π − arccos(r)

π
r +

√
1− r2

π
− 1

π

≤ 1

2
(k1 + k2 − r).
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Proof. Let g(k1, k2) := (LHS)− (RHS). Simple calculation shows that g is even w.r.t. both of k1 and k2. Therefore we
only need to consider the case k1 ≥ 0, k2 ≥ 0. Let k1 = r cos θ, k2 = r sin θ (0 ≤ r ≤ 1, 0 ≤ θ ≤ π/2). This gives

g̃(r, θ) := g(k1, k2)

=
π − arccos(r cos θ)

π
r cos θ +

√
1− r2 cos2 θ

π
+
π − arccos(r sin θ)

π
r sin θ +

√
1− r2 sin2 θ

π

− π − arccos(r)

π
r +

√
1− r2

π
− 1

π
− r

2
(cos θ + sin θ − 1).

For any fixed 0 ≤ θ ≤ π/2, we have

∂g̃

∂r
(r, θ) =

π − arccos(r cos θ)

π
cos θ +

π − arccos(r sin θ)

π
sin θ − π − arccos(r)

π
− 1

2
(cos θ + sin θ − 1).

∂2g̃

∂r2
(r, θ) =

cos2 θ

π
√

1− r2 cos2 θ
+

sin2 θ

π
√

1− r2 sin2 θ
− 1

π
√

1− r2

≤ cos2 θ + sin2 θ

π
√

1− r2
− 1

π
√

1− r2
= 0.

Therefore ∂g̃
∂r (r, θ) is monotonically decreasing w.r.t. r and ∂g̃

∂r (0, θ) = 0, then g̃ is also monotonically decreasing. This
means that g takes maximum value at (k1, k2) = (0, 0). Since g(0, 0) = 0, we get the conclusion.

Lemma C.6. For k1, k2 satisfying r :=
√
k2

1 + k2
2 ≤ 1, it holds that

− arccos(k1)− arccos(k2) + arccos(r) + π/2 ≤ k1 + k2 − r.

Proof. Let g(k1, k2) := (LHS)− (RHS). It is sufficient to consider the case k1 ≥ 0, k2 ≥ 0 because it holds that

g(k1, k2)− g(−k1, k2) = π − 2 arccos(k1)− 2k1 ≥ 0

for k1 ≥ 0 and arbitrary k2. The same argument follows with swapping k1 and k2. Let k1 = r cos θ, k2 = r sin θ
(0 ≤ r ≤ 1, 0 ≤ θ ≤ π/2). We consider a function

g̃(r, θ) := g(k1, k2)

= − arccos(r cos θ)− arccos(r sin θ) + arccos(r)− π

2
− r(cos θ + sin θ − 1).

or any fixed 0 ≤ θ ≤ π/2, we have

∂g

∂r
(r, θ) =

cos θ√
1− r2 cos2 θ

+
sin θ√

1− r2 sin2 θ
− 1√

1− r2
− (cos θ + sin θ − 1)

∂2g̃

∂r2
(r, θ) =

r cos2 θ√
1− r2 cos3 θ

+
r sin3 θ√

1− r2 sin2 θ
− r√

1− r2

≤ r cos3 θ√
1− r2

+
r sin3 θ√

1− r2
− r√

1− r2
≤ 0.

Therefore ∂g̃
∂r (r, θ) is monotonically decreasing w.r.t. r and ∂g̃

∂r (0, θ) = 0, then g̃ is also monotonically decreasing. This
means that g takes maximum value at (k1, k2) = (0, 0). Since g(0, 0) = 0, we get the conclusion.

Lemma C.7. For k1 ≥ 0, k2 ≥ 0 satisfying
√
k2

1 + k2
2 ≤ 1, it holds that

arccos(k1) + arccos(k2) ≤ arccos(
√
k2

1 + k2
2) + π/2.
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Proof. We have

cos(arccos(k1) + arccos(k2)) = k1k2 −
√

1− k2
1

√
1− k2

2.

cos

(
arccos(

√
k2

1 + k2
2) +

π

2

)
= −

√
1− k2

1 − k2
2

Then it holds that cos
(

arccos(
√
k2

1 + k2
2 + π

2 )
)
≤ cos(arccos(k1) + arccos(k2)), because −1 + k2

1 + k2
2 ≤ 0 and

1− k2
1 − k2

2 − (k1k2 −
√

1− k2
1

√
1− k2

2)2 = 2k1k2(
√

1− k2
1

√
1− k2

2 − k1k2)

≤ 2k1k2(k1k2 − k1k2) = 0.

By the fact 0 ≤ arccos(k1) + arccos(k2) ≤ π and π/2 ≤ arccos(
√
k2

1 + k2
2) + π/2 ≤ π, we get the conclusion.

Lemma C.8 (Matrix Bernstein (Tropp, 2015)). Let A1, . . . , An be independent random d× d matrices with E[Ai] = 0d
and ‖Ai‖op ≤ L for some L > 0. then for any t ≥ 0,

Pr

∥∥∥∥∥
n∑
i

Ai

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

(
−t2

2(V + Lt/3)

)

where V :=
∥∥∑n

i=1 E[A2
i ]
∥∥

op
.


