
A large-scale benchmark for few-shot program induction and synthesis

Ferran Alet * 1 Javier Lopez-Contreras * 1 James Koppel 1 Maxwell Nye 1 Armando Solar-Lezama 1

Tomás Lozano-Pérez 1 Leslie Pack Kaelbling 1 Joshua B. Tenenbaum 1

Abstract

A landmark challenge for AI is to learn fexible,
powerful representations from small numbers of
examples. On an important class of tasks, hy-
potheses in the form of programs provide ex-
treme generalization capabilities from surpris-
ingly few examples. However, whereas large real
image benchmarks have spurred progress in meta-
learning for deep networks, there is no compa-
rably big, real program-synthesis dataset. This
is because, while images are relatively easy to
label from internet meta-data or annotated by non-
experts, generating meaningful input-output tests
for program induction has proven hard to scale.
In this work, we propose a new way of leverag-
ing a collection of programs with associated unit
tests to create a much larger collection of test-
program pairs. We do so by extracting subpro-
grams of each program and using the inputs of the
overall program to get tests for each subprogram.
This allows us to create PROGRES, a large-scale
few-shot program-induction benchmark of real
programs and propose new challenges in this do-
main. We analyze the effect of multiple design
choices on transformer-based program induction
and synthesis algorithms, pointing to shortcom-
ings of current methods and suggesting multiple
avenues for future work.

1. Introduction
Note: since the camera-ready, we have made a fnal ver-
sion of the dataset with more programs and increased
diversity. The dataset description is the same, but met-
rics and statistics change, and get more detailed. You
can fnd it the updated PDF and materials at: https:
//lis.csail.mit.edu/progres. Figure 2. Example of a task corresponding to the fltering subpro-

gram in fgure 1. The text context describes the overall program in
*Equal contribution 1Massachusetts Institute of Technology, which the subprogram is embedded. The C++ function provides

Cambridge Massachusetts, USA. Correspondence to: Ferran Alet a possible implementation. Even though we standardize variable
<alet@mit.edu>, Javier Lopez-Contreras <javierlc@mit.edu>. names, there are still alternative implementations, such as using

while instead of for. The Program Expression Graph (only aProceedings of the 38 th International Conference on Machine
portion shown) provides a more canonical notation. Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Extracting interesting subprograms from the Sieve of
Erathostenes. Some subprograms, like j = max (p, dn/pe) p,
are byproducts that are not directly used by the overall program,
but still implement purposeful functions. Line sub-sequences that
break the nesting structure result in invalid subprograms.

mailto:javierlc@mit.edu
mailto:alet@mit.edu
https://lis.csail.mit.edu/progres

Large-scale few-shot program induction and synthesis

1.1. Motivation

One of the distinctive abilities of human intelligence is
building fexible representations from small amounts of
data (Lake et al., 2015). Neural networks provide power-
ful representations, but require substantial amounts of data
to train. To alleviate these needs, a set of few-shot learn-
ing challenges has catalyzed progress into building deep
meta-learning systems. These systems generalize from few
examples by learning powerful priors on large amounts of
previous tasks (Hospedales et al., 2020).

Programs often provide extreme generalization capabilities
from surprisingly few examples, such as generalizing to
larger arrays or numbers outside the training range. How-
ever, the combinatorial space of programs has proven hard
to search. Machine learning can then be used to learn to
search more effciently, either by learning to predict (priors
over) programs from examples, or directly learning a pre-
dictor that can answer future queries. To train such systems
we need a dataset of program induction tasks.

A program induction task is a supervised learning task
whose input-output examples come from a program. For
training tasks, we can optionally have access to the cor-
responding implementation of such program, which en-
ables learning to predict (priors over) programs from ex-
amples. Sometimes we can also have access to a text de-
scribing other relevant context. In this work, we present
PROGRES (Programs from Real Executed Subproblems),
a large meta-dataset of program induction tasks, enabling
future methods in few-shot program induction and synthesis.
You can fnd an example of a task in fgure 2.

Multiple methods have created large synthetic program in-
duction datasets by sampling programs from a Domain Spe-
cifc Language (DSL) and feeding them random inputs to
generate tests. Because DSLs can generate an unlimited
amount of programs, this method provides an easy way
of creating large datasets. This approach may work well
for hand-crafted DSLs where the language is highly tuned
to a specifc application. There, a reasonable portion of
valid programs implement sensible functions and shorter
programs tend to be more useful. In contrast, in general-
purpose languages like C++, the subset of interesting and
meaningful programs is an extremely small fraction of the
set of compiling C++ programs. Thus, it is essential to use
real programs to learn about this set of interesting programs.

In addition to real code, having meaningful input-output
tests has multiple advantages over evaluating random inputs.
Many programs have implicit pre-conditions for them to run
successfully. For instance, if we use an integer to index an
array, it has to be both positive and smaller than the array’s
length; if a program compares two lists element-wise, the
input lists must have equal length.

In a program induction task, input-output examples have
to satisfy two more properties beyond satisfying the pro-
gram’s pre-conditions. First, in the same way distribution
shift between training and test data affects performance in
a single-task, meta-training examples have to come from
the same distribution as meta-test examples. Therefore, if
we want our algorithms to generalize at deployment-time,
they have to be meta-trained on real, non-random input-
output examples to avoid such a (meta-)domain shift. More-
over, for each program, the overall set of input-output tests
must probe potential edge cases to distinguish the desired
program from possible alternatives, both for specifcation
(training examples) and validation(testing) purposes. In
PROGRES input-output examples come from propagating
unit tests designed by humans; thus, we expect them to be
natural and cover most edge cases.

1.2. Generating a large program induction benchmark
from a real code-base

Large repositories of human-generated code are already
available, many with accompanying examples designed to
probe the possible ways each program could fail. These
include many internal or open-source code-bases with unit
tests. Programming competitions are another paradigmatic
example: programmers compete to code solutions to a set
of problems, and their solutions are checked on hidden
input-output tests. PROGRES builds on programs from the
competitive programming website codeforces.com.

Directly using the programs and their test-cases from the
website as a benchmark has a number of downsides. First,
programs written by humans are often signifcantly too com-
plex for current program induction methods to solve. Sec-
ond, even though CodeForces has millions of programs, they
only implement ∼ 5, 500 different programming problems.

In this work, we propose to leverage a program with an ac-
companying test suite (defning a program induction task) to
create a series of input-output examples for its subprograms.
Subprograms are subsequences of the overall program that
express an intermediate variable as a function of previous
variables. As illustrated in fgure 1, subprograms in a pur-
poseful program are also likely to be useful. Moreover, by
being shorter and simpler, subprograms provide a useful
learning curriculum. Finally, since subprogram complexity
ranges from a single line of code to entire programs, they
provide a relevant benchmark for both current and future
program induction methods.

In order to generate input-output examples for subprograms,
we use a program interpreter to propagate the inputs of the
overall program line by line. Then, at each step in the execu-
tion, we capture the value of all the relevant variables. From
these execution traces, we derive relevant input-output tests
for each subprogram. For more information, see section 3.2.

https://codeforces.com

Large-scale few-shot program induction and synthesis

We generate PROGRES by applying a C++ program inter-
preter to programs solving the 5,500 problems from Code-
Forces. This allows us to create a much larger dataset of
more than 200,000 few-shot program-induction tasks of
varying diffculty and style (sec. 3.4). A careful analysis
of baselines (sec. 4.3) shows that there is both an initial
promise and a long road ahead in the quest for building
effective solutions to this problem.

In summary, our contributions are the following:

1. We propose a generic method of building large, real
program induction and synthesis benchmarks.

2. We provide a new dataset of more than 200, 000 pro-
gram induction tasks, with multiple challenges for the
program synthesis and few-shot learning communities.

3. We analyse the effect of adding different types of data
from PROGRES to a transformer-based algorithm.

2. Related work
Learning to few-shot learn meta-learning (Schmidhuber,
1987; Bengio et al., 1995; Thrun & Pratt, 1998) aims at learn-
ing priors from many tasks to generalize to a new task from
small amounts of data. Most of these methods assume that
the input form is constant((Iwata & Kumagai, 2020) being a
recent exception) and few-shot learning datasets are mainly
image classifcation (Lake et al., 2015; Vinyals et al., 2016;
Ren et al., 2018; Antoniou et al., 2020; Chen et al., 2019;
Triantafllou et al., 2019) or low-dimensional continuous
regression (Finn et al., 2017; Bauza et al., 2019). Moreover,
deep learning-based meta-learning algorithms do not typi-
cally generalize broadly outside the data distribution, espe-
cially non-optimization-based approaches (Finn, 2018). To
improve this, more compositional methods to meta-learning
are increasingly being proposed (Alet et al., 2018; Bengio
et al., 2019; Ke et al., 2019; Mendez & Eaton, 2020; Ruis
et al., 2020). PROGRES provides a relevant benchmark for
these compositional few-shot learning methods.

Neural program induction Neural networks are univer-
sal approximators that have delivered great results in a wide
variety of felds. Motivated by these successes, multiple
works have applied neural or neuro-symbolic methods to
latent program induction, where programs are represented
only implicitly, without any reference to a specifc DSL.
Many of these approaches propose neural architectures
inspired by computational modules (Graves et al., 2014;
Kurach et al., 2015; Reed & De Freitas, 2015; Joulin &
Mikolov, 2015; Graves et al., 2016; Dong et al., 2019; Li
et al., 2020), training weights end-to-end. However, most
of these works aim at learning a single task performed by
a program. In contrast, PROGRES measures the ability to
learn new tasks from few examples.

Few-shot program induction and synthesis Program
synthesis (Shaw et al., 1975; Solar-Lezama et al., 2006;
Gulwani et al., 2017) aims at generating code that satisfes
a set of input-output examples. Typically, these methods
are data effcient, often generalizing from few examples.
However, the combinatorial space of programs is hard to
search, often restricting the capacity of the language or the
size of programs. Machine learning, and deep learning
in particular, have been increasingly used to improve the
search over programs (Parisotto et al., 2016; Kalyan et al.,
2018; Brockschmidt et al., 2018; Ellis et al., 2019; Nye et al.,
2020). In this work, we implement one of these methods,
RobustFill (Devlin et al., 2017), as a baseline. We believe
that the substantial increase in data will facilitate further
progress in neural searchers. Finally, there have been demos
using GPT-3 (Brown et al., 2020) to predict short programs
from English descriptions. Inspired by this nascent line of
research, we modify the LSTM in the original RobustFill by
a pretrained transformer (Lewis et al., 2019).

Program induction datasets There have been multiple
few-shot program induction datasets, such as those used in
FlashFill (Gulwani, 2011; Gulwani et al., 2015) and Dream-
Coder (Ellis et al., 2020), as well as the Abstract Reasoning
Challenge(ARC) (Chollet, 2019), a list functions bench-
mark (Rule, 2020), or the SyGus competition (Alur et al.,
2017). Although these benchmarks contain many interesting
problems, they have been manually created by humans in-
stead of being automatically generated from real programs.
This creates a signifcant bias on the datasets (often being
captured by a relatively simple Domain Specifc Language)
and restricts the amount of tasks to a few hundred tasks. In
contrast, our benchmark, PROGRES, contains more than
200,000 tasks, two orders of magnitude more. This will
allow neural-based methods, often data-ineffcient, to learn
to generalize or search in these domains. Larger program
datasets have been shown to be useful to learn to search (Ba-
log et al., 2016; Shin et al., 2019). However, in contrast
to PROGRES, these programs were randomly generated
from restricted DSLs, and therefore do not capture the struc-
ture of real programs.

Datasets leveraging competitive programming code
Data from programming competitions, and codeforces.
com in particular, has been used before to build several
benchmarks. Zavershynskyi et al. (2018) is probably closest
to our benchmark, combining a mixture of crowd-sourced
descriptions of subprograms with input-output examples
for the entire programs (not subprograms). Kulal et al.
(2019) improved and standardized the pseudo-code annota-
tion with line-by-line annotations and learned to translate
from single-line pseudo-code to instruction. While useful,
language annotations are hard to scale because they have
to be crowd-sourced and require expertise. Moreover, they

Large-scale few-shot program induction and synthesis

sidestep the major diffculty of program induction, as using
a line-by-line description of the program in English reduces
the inference to a translation problem. Codeforces has also
been used to build program repair tools. Tan et al. (2017)
build a dataset of small fxes by leveraging consecutive sub-
missions from users fxing their mistakes and Kulal et al.
(2019) learn to fx compile errors by synthetically perturbing
correct programs and observing the compiler message.

3. Description of the PROGRES dataset
We call our dataset PROGRES: Programs from Real
Executed Subproblems.

3.1. Structure of the dataset

In competitive programming there are regularly-scheduled
contests, each with multiple new problems for humans to
solve by coding their solutions as programs. Each Code-
Forces problem consists of a short text describing a back-
story and the requirements for the program, as well as multi-
ple test-cases (some public, some private) that the submitted
program has to satisfy. Because all user submissions are
public, for each problem there are hundreds of available
programs that solve it, providing us with multiple pairs of
(program, test suite) such that the entire program satisfes
the test-cases. For each program we can obtain many sub-
programs: valid segments of code contained in the original
program, expressing an intermediate variable as a function
of other variables. To be valid, a subprogram has to be
correctly parenthesised: start and end at the same level of
nesting and never go to a level above where it started in the
indentation nesting. For a correct subsequence of the overall
program, we defne potential outputs as the variables modi-
fed on the last line and as inputs all the variables involved
in the computations on that sequence that are not created
within the subprogram itself.

Given a subprogram, we can generate the data for a single
task; consisting of 20 input-output pairs (10 training, 10
test). We obtain these pairs by running the entire program
with a custom-made C++ interpreter based on Cling (Vas-
silev et al.)(more details in section 3.2) and observing the
intermediate values at every line. Note that the input distri-
bution has a rich structure, as it comes from inputs designed
by humans after being processed by previous computations
in the overall program. Moreover, we also have access to
the natural text description of the overall program. This
text alone does not specify the subprogram, but serves as a
context to help guide the search.

In PROGRES, a task consists of the following information:

1. a type signature describing the variable types
(int,string,int[],etc) of all inputs and outputs,

2. 20 pairs of input-outputs examples, 10 for training and
10 for test,

3. a C++ function that solves these pairs, optionally with
variable names already standardized,

4. a natural text describing the overall program the task
has been extracted from,

5. a Program Expression Graph form that further standard-
izes the C++ code (see subsec 3.3 for more details).

Figure 2 shows an illustration for a single task.

3.2. Implementation and design decisions

In this section we provide an overview of how we obtained
the data contained in PROGRES. The goal is to provide a
better understanding on the data distribution, explaining how
we computed the input-output examples as well as some lim-
itations of our pipeline, which effectively constrain the pro-
grams in our dataset to be in a (large) subset of C++. We ob-
tain the original C++ programs from codeforces.com,
leveraging the scraping and standarization done by SPoC
and DrRepair (Kulal et al., 2019; Yasunaga & Liang, 2020).
Since this scraping only contained simple programs solving
very easy problems, we performed an additional scraping
to capture problems of all diffculties. We obtain around
300,000 programs; however, since C++ is a compiled lan-
guage, it is not meant to be run line-by-line, which we
need to do to obtain the subprograms. This process imposes
some constraints, which restrict us to a subset of C++, which
around 60,000 of the scraped programs satisfy. The most rel-
evant exclusions are classes, the queue and stack data-
structures, and the instructions break and continue. To
effciently evaluate these programs we leveraged the MIT
supercloud (Reuther et al., 2018), parallelizing program
evaluations over 4800 CPU cores.

To interpret C++ we use the Cling C++ interpreter (Vassilev
et al.). Cling performs an elaborate incremental just-in-time
compilation that keeps modifying the abstract syntax tree
before executing the new line of code. This allows us to
execute pieces of code and check the values of variables in
between. Since these pieces of code have to be compiled,
they have to be self-contained: functions have to be defned
entirely before being fed to Cling and loops and if statements
have to be given as a block. This would restrict the type of
subprograms that we can obtain with vanilla Cling, since
we would not be able inspect the intermediate values within
loops or functions.

We therefore implemented our own emulator on top of Cling
to be able to obtain intermediate values for loops and if state-
ments. Instead of feeding the entire if/while statement
to Cling, the emulator frst sends its condition and then calls
the appropriate code depending on whether the condition

https://codeforces.com

Large-scale few-shot program induction and synthesis

CONCODE NAPS SPoC ARC DreamCoder SyGUS PROGRES

Programming language Java UAST C++ - DSL DSL C++
Number of programs 2,184,310 17,477 18,356 - 215 829 274,612
Lines per program 4.4 21.7 14.7 - 14.1 20.0 3.3
Additional input documentation –pseudocode– - - - context

Number of induction tasks - 485 784 1000 215 829 274,612
Number of test cases (average) - 7.5 38.6 4.3 15.0 100.0 235.1

Table 1. Comparison of PROGRESto other program-based datasets. Some datasets like CONCODE (Iyer et al., 2018), contain lots of
programs, but no tests for these programs. NAPS and SPoC, both based on CodeForces, have as many induction tasks as CodeForces
problems (not subproblems); it is worth noting, however, that they focus on going from pseudo-code to code, a more relevant description
than our context. Both ARC and DreamCoder have program induction tasks manually designed by humans, thus restricting their size. For
DreamCoder we estimated the numbers using the dataset of list functions, the dataset of towers and the dataset of physical equations. For
SyGus, we estimated the number of tasks looking at the largest competition in 2019 and the statistics on the programs described in Alur
et al. (2013). Finally, note that even though we standardize the programs to have 20 tests (10 train,10 test), we often have access to many
more, with an average of 235.

was satisfed or not. Note that these if/while conditionals
are often interesting quantities, and we also include them
as tasks, even though there is no explicit boolean variable
created in the original program.

We store these line by line executions for each input set to
the overall program. These fles can then be parsed to gen-
erate the tests for each subprogram. To keep the dataset to a
reasonable size and avoid very long inputs, we capped the
execution to 100KB of generated data and skipped programs
generating lines of more than 1KB of data. This avoided
long programs of many executions and arrays of tens of
thousands of integers, which are hard to process by most
ML methods and expensive to store for a dataset.

3.3. Finding equivalent programs

There are two type of equivalences in our dataset construc-
tion: subprogram equivalence implies the two implement
the same function; program induction task equivalence im-
plies that their programs are equivalent and they happen in
the same context (in our case, defned by the text represent-
ing the overall problem). This difference is important, as in
programming we often have to recognize the possibility of
reusing a known pattern in a new circumstance.

Defning Program Equivalence The same function can
be implemented by many different programs. As the
fnal step in the dataset construction, we identify such
equivalence-classes of functions using a mixture of test-
ing and theorem-proving. Programming language theorists
have defned many notions of program equivalence. A clas-
sic one, sometimes called “semantic equivalence," deems
two programs equivalent if they have the same preconditions
and, for all inputs satisfying these preconditions, they can
be proved to have the same output.

Implementing this in an automated checker is a non-starter:
the intended precondition of any subprogram is unknowable
from the code alone. Further, this defnition disallows prov-

ing equivalence of programs that exhibit undefned behavior,
as the C standard states e.g.: a program with integer overfow
may exhibit any behavior. We hence use I/O equivalence,
also called machine equivalence, where two programs are
equivalent if they have the same outputs for all inputs (on a
specifc machine).

Slicing when we extract a contiguous set of instructions
from the overall program, not all lines will affect the output
value of the intermediate variable of interest. We thus clean
the unnecessary instructions to avoid making programs un-
necessarily long and redundant; a process called slicing (Xu
et al., 2005; Tsantalis & Chatzigeorgiou, 2009). To slice,
we try removing lines from the bottom to the top, as well as
entire code blocks. If the code without those lines or code
blocks still passes the test-cases, we remove them and keep
iterating until we cannot remove any more code. Going from
the bottom to the top allows us to remove pairs of redundant
instructions where the bottom one depends on the top one.

Slicing and fnding classes of equivalent tasks We frst
partition tasks by CodeForces problem, since these will have
different text context, as well as different input-output pairs.
To detect equivalent tasks within each CodeForces problem,
we run the following steps:

1. We slice every program independently and standardize
the variables.

2. We join programs that have the same implementation.

3. We mark programs that pass each other test-cases as
potentially equivalent. This is an overapproximation
of the true equivalence relation.

4. We then cluster these candidates into programs proven
actually equivalent by using Yogo (Premtoon et al.,
2020), a tool based on equality saturation (Tate et al.,
2009; Nelson & Oppen, 1980). This refnes the candi-
date sets into an underapproximation of the true equiv-
alence relation.

Large-scale few-shot program induction and synthesis

The upshot of the consecutive overapproximating and un-
derapproximating phases is an excellent approximation to
the true equivalence relation, which is undecidable. Using
tests we can prove that two programs are not equivalent,
but not the opposite. Using Yogo we can prove they are
equivalent, but not the opposite. This leaves only a small
set of ambiguous relations.

The rest of this section summarizes Yogo and how it proves
programs equivalent.

Equality Saturation and E-PEGs An expression such
as x < y and y < z can be rewritten into many equiva-
lent forms using rules such as not(y <= x or y <= z)
or even the redundant z > y and y > x and z > x.
E-graphs (equivalence graphs (Nelson & Oppen, 1980)
are a way to compactly represent the exponential number
of equivalent expressions that can be found by a set of
rewrite rules. From the initial expression Abstract Syntax
Tree(AST), equality saturation is performed, adding each
newly-discovered equivalent expression to the e-graph via
an extension of the union-fnd algorithm.

E-graphs are a powerful technique, but have traditionally
only been applicable to pure, loop-free programs. Program
Expression Graphs (PEGs) (Tate et al., 2009) are a new
representation of programs that allows equational reason-
ing and build e-graphs on arbitrary imperative programs.
Conceptually, PEGs can be thought of as being constructed
by unrolling loops into an infnite tree, and then compactly
representing this infnite-but-regular tree as a cycle in the
graph. Equality saturation then yields an e-graph on the
PEG (or E-PEG), representing an exponentially-large space
of equivalent programs. This was originally used for com-
piler optimization, but Yogo (Premtoon et al., 2020) uses it
for code search — and now also for equivalence-checking.

Yogo: Equivalence Checking from E-PEGs We cus-
tomized Yogo to work on our codebase. Even though it
originally only handled Java and Python, it is built on the
Cubix (Koppel et al., 2018) multi-language infrastructure,
allowing us to add support for a subset of C that captures
the subset of C++ in PROGRES, after some simple string
transformations, e.g.: changing vector<int> foo to
struct vector foo. To check for equivalences be-
tween functions, we put them into a single E-PEG, assigning
each the same start state. Then, we report two subprograms
as equivalent if equality saturation groups their return values
in the same equivalence class.

3.4. Statistical analysis

Figure 3 shows the variability of signatures on our bench-
mark. As expected, the most common signatures involve
integer manipulations as well as classifcation problems

Figure 3. Subset of some interesting signatures in our dataset, all
with at least 200 tasks. Color indicates the length distribution of
programs for each signature. Most programs have few inputs and
output integers or booleans. There are programs doing array and
string manipulation, as well as some matrix operations.

from few variables. There are other signatures that involve
array, matrix and string manipulations, often conditioned on
other variables like integers or individual characters. These
are interesting as they often require to generalize to longer
computations as well as bigger data structures.

Figure 4 shows the diffculty of our tasks along three differ-
ent axis. First, many problems contain either if-statements
or loops that require generalizing more than 10 times the
number of operations needed for training examples. Condi-
tional execution (characterized by nesting in C++) is often
very hard for program induction techniques. Our bench-
mark contains a wide variability of nesting quantities across
different subprograms.Finally, our input and outputs follow
a very structured distribution, since they come from real
examples. For instance, most integers are small (note the
logarithmic y axis), with positive numbers being more com-
mon. Moreover, special numbers like 100 and -100 are more
common than numbers of similar magnitude.

3.5. Accompanying environment

In order to be able to test candidate programs, we include
a python interface to our C++ interpreter. The interface is
easy to use and has two different modes:

1. We can run an entire C++ function on a set of inputs by
passing the former as a string and the latter as a list of

Large-scale few-shot program induction and synthesis

Figure 4. (Left) We purposely bias the test to generalize to longer computations than those seen for training examples.This plot shows
the ratio of number of maximum number of lines executed for a test input vs maximum number of lines executed for a training input.
Programs without loops, where the ratio is 1, are ommitted.(Center) Depth of indentation execution (nested loops and if statements),
which often signifcantly affects the diffculty of program synthesis. (Right) number of times each integer in [-200,200] appears as an
input or output on a test-case. We can see that they follow a very intuitive distribution, with smaller integers being more popular, positive
numbers being more common than their negative counterparts and a peak at 100 and -100.

strings. The interface then returns whether the function
compiled and, if it did, a list of results for each input. In
case of a runtime error or a timeout, it returns "Runtime
error" or "Timeout" respectively. This is useful for
approaches that use the environment as a black-box
without interacting with individual instructions.

2. In contrast to traditional C++, we can run a program
line by line and return the appropriate variables with
new values. This mode is restricted to our subset of
C++ (that all programs in PROGRESbelong to), but
it is useful for methods that use partial executions to
guide synthesis (Ellis et al., 2019).

4. Benchmark
4.1. Evaluation protocol

Our goal is to generalize to relevant subprograms from un-
seen programming contests. Therefore, we choose to divide
between meta-train, meta-validation and meta-test at the
level of contests: training takes contests <1000, validation
between 1000 and 1249 and testing more than 1250. Some
subprograms (especially short ones like "return v0+1") are
repeated multiple times. If in a single problem (thus shar-
ing the context text and often the same input-output pairs)
there are multiple copies of the same subprogram, we merge
them into a single task, pooling their input-output examples.
Note that the same subprogram can be in different problems.
However, they will not be the same task, because both the
input-output pairs and the context text will differ. Intuitively,
new programming tasks may require us to implement code
we have seen before (like adding up all the elements in an
array), but in a different context.

To judge the performance of a program for a single task, we
evaluate its performance on unseen test cases. This allows

us to judge the correctness of equivalent implementations of
the same function or implicit programs, like those described
by neural networks. More concretely, for each task, we
give the method all 10 training examples and evaluate its
performance on the 10 test examples, only counting exact
answers. We can then measure the example accuracy (the
fraction of correctly-solved test-cases across all meta-test
tasks), and task accuracy (the fraction of tasks with all of
their 10 test examples correctly predicted). Note that, al-
though both measures are related, a method may have higher
task accuracy than another, while having lower example ac-
curacy. As described in previous work (Devlin et al., 2017),
having a high example accuracy is more desirable when
we are using the method on a per-example basis (like an
auto-suggest tool) whereas task accuracy is more important
in cases where we would like the induced program to make
an indeterminate number of predictions without having to
check all of them.

4.2. Baselines

We evaluate multiple baselines, all based on the same core
architecture (a large-scale language model), in order to bet-
ter understand their differences.

Fine-tuning a pre-trained language model to generate
code from examples Inspired by the RobustFill pro-
gram synthesis model (Devlin et al., 2017) and recent
advances in language model pre-training, we build a neural
program synthesis baseline. Our aim was to determine
how well a state-of-the-art sequence-to-sequence neural
program synthesis model could perform on our dataset.
We used the BART (Lewis et al., 2019) pre-trained
transformer model as a base, and fne-tuned it on our
dataset to output programs. The model takes as input
the function header (which describes the type signature),

Large-scale few-shot program induction and synthesis

as well as the support set examples arranged sequen-
tially, i.e., [header] | [Input1]; [Output1]
| [Input2]; [Output2] | ... [Input10];
[Output10]. The model is trained to output the program
body. At evaluation time, we perform a beam search of
beam size 10, and select the program out of those 10
candidates which performs the best on the support set and
execute that program on the query set to produce fnal
predictions for each query example. Note that executing
programs on the support set allows us to perform a search
over the possible candidate programs, which has been
shown to greatly increase the performance of neural
program synthesis techniques (Devlin et al., 2017). Figure 5
shows how, in our case, it signifcantly improves task
accuracy. To evaluate all program candidates we only need
to evaluate entire functions, instead interpreting the program
line-by-line. We thus relied on cppyy (Lavrijsen & Dutta,
2016) which provides effcient python-C++ bindings.

We also test if additionally conditioning on the overall pro-
gram description text increases performance. In these exper-
iments, we append the text to the examples.

Transformer-based end-to-end prediction Our next
baseline, also inspired by Devlin et al. (2017), is a program
induction model. Using an architecture analogous to the
neural program synthesis model, we use neural models to
perform neural program induction, i.e., given a training set
of k input-output examples and a single test input, produce
the corresponding output. Instead of generating the target
code, the induction model is instead trained to approximate
the execution of the code directly. Our model is identical
to the program synthesis model above, except that the test
input example is prepended to the context string, and the
model is trained to produce the target test output.

4.3. Discussion

Comparison between program synthesis and program
induction Somewhat surprisingly, in preliminary experi-
ments end-to-end program induction performed better than
predicting the program as an intermediate. However, the
order changed when we started slicing the programs, which
removed superfuous lines of code, making learning to syn-
thesize easier. There, the synthesis approach has a great
advantage, as it can generate the program and let it solve
arbitrarily complex inputs.

This is specially the case for tasks returning collections
(arrays, lists, strings, and matrices). This is understandable,
since , for collections, program induction had to generate
long stretches of tokens without error, which is very hard to
do, especially for all inputs.

Dependence on number of program examples Perfor-
mance consistently improves from 5 to 10 examples, but by

Figure 5. Dependence of example and task accuracy when only
evaluating the frst p ∈ [1, 10] programs coming from the beam
search. Most of the the performance comes from the frst predic-
tion, but the rest provides a noticeable boost of more than one third
in relative performance.

less than one may expect. Human experiments in a prelimi-
nary version of this dataset indicated that their learning was
also very fast, saturating at 5 examples. This also matches
previous human experiments on inferring list-editing pro-
grams (Rule, 2020). Therefore, it appears that there is also
a fundamental search problem, typical in program synthesis,
where the task space is exponential.

Dependence on text context Adding the text context im-
proved performance by a surprisingly high amount: between
16% relative improvent in example accuracy and 23% in
task accuracy.We did not observe any signifcant correlation
with the type signature, instead producing improvements
across the board. Further research into more effectively
combining the two modalities of input is a promising area
of future work.

4.4. Open challenges

The previous section highlights the need for better few-
shot program induction and program synthesis methods.
Moreover, this benchmark opens up multiple interesting
challenges. We highlight a few:

Graph representations of programs although not
explored in this work, the inclusion of PEGs in PRO-
GRES facilitates the evaluation of Graph Neural
Networks (Scarselli et al., 2009; Bronstein et al., 2017;
Battaglia et al., 2018) for code analysis at scale, an approach
that has already shown promise (Li et al., 2019).

Open-ended active learning The ability of asking for
useful labels would allow a program synthesis method to
interact with a human, improving the data effciency by
actively trying to resolve uncertainties. This topic has been
explored in the past for program induction (Pu et al., 2018),
but only in selecting from a small number of examples.
Since we provide an environment and the true program, we

https://accuracy.We

Large-scale few-shot program induction and synthesis

Method Pretrained Text context Example accuracy
5-shot/10-shot

Task accuracy
5-shot/10-shot

Entity task acc.
5-shot/10-shot

Collection task acc.
5-shot/10-shot

BART-Robustfll
Induction

no

yes

without
with

without
with

0.351 / 0.349
0.340 / 0.338

0.477 / 0.492
0.504 / 0.521

0.107 / 0.107
0.114 / 0.116

0.210 / 0.223
0.246 / 0.259

0.126 / 0.126
0.135 / 0.137

0.248 / 0.263
0.289 / 0.305

0.000 / 0.000
0.000 / 0.000

0.001 / 0.001
0.010 / 0.010

BART-Robustfll
Synthesis

no

yes

without
with

without
with

0.464 / 0.473
0.510 / 0.516

0.570 / 0.579
0.592 / 0.602

0.315 / 0.325
0.363 / 0.370

0.420 / 0.429
0.444 / 0.456

0.526 / 0.538
0.560 / 0.565

0.622 / 0.633
0.645 / 0.655

0.124 / 0.123
0.240 / 0.249

0.285 / 0.283
0.306 / 0.313

Table 2. Comparison of the different design choices based on BART-RobustFill. Synthesizing the program instead of directly predicting
the outputs gave the biggest boost. Interestingly, in previous versions of the dataset where the programs were not sliced, induction gave
better results, highlighting the need for clean code examples. Then, using the pretrained weights for the transformer has a very noticeable
positive effect. Having the text context consistently improves performance by a noticeable margin. Finally, going from 5 to 10 examples
gives a small, but positive boost to all methods. Note: since the camera-ready, we have made a fnal version of the dataset with more
programs and diversity. The dataset description is the same, but concrete metrics and statistics change. You can fnd it the updated PDF
and materials at: https://lis.csail.mit.edu/progres.

can use it as an oracle for active learning. However, this has
the added challenge (and beneft) of being unconstrained,
with the model generating its own queries.

Leveraging instructive examples and structured inputs
In classic Machine Learning we assume examples come
from randomly sampling the input distribution. Therefore,
most training examples lie at the conceptual center of the in-
put space. In contrast, our examples tend to be extremal, pok-
ing at the edge-cases to differentiate the true program from
reasonable alternatives. Humans actively use the knowledge
that a teacher is giving them instructive examples to update
their priors more effectively (Shafto et al., 2014). Construct-
ing algorithms capable of similar inferences is a promising
avenue for future work. Similarly, our inputs tend to pertain
to a class much smaller than that defned by their C++ type.
For instance, for many problems, all integer inputs are posi-
tive, which makes some implementations easier. Being able
to infer these conditions in the inputs and exploit them is
something human programmers often do and an avenue for
improving the performance of current systems.

Leveraging intermediate states for program synthesis
Our environment can be run in interactive mode, receiv-
ing individual (or groups of) instructions, and returning
the relevant variables that changed value. This facilitates
program synthesis that inspects intermediate values to in-
form search, which has been shown to signifcantly boost
performance (Ellis et al., 2019; Nye et al., 2020).

5. Conclusion
We have presented a new way of scaling up few-shot pro-
gram induction and program synthesis benchmarks. We

provide PROGRES, a meta-dataset of more than 200,000
tasks based on real programs, of a wide variety of problems
and input-output examples. Evaluations show a wide margin
for improvements for current program induction and syn-
thesis methods. The scale of data, two orders of magnitude
larger than previous work, together with the inclusion of
text contexts and a custom code interpreter open up many
possible avenues for future research.

Acknowledgements
We would like to thank Maria Bauza for her detailed and
perceptive comments on the paper drafts and anonymous
reviewer #3 for their thorough, insightful review; both sig-
nifcantly improved our work. We would also like to thank
Lauren Milechin and the MIT supercloud team, that allowed
us to scale the computations required to generate the dataset.
We would also like to thank Wim Lavrijsen and Sumith Ku-
lal for their quick and detailed responses about cppyy and
SPoC, respectively. Finally, we would like to thank Oriol
Vinyals and Charles Sutton for their comments about this
work and Eric Navarro and Marta Alet for their help parsing
CodeForces problems.

We gratefully acknowledge support NSF grant 1723381;
from AFOSR grant FA9550-17-1-0165; from ONR grant
N00014-18-1-2847; from GoodAI, from the Honda Re-
search Institute, from MIT-IBM Watson Lab; and from
SUTD Temasek Laboratories. We also acknowledge the
MIT SuperCloud and Lincoln Laboratory Supercomputing
Center for providing HPC resources that have contributed to
the research results reported within this paper. Any opinions,
fndings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
refect the views of our sponsors.

https://lis.csail.mit.edu/progres

Large-scale few-shot program induction and synthesis

References
Alet, F., Lozano-Perez, T., and Kaelbling, L. P. Modular

meta-learning. In Proceedings of The 2nd Conference on
Robot Learning, pp. 856–868, 2018.

Alur, R., Bodik, R., Juniwal, G., Martin, M. M.,
Raghothaman, M., Seshia, S. A., Singh, R., Solar-
Lezama, A., Torlak, E., and Udupa, A. Syntax-guided
synthesis. IEEE, 2013.

Alur, R., Fisman, D., Singh, R., and Solar-Lezama, A.
Sygus-comp 2017: Results and analysis. arXiv preprint
arXiv:1711.11438, 2017.

Antoniou, A., Patacchiola, M., Ochal, M., and Storkey,
A. Defning benchmarks for continual few-shot learning.
arXiv preprint arXiv:2004.11967, 2020.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
arXiv preprint arXiv:1611.01989, 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bauza, M., Alet, F., Lin, Y.-C., Lozano-Pérez, T., Kaelbling,
L. P., Isola, P., and Rodriguez, A. Omnipush: accurate,
diverse, real-world dataset of pushing dynamics with rgb-
d video. arXiv preprint arXiv:1910.00618, 2019.

Bengio, S., Bengio, Y., and Cloutier, J. On the search for
new learning rules for anns. Neural Processing Letters, 2
(4):26–30, 1995.

Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle,
S., Bilaniuk, O., Goyal, A., and Pal, C. A meta-transfer
objective for learning to disentangle causal mechanisms.
arXiv preprint arXiv:1901.10912, 2019.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. arXiv
preprint arXiv:1805.08490, 2018.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: Going beyond
Euclidean data. IEEE Signal Processing Magazine, 34:
18–42, 2017.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang,
J.-B. A closer look at few-shot classifcation. arXiv
preprint arXiv:1904.04232, 2019.

Chollet, F. On the measure of intelligence, 2019.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfll: Neural program learning
under noisy i/o. In International conference on machine
learning, pp. 990–998. PMLR, 2017.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D.
Neural logic machines. arXiv preprint arXiv:1904.11694,
2019.

Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., and Solar-
Lezama, A. Write, execute, assess: Program synthesis
with a repl. arXiv preprint arXiv:1906.04604, 2019.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep bayesian program
learning. arXiv preprint arXiv:2006.08381, 2020.

Finn, C. Learning to Learn with Gradients.
PhD thesis, EECS Department, University
of California, Berkeley, Aug 2018. URL
http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2018/EECS-2018-105.html.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv
preprint arXiv:1703.03400, 2017.

Graves, A., Wayne, G., and Danihelka, I. Neural Turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid
computing using a neural network with dynamic external
memory. Nature, 538(7626):471, 2016.

Gulwani, S. Automating string processing in spreadsheets
using input-output examples. ACM Sigplan Notices, 46
(1):317–330, 2011.

Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggle-
ton, S. H., Schmid, U., and Zorn, B. Inductive program-
ming meets the real world. Communications of the ACM,
58(11):90–99, 2015.

Gulwani, S., Polozov, O., Singh, R., et al. Program synthesis.
Foundations and Trends® in Programming Languages, 4
(1-2):1–119, 2017.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey,
A. Meta-learning in neural networks: A survey. arXiv
preprint arXiv:2004.05439, 2020.

http://www2.eecs.berkeley.edu/Pubs

Large-scale few-shot program induction and synthesis

Iwata, T. and Kumagai, A. Meta-learning from tasks with
heterogeneous attribute spaces. Advances in Neural In-
formation Processing Systems, 33, 2020.

Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L. Map-
ping language to code in programmatic context. arXiv
preprint arXiv:1808.09588, 2018.

Joulin, A. and Mikolov, T. Inferring algorithmic patterns
with stack-augmented recurrent nets. arXiv preprint
arXiv:1503.01007, 2015.

Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., and
Gulwani, S. Neural-guided deductive search for real-
time program synthesis from examples. arXiv preprint
arXiv:1804.01186, 2018.

Ke, N. R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle,
H., Schölkopf, B., Mozer, M. C., Pal, C., and Bengio, Y.
Learning neural causal models from unknown interven-
tions. arXiv preprint arXiv:1910.01075, 2019.

Koppel, J., Premtoon, V., and Solar-Lezama, A. One
tool, many languages: Language-parametric transforma-
tion with incremental parametric syntax. PACMPL, 2
(OOPSLA):122:1–122:28, 2018. doi: 10.1145/3276492.
URL https://doi.org/10.1145/3276492.

Kulal, S., Pasupat, P., Chandra, K., Lee, M., Padon, O.,
Aiken, A., and Liang, P. S. Spoc: Search-based pseu-
docode to code. In Advances in Neural Information Pro-
cessing Systems, pp. 11906–11917, 2019.

Kurach, K., Andrychowicz, M., and Sutskever, I.
Neural random-access machines. arXiv preprint
arXiv:1511.06392, 2015.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Lavrijsen, W. T. and Dutta, A. High-performance python-
c++ bindings with pypy and cling. In 2016 6th Workshop
on Python for High-Performance and Scientifc Comput-
ing (PyHPC), pp. 27–35. IEEE, 2016.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. arXiv preprint arXiv:1910.13461, 2019.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
matching networks for learning the similarity of graph
structured objects. In International Conference on Ma-
chine Learning, pp. 3835–3845. PMLR, 2019.

Li, Y., Gimeno, F., Kohli, P., and Vinyals, O. Strong general-
ization and effciency in neural programs. arXiv preprint
arXiv:2007.03629, 2020.

Mendez, J. A. and Eaton, E. Lifelong learning of com-
positional structures. arXiv preprint arXiv:2007.07732,
2020.

Nelson, G. and Oppen, D. C. Fast decision procedures
based on congruence closure. J. ACM, 27(2):356–364,
1980. doi: 10.1145/322186.322198. URL https://
doi.org/10.1145/322186.322198.

Nye, M., Pu, Y., Bowers, M., Andreas, J., Tenenbaum,
J. B., and Solar-Lezama, A. Representing partial pro-
grams with blended abstract semantics. arXiv preprint
arXiv:2012.12964, 2020.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855, 2016.

Premtoon, V., Koppel, J., and Solar-Lezama, A. Semantic
code search via equational reasoning. In Proceedings of
the 41st ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI
2020, London, UK, June 15-20, 2020, pp. 1066–1082,
2020. doi: 10.1145/3385412.3386001. URL https:
//doi.org/10.1145/3385412.3386001.

Pu, Y., Miranda, Z., Solar-Lezama, A., and Kaelbling, L.
Selecting representative examples for program synthesis.
In International Conference on Machine Learning, pp.
4161–4170. PMLR, 2018.

Reed, S. and De Freitas, N. Neural programmer-interpreters.
arXiv preprint arXiv:1511.06279, 2015.

Ren, M., Triantafllou, E., Ravi, S., Snell, J., Swersky,
K., Tenenbaum, J. B., Larochelle, H., and Zemel, R. S.
Meta-learning for semi-supervised few-shot classifcation.
arXiv preprint arXiv:1803.00676, 2018.

Reuther, A., Kepner, J., Byun, C., Samsi, S., Arcand, W., Be-
stor, D., Bergeron, B., Gadepally, V., Houle, M., Hubbell,
M., et al. Interactive supercomputing on 40,000 cores for
machine learning and data analysis. In 2018 IEEE High
Performance extreme Computing Conference (HPEC), pp.
1–6. IEEE, 2018.

Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D., and
Lake, B. M. A benchmark for systematic generaliza-
tion in grounded language understanding. arXiv preprint
arXiv:2003.05161, 2020.

Rule, J. The child as hacker: building more human-like
models of learning. PhD thesis, MIT, 2020.

https://doi.org/10.1145/3385412.3386001
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/3276492

Large-scale few-shot program induction and synthesis

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Shafto, P., Goodman, N. D., and Griffths, T. L. A ratio-
nal account of pedagogical reasoning: Teaching by, and
learning from, examples. Cognitive psychology, 71:55–
89, 2014.

Shaw, D. E., Swartout, W. R., and Green, C. C. Inferring
lisp programs from examples. In IJCAI, volume 75, pp.
260–267, 1975.

Shin, R., Kant, N., Gupta, K., Bender, C., Trabucco, B.,
Singh, R., and Song, D. Synthetic datasets for neural
program synthesis. arXiv preprint arXiv:1912.12345,
2019.

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., and
Saraswat, V. Combinatorial sketching for fnite programs.
In Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, pp. 404–415, 2006.

Tan, S. H., Yi, J., Mechtaev, S., Roychoudhury, A., et al.
Codefaws: a programming competition benchmark for
evaluating automated program repair tools. In 2017
IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 180–182. IEEE,
2017.

Tate, R., Stepp, M., Tatlock, Z., and Lerner, S. Equality
saturation: a new approach to optimization. In Proceed-
ings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Sa-
vannah, GA, USA, January 21-23, 2009, pp. 264–276,
2009. doi: 10.1145/1480881.1480915. URL https:
//doi.org/10.1145/1480881.1480915.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media, 1998.

Triantafllou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci,
U., Xu, K., Goroshin, R., Gelada, C., Swersky, K., Man-
zagol, P.-A., et al. Meta-dataset: A dataset of datasets
for learning to learn from few examples. arXiv preprint
arXiv:1903.03096, 2019.

Tsantalis, N. and Chatzigeorgiou, A. Identifcation of extract
method refactoring opportunities. In 2009 13th European
Conference on Software Maintenance and Reengineering,
pp. 119–128. IEEE, 2009.

Vassilev, V., Canal, P., Naumann, A., Moneta, L., and Russo,
P. Cling – the new interactive interpreter for ROOT 6.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K.,
and Wierstra, D. Matching networks for one shot learning.
arXiv preprint arXiv:1606.04080, 2016.

Xu, B., Qian, J., Zhang, X., Wu, Z., and Chen, L. A brief
survey of program slicing. ACM SIGSOFT Software
Engineering Notes, 30(2):1–36, 2005.

Yasunaga, M. and Liang, P. Graph-based, self-supervised
program repair from diagnostic feedback. arXiv preprint
arXiv:2005.10636, 2020.

Zavershynskyi, M., Skidanov, A., and Polosukhin, I. Naps:
Natural program synthesis dataset. arXiv preprint
arXiv:1807.03168, 2018.

https://doi.org/10.1145/1480881.1480915

