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Abstract 

A landmark challenge for AI is to learn fexible, 
powerful representations from small numbers of 
examples. On an important class of tasks, hy-
potheses in the form of programs provide ex-
treme generalization capabilities from surpris-
ingly few examples. However, whereas large real 
image benchmarks have spurred progress in meta-
learning for deep networks, there is no compa-
rably big, real program-synthesis dataset. This 
is because, while images are relatively easy to 
label from internet meta-data or annotated by non-
experts, generating meaningful input-output tests 
for program induction has proven hard to scale. 
In this work, we propose a new way of leverag-
ing a collection of programs with associated unit 
tests to create a much larger collection of test-
program pairs. We do so by extracting subpro-
grams of each program and using the inputs of the 
overall program to get tests for each subprogram. 
This allows us to create PROGRES, a large-scale 
few-shot program-induction benchmark of real 
programs and propose new challenges in this do-
main. We analyze the effect of multiple design 
choices on transformer-based program induction 
and synthesis algorithms, pointing to shortcom-
ings of current methods and suggesting multiple 
avenues for future work. 

1. Introduction 
Note: since the camera-ready, we have made a fnal ver-
sion of the dataset with more programs and increased 
diversity. The dataset description is the same, but met-
rics and statistics change, and get more detailed. You 
can fnd it the updated PDF and materials at: https: 
//lis.csail.mit.edu/progres. Figure 2. Example of a task corresponding to the fltering subpro-

gram in fgure 1. The text context describes the overall program in 
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Figure 1. Extracting interesting subprograms from the Sieve of 
Erathostenes. Some subprograms, like j = max (p, dn/pe) p, 
are byproducts that are not directly used by the overall program, 
but still implement purposeful functions. Line sub-sequences that 
break the nesting structure result in invalid subprograms. 
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1.1. Motivation 

One of the distinctive abilities of human intelligence is 
building fexible representations from small amounts of 
data (Lake et al., 2015). Neural networks provide power-
ful representations, but require substantial amounts of data 
to train. To alleviate these needs, a set of few-shot learn-
ing challenges has catalyzed progress into building deep 
meta-learning systems. These systems generalize from few 
examples by learning powerful priors on large amounts of 
previous tasks (Hospedales et al., 2020). 

Programs often provide extreme generalization capabilities 
from surprisingly few examples, such as generalizing to 
larger arrays or numbers outside the training range. How-
ever, the combinatorial space of programs has proven hard 
to search. Machine learning can then be used to learn to 
search more effciently, either by learning to predict (priors 
over) programs from examples, or directly learning a pre-
dictor that can answer future queries. To train such systems 
we need a dataset of program induction tasks. 

A program induction task is a supervised learning task 
whose input-output examples come from a program. For 
training tasks, we can optionally have access to the cor-
responding implementation of such program, which en-
ables learning to predict (priors over) programs from ex-
amples. Sometimes we can also have access to a text de-
scribing other relevant context. In this work, we present 
PROGRES (Programs from Real Executed Subproblems), 
a large meta-dataset of program induction tasks, enabling 
future methods in few-shot program induction and synthesis. 
You can fnd an example of a task in fgure 2. 

Multiple methods have created large synthetic program in-
duction datasets by sampling programs from a Domain Spe-
cifc Language (DSL) and feeding them random inputs to 
generate tests. Because DSLs can generate an unlimited 
amount of programs, this method provides an easy way 
of creating large datasets. This approach may work well 
for hand-crafted DSLs where the language is highly tuned 
to a specifc application. There, a reasonable portion of 
valid programs implement sensible functions and shorter 
programs tend to be more useful. In contrast, in general-
purpose languages like C++, the subset of interesting and 
meaningful programs is an extremely small fraction of the 
set of compiling C++ programs. Thus, it is essential to use 
real programs to learn about this set of interesting programs. 

In addition to real code, having meaningful input-output 
tests has multiple advantages over evaluating random inputs. 
Many programs have implicit pre-conditions for them to run 
successfully. For instance, if we use an integer to index an 
array, it has to be both positive and smaller than the array’s 
length; if a program compares two lists element-wise, the 
input lists must have equal length. 

In a program induction task, input-output examples have 
to satisfy two more properties beyond satisfying the pro-
gram’s pre-conditions. First, in the same way distribution 
shift between training and test data affects performance in 
a single-task, meta-training examples have to come from 
the same distribution as meta-test examples. Therefore, if 
we want our algorithms to generalize at deployment-time, 
they have to be meta-trained on real, non-random input-
output examples to avoid such a (meta-)domain shift. More-
over, for each program, the overall set of input-output tests 
must probe potential edge cases to distinguish the desired 
program from possible alternatives, both for specifcation 
(training examples) and validation(testing) purposes. In 
PROGRES input-output examples come from propagating 
unit tests designed by humans; thus, we expect them to be 
natural and cover most edge cases. 

1.2. Generating a large program induction benchmark 
from a real code-base 

Large repositories of human-generated code are already 
available, many with accompanying examples designed to 
probe the possible ways each program could fail. These 
include many internal or open-source code-bases with unit 
tests. Programming competitions are another paradigmatic 
example: programmers compete to code solutions to a set 
of problems, and their solutions are checked on hidden 
input-output tests. PROGRES builds on programs from the 
competitive programming website codeforces.com. 

Directly using the programs and their test-cases from the 
website as a benchmark has a number of downsides. First, 
programs written by humans are often signifcantly too com-
plex for current program induction methods to solve. Sec-
ond, even though CodeForces has millions of programs, they 
only implement ∼ 5, 500 different programming problems. 

In this work, we propose to leverage a program with an ac-
companying test suite (defning a program induction task) to 
create a series of input-output examples for its subprograms. 
Subprograms are subsequences of the overall program that 
express an intermediate variable as a function of previous 
variables. As illustrated in fgure 1, subprograms in a pur-
poseful program are also likely to be useful. Moreover, by 
being shorter and simpler, subprograms provide a useful 
learning curriculum. Finally, since subprogram complexity 
ranges from a single line of code to entire programs, they 
provide a relevant benchmark for both current and future 
program induction methods. 

In order to generate input-output examples for subprograms, 
we use a program interpreter to propagate the inputs of the 
overall program line by line. Then, at each step in the execu-
tion, we capture the value of all the relevant variables. From 
these execution traces, we derive relevant input-output tests 
for each subprogram. For more information, see section 3.2. 

https://codeforces.com
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We generate PROGRES by applying a C++ program inter-
preter to programs solving the 5,500 problems from Code-
Forces. This allows us to create a much larger dataset of 
more than 200,000 few-shot program-induction tasks of 
varying diffculty and style (sec. 3.4). A careful analysis 
of baselines (sec. 4.3) shows that there is both an initial 
promise and a long road ahead in the quest for building 
effective solutions to this problem. 

In summary, our contributions are the following: 

1. We propose a generic method of building large, real 
program induction and synthesis benchmarks. 

2. We provide a new dataset of more than 200, 000 pro-
gram induction tasks, with multiple challenges for the 
program synthesis and few-shot learning communities. 

3. We analyse the effect of adding different types of data 
from PROGRES to a transformer-based algorithm. 

2. Related work 
Learning to few-shot learn meta-learning (Schmidhuber, 
1987; Bengio et al., 1995; Thrun & Pratt, 1998) aims at learn-
ing priors from many tasks to generalize to a new task from 
small amounts of data. Most of these methods assume that 
the input form is constant( (Iwata & Kumagai, 2020) being a 
recent exception) and few-shot learning datasets are mainly 
image classifcation (Lake et al., 2015; Vinyals et al., 2016; 
Ren et al., 2018; Antoniou et al., 2020; Chen et al., 2019; 
Triantafllou et al., 2019) or low-dimensional continuous 
regression (Finn et al., 2017; Bauza et al., 2019). Moreover, 
deep learning-based meta-learning algorithms do not typi-
cally generalize broadly outside the data distribution, espe-
cially non-optimization-based approaches (Finn, 2018). To 
improve this, more compositional methods to meta-learning 
are increasingly being proposed (Alet et al., 2018; Bengio 
et al., 2019; Ke et al., 2019; Mendez & Eaton, 2020; Ruis 
et al., 2020). PROGRES provides a relevant benchmark for 
these compositional few-shot learning methods. 

Neural program induction Neural networks are univer-
sal approximators that have delivered great results in a wide 
variety of felds. Motivated by these successes, multiple 
works have applied neural or neuro-symbolic methods to 
latent program induction, where programs are represented 
only implicitly, without any reference to a specifc DSL. 
Many of these approaches propose neural architectures 
inspired by computational modules (Graves et al., 2014; 
Kurach et al., 2015; Reed & De Freitas, 2015; Joulin & 
Mikolov, 2015; Graves et al., 2016; Dong et al., 2019; Li 
et al., 2020), training weights end-to-end. However, most 
of these works aim at learning a single task performed by 
a program. In contrast, PROGRES measures the ability to 
learn new tasks from few examples. 

Few-shot program induction and synthesis Program 
synthesis (Shaw et al., 1975; Solar-Lezama et al., 2006; 
Gulwani et al., 2017) aims at generating code that satisfes 
a set of input-output examples. Typically, these methods 
are data effcient, often generalizing from few examples. 
However, the combinatorial space of programs is hard to 
search, often restricting the capacity of the language or the 
size of programs. Machine learning, and deep learning 
in particular, have been increasingly used to improve the 
search over programs (Parisotto et al., 2016; Kalyan et al., 
2018; Brockschmidt et al., 2018; Ellis et al., 2019; Nye et al., 
2020). In this work, we implement one of these methods, 
RobustFill (Devlin et al., 2017), as a baseline. We believe 
that the substantial increase in data will facilitate further 
progress in neural searchers. Finally, there have been demos 
using GPT-3 (Brown et al., 2020) to predict short programs 
from English descriptions. Inspired by this nascent line of 
research, we modify the LSTM in the original RobustFill by 
a pretrained transformer (Lewis et al., 2019). 

Program induction datasets There have been multiple 
few-shot program induction datasets, such as those used in 
FlashFill (Gulwani, 2011; Gulwani et al., 2015) and Dream-
Coder (Ellis et al., 2020), as well as the Abstract Reasoning 
Challenge(ARC) (Chollet, 2019), a list functions bench-
mark (Rule, 2020), or the SyGus competition (Alur et al., 
2017). Although these benchmarks contain many interesting 
problems, they have been manually created by humans in-
stead of being automatically generated from real programs. 
This creates a signifcant bias on the datasets (often being 
captured by a relatively simple Domain Specifc Language) 
and restricts the amount of tasks to a few hundred tasks. In 
contrast, our benchmark, PROGRES, contains more than 
200,000 tasks, two orders of magnitude more. This will 
allow neural-based methods, often data-ineffcient, to learn 
to generalize or search in these domains. Larger program 
datasets have been shown to be useful to learn to search (Ba-
log et al., 2016; Shin et al., 2019). However, in contrast 
to PROGRES, these programs were randomly generated 
from restricted DSLs, and therefore do not capture the struc-
ture of real programs. 

Datasets leveraging competitive programming code 
Data from programming competitions, and codeforces. 
com in particular, has been used before to build several 
benchmarks. Zavershynskyi et al. (2018) is probably closest 
to our benchmark, combining a mixture of crowd-sourced 
descriptions of subprograms with input-output examples 
for the entire programs (not subprograms). Kulal et al. 
(2019) improved and standardized the pseudo-code annota-
tion with line-by-line annotations and learned to translate 
from single-line pseudo-code to instruction. While useful, 
language annotations are hard to scale because they have 
to be crowd-sourced and require expertise. Moreover, they 
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sidestep the major diffculty of program induction, as using 
a line-by-line description of the program in English reduces 
the inference to a translation problem. Codeforces has also 
been used to build program repair tools. Tan et al. (2017) 
build a dataset of small fxes by leveraging consecutive sub-
missions from users fxing their mistakes and Kulal et al. 
(2019) learn to fx compile errors by synthetically perturbing 
correct programs and observing the compiler message. 

3. Description of the PROGRES dataset 
We call our dataset PROGRES: Programs from Real 
Executed Subproblems. 

3.1. Structure of the dataset 

In competitive programming there are regularly-scheduled 
contests, each with multiple new problems for humans to 
solve by coding their solutions as programs. Each Code-
Forces problem consists of a short text describing a back-
story and the requirements for the program, as well as multi-
ple test-cases (some public, some private) that the submitted 
program has to satisfy. Because all user submissions are 
public, for each problem there are hundreds of available 
programs that solve it, providing us with multiple pairs of 
(program, test suite) such that the entire program satisfes 
the test-cases. For each program we can obtain many sub-
programs: valid segments of code contained in the original 
program, expressing an intermediate variable as a function 
of other variables. To be valid, a subprogram has to be 
correctly parenthesised: start and end at the same level of 
nesting and never go to a level above where it started in the 
indentation nesting. For a correct subsequence of the overall 
program, we defne potential outputs as the variables modi-
fed on the last line and as inputs all the variables involved 
in the computations on that sequence that are not created 
within the subprogram itself. 

Given a subprogram, we can generate the data for a single 
task; consisting of 20 input-output pairs (10 training, 10 
test). We obtain these pairs by running the entire program 
with a custom-made C++ interpreter based on Cling (Vas-
silev et al.)(more details in section 3.2) and observing the 
intermediate values at every line. Note that the input distri-
bution has a rich structure, as it comes from inputs designed 
by humans after being processed by previous computations 
in the overall program. Moreover, we also have access to 
the natural text description of the overall program. This 
text alone does not specify the subprogram, but serves as a 
context to help guide the search. 

In PROGRES, a task consists of the following information: 

1. a type signature describing the variable types 
(int,string,int[],etc) of all inputs and outputs, 

2. 20 pairs of input-outputs examples, 10 for training and 
10 for test, 

3. a C++ function that solves these pairs, optionally with 
variable names already standardized, 

4. a natural text describing the overall program the task 
has been extracted from, 

5. a Program Expression Graph form that further standard-
izes the C++ code (see subsec 3.3 for more details). 

Figure 2 shows an illustration for a single task. 

3.2. Implementation and design decisions 

In this section we provide an overview of how we obtained 
the data contained in PROGRES. The goal is to provide a 
better understanding on the data distribution, explaining how 
we computed the input-output examples as well as some lim-
itations of our pipeline, which effectively constrain the pro-
grams in our dataset to be in a (large) subset of C++. We ob-
tain the original C++ programs from codeforces.com, 
leveraging the scraping and standarization done by SPoC 
and DrRepair (Kulal et al., 2019; Yasunaga & Liang, 2020). 
Since this scraping only contained simple programs solving 
very easy problems, we performed an additional scraping 
to capture problems of all diffculties. We obtain around 
300,000 programs; however, since C++ is a compiled lan-
guage, it is not meant to be run line-by-line, which we 
need to do to obtain the subprograms. This process imposes 
some constraints, which restrict us to a subset of C++, which 
around 60,000 of the scraped programs satisfy. The most rel-
evant exclusions are classes, the queue and stack data-
structures, and the instructions break and continue. To 
effciently evaluate these programs we leveraged the MIT 
supercloud (Reuther et al., 2018), parallelizing program 
evaluations over 4800 CPU cores. 

To interpret C++ we use the Cling C++ interpreter (Vassilev 
et al.). Cling performs an elaborate incremental just-in-time 
compilation that keeps modifying the abstract syntax tree 
before executing the new line of code. This allows us to 
execute pieces of code and check the values of variables in 
between. Since these pieces of code have to be compiled, 
they have to be self-contained: functions have to be defned 
entirely before being fed to Cling and loops and if statements 
have to be given as a block. This would restrict the type of 
subprograms that we can obtain with vanilla Cling, since 
we would not be able inspect the intermediate values within 
loops or functions. 

We therefore implemented our own emulator on top of Cling 
to be able to obtain intermediate values for loops and if state-
ments. Instead of feeding the entire if/while statement 
to Cling, the emulator frst sends its condition and then calls 
the appropriate code depending on whether the condition 

https://codeforces.com
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CONCODE NAPS SPoC ARC DreamCoder SyGUS PROGRES 

Programming language Java UAST C++ - DSL DSL C++ 
Number of programs 2,184,310 17,477 18,356 - 215 829 274,612 
Lines per program 4.4 21.7 14.7 - 14.1 20.0 3.3 
Additional input documentation –pseudocode– - - - context 

Number of induction tasks - 485 784 1000 215 829 274,612 
Number of test cases (average) - 7.5 38.6 4.3 15.0 100.0 235.1 

Table 1. Comparison of PROGRESto other program-based datasets. Some datasets like CONCODE (Iyer et al., 2018), contain lots of 
programs, but no tests for these programs. NAPS and SPoC, both based on CodeForces, have as many induction tasks as CodeForces 
problems (not subproblems); it is worth noting, however, that they focus on going from pseudo-code to code, a more relevant description 
than our context. Both ARC and DreamCoder have program induction tasks manually designed by humans, thus restricting their size. For 
DreamCoder we estimated the numbers using the dataset of list functions, the dataset of towers and the dataset of physical equations. For 
SyGus, we estimated the number of tasks looking at the largest competition in 2019 and the statistics on the programs described in Alur 
et al. (2013). Finally, note that even though we standardize the programs to have 20 tests (10 train,10 test), we often have access to many 
more, with an average of 235. 

was satisfed or not. Note that these if/while conditionals 
are often interesting quantities, and we also include them 
as tasks, even though there is no explicit boolean variable 
created in the original program. 

We store these line by line executions for each input set to 
the overall program. These fles can then be parsed to gen-
erate the tests for each subprogram. To keep the dataset to a 
reasonable size and avoid very long inputs, we capped the 
execution to 100KB of generated data and skipped programs 
generating lines of more than 1KB of data. This avoided 
long programs of many executions and arrays of tens of 
thousands of integers, which are hard to process by most 
ML methods and expensive to store for a dataset. 

3.3. Finding equivalent programs 

There are two type of equivalences in our dataset construc-
tion: subprogram equivalence implies the two implement 
the same function; program induction task equivalence im-
plies that their programs are equivalent and they happen in 
the same context (in our case, defned by the text represent-
ing the overall problem). This difference is important, as in 
programming we often have to recognize the possibility of 
reusing a known pattern in a new circumstance. 

Defning Program Equivalence The same function can 
be implemented by many different programs. As the 
fnal step in the dataset construction, we identify such 
equivalence-classes of functions using a mixture of test-
ing and theorem-proving. Programming language theorists 
have defned many notions of program equivalence. A clas-
sic one, sometimes called “semantic equivalence," deems 
two programs equivalent if they have the same preconditions 
and, for all inputs satisfying these preconditions, they can 
be proved to have the same output. 

Implementing this in an automated checker is a non-starter: 
the intended precondition of any subprogram is unknowable 
from the code alone. Further, this defnition disallows prov-

ing equivalence of programs that exhibit undefned behavior, 
as the C standard states e.g.: a program with integer overfow 
may exhibit any behavior. We hence use I/O equivalence, 
also called machine equivalence, where two programs are 
equivalent if they have the same outputs for all inputs (on a 
specifc machine). 

Slicing when we extract a contiguous set of instructions 
from the overall program, not all lines will affect the output 
value of the intermediate variable of interest. We thus clean 
the unnecessary instructions to avoid making programs un-
necessarily long and redundant; a process called slicing (Xu 
et al., 2005; Tsantalis & Chatzigeorgiou, 2009). To slice, 
we try removing lines from the bottom to the top, as well as 
entire code blocks. If the code without those lines or code 
blocks still passes the test-cases, we remove them and keep 
iterating until we cannot remove any more code. Going from 
the bottom to the top allows us to remove pairs of redundant 
instructions where the bottom one depends on the top one. 

Slicing and fnding classes of equivalent tasks We frst 
partition tasks by CodeForces problem, since these will have 
different text context, as well as different input-output pairs. 
To detect equivalent tasks within each CodeForces problem, 
we run the following steps: 

1. We slice every program independently and standardize 
the variables. 

2. We join programs that have the same implementation. 

3. We mark programs that pass each other test-cases as 
potentially equivalent. This is an overapproximation 
of the true equivalence relation. 

4. We then cluster these candidates into programs proven 
actually equivalent by using Yogo (Premtoon et al., 
2020), a tool based on equality saturation (Tate et al., 
2009; Nelson & Oppen, 1980). This refnes the candi-
date sets into an underapproximation of the true equiv-
alence relation. 
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The upshot of the consecutive overapproximating and un-
derapproximating phases is an excellent approximation to 
the true equivalence relation, which is undecidable. Using 
tests we can prove that two programs are not equivalent, 
but not the opposite. Using Yogo we can prove they are 
equivalent, but not the opposite. This leaves only a small 
set of ambiguous relations. 

The rest of this section summarizes Yogo and how it proves 
programs equivalent. 

Equality Saturation and E-PEGs An expression such 
as x < y and y < z can be rewritten into many equiva-
lent forms using rules such as not(y <= x or y <= z) 
or even the redundant z > y and y > x and z > x. 
E-graphs (equivalence graphs (Nelson & Oppen, 1980) 
are a way to compactly represent the exponential number 
of equivalent expressions that can be found by a set of 
rewrite rules. From the initial expression Abstract Syntax 
Tree(AST), equality saturation is performed, adding each 
newly-discovered equivalent expression to the e-graph via 
an extension of the union-fnd algorithm. 

E-graphs are a powerful technique, but have traditionally 
only been applicable to pure, loop-free programs. Program 
Expression Graphs (PEGs) (Tate et al., 2009) are a new 
representation of programs that allows equational reason-
ing and build e-graphs on arbitrary imperative programs. 
Conceptually, PEGs can be thought of as being constructed 
by unrolling loops into an infnite tree, and then compactly 
representing this infnite-but-regular tree as a cycle in the 
graph. Equality saturation then yields an e-graph on the 
PEG (or E-PEG), representing an exponentially-large space 
of equivalent programs. This was originally used for com-
piler optimization, but Yogo (Premtoon et al., 2020) uses it 
for code search — and now also for equivalence-checking. 

Yogo: Equivalence Checking from E-PEGs We cus-
tomized Yogo to work on our codebase. Even though it 
originally only handled Java and Python, it is built on the 
Cubix (Koppel et al., 2018) multi-language infrastructure, 
allowing us to add support for a subset of C that captures 
the subset of C++ in PROGRES, after some simple string 
transformations, e.g.: changing vector<int> foo to 
struct vector foo. To check for equivalences be-
tween functions, we put them into a single E-PEG, assigning 
each the same start state. Then, we report two subprograms 
as equivalent if equality saturation groups their return values 
in the same equivalence class. 

3.4. Statistical analysis 

Figure 3 shows the variability of signatures on our bench-
mark. As expected, the most common signatures involve 
integer manipulations as well as classifcation problems 

Figure 3. Subset of some interesting signatures in our dataset, all 
with at least 200 tasks. Color indicates the length distribution of 
programs for each signature. Most programs have few inputs and 
output integers or booleans. There are programs doing array and 
string manipulation, as well as some matrix operations. 

from few variables. There are other signatures that involve 
array, matrix and string manipulations, often conditioned on 
other variables like integers or individual characters. These 
are interesting as they often require to generalize to longer 
computations as well as bigger data structures. 

Figure 4 shows the diffculty of our tasks along three differ-
ent axis. First, many problems contain either if-statements 
or loops that require generalizing more than 10 times the 
number of operations needed for training examples. Condi-
tional execution (characterized by nesting in C++) is often 
very hard for program induction techniques. Our bench-
mark contains a wide variability of nesting quantities across 
different subprograms.Finally, our input and outputs follow 
a very structured distribution, since they come from real 
examples. For instance, most integers are small (note the 
logarithmic y axis), with positive numbers being more com-
mon. Moreover, special numbers like 100 and -100 are more 
common than numbers of similar magnitude. 

3.5. Accompanying environment 

In order to be able to test candidate programs, we include 
a python interface to our C++ interpreter. The interface is 
easy to use and has two different modes: 

1. We can run an entire C++ function on a set of inputs by 
passing the former as a string and the latter as a list of 
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Figure 4. (Left) We purposely bias the test to generalize to longer computations than those seen for training examples.This plot shows 
the ratio of number of maximum number of lines executed for a test input vs maximum number of lines executed for a training input. 
Programs without loops, where the ratio is 1, are ommitted.(Center) Depth of indentation execution (nested loops and if statements), 
which often signifcantly affects the diffculty of program synthesis. (Right) number of times each integer in [-200,200] appears as an 
input or output on a test-case. We can see that they follow a very intuitive distribution, with smaller integers being more popular, positive 
numbers being more common than their negative counterparts and a peak at 100 and -100. 

strings. The interface then returns whether the function 
compiled and, if it did, a list of results for each input. In 
case of a runtime error or a timeout, it returns "Runtime 
error" or "Timeout" respectively. This is useful for 
approaches that use the environment as a black-box 
without interacting with individual instructions. 

2. In contrast to traditional C++, we can run a program 
line by line and return the appropriate variables with 
new values. This mode is restricted to our subset of 
C++ (that all programs in PROGRESbelong to), but 
it is useful for methods that use partial executions to 
guide synthesis (Ellis et al., 2019). 

4. Benchmark 
4.1. Evaluation protocol 

Our goal is to generalize to relevant subprograms from un-
seen programming contests. Therefore, we choose to divide 
between meta-train, meta-validation and meta-test at the 
level of contests: training takes contests <1000, validation 
between 1000 and 1249 and testing more than 1250. Some 
subprograms (especially short ones like "return v0+1") are 
repeated multiple times. If in a single problem (thus shar-
ing the context text and often the same input-output pairs) 
there are multiple copies of the same subprogram, we merge 
them into a single task, pooling their input-output examples. 
Note that the same subprogram can be in different problems. 
However, they will not be the same task, because both the 
input-output pairs and the context text will differ. Intuitively, 
new programming tasks may require us to implement code 
we have seen before (like adding up all the elements in an 
array), but in a different context. 

To judge the performance of a program for a single task, we 
evaluate its performance on unseen test cases. This allows 

us to judge the correctness of equivalent implementations of 
the same function or implicit programs, like those described 
by neural networks. More concretely, for each task, we 
give the method all 10 training examples and evaluate its 
performance on the 10 test examples, only counting exact 
answers. We can then measure the example accuracy (the 
fraction of correctly-solved test-cases across all meta-test 
tasks), and task accuracy (the fraction of tasks with all of 
their 10 test examples correctly predicted). Note that, al-
though both measures are related, a method may have higher 
task accuracy than another, while having lower example ac-
curacy. As described in previous work (Devlin et al., 2017), 
having a high example accuracy is more desirable when 
we are using the method on a per-example basis (like an 
auto-suggest tool) whereas task accuracy is more important 
in cases where we would like the induced program to make 
an indeterminate number of predictions without having to 
check all of them. 

4.2. Baselines 

We evaluate multiple baselines, all based on the same core 
architecture (a large-scale language model), in order to bet-
ter understand their differences. 

Fine-tuning a pre-trained language model to generate 
code from examples Inspired by the RobustFill pro-
gram synthesis model (Devlin et al., 2017) and recent 
advances in language model pre-training, we build a neural 
program synthesis baseline. Our aim was to determine 
how well a state-of-the-art sequence-to-sequence neural 
program synthesis model could perform on our dataset. 
We used the BART (Lewis et al., 2019) pre-trained 
transformer model as a base, and fne-tuned it on our 
dataset to output programs. The model takes as input 
the function header (which describes the type signature), 
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as well as the support set examples arranged sequen-
tially, i.e., [header] | [Input1]; [Output1] 
| [Input2]; [Output2] | ... [Input10]; 
[Output10]. The model is trained to output the program 
body. At evaluation time, we perform a beam search of 
beam size 10, and select the program out of those 10 
candidates which performs the best on the support set and 
execute that program on the query set to produce fnal 
predictions for each query example. Note that executing 
programs on the support set allows us to perform a search 
over the possible candidate programs, which has been 
shown to greatly increase the performance of neural 
program synthesis techniques (Devlin et al., 2017). Figure 5 
shows how, in our case, it signifcantly improves task 
accuracy. To evaluate all program candidates we only need 
to evaluate entire functions, instead interpreting the program 
line-by-line. We thus relied on cppyy (Lavrijsen & Dutta, 
2016) which provides effcient python-C++ bindings. 

We also test if additionally conditioning on the overall pro-
gram description text increases performance. In these exper-
iments, we append the text to the examples. 

Transformer-based end-to-end prediction Our next 
baseline, also inspired by Devlin et al. (2017), is a program 
induction model. Using an architecture analogous to the 
neural program synthesis model, we use neural models to 
perform neural program induction, i.e., given a training set 
of k input-output examples and a single test input, produce 
the corresponding output. Instead of generating the target 
code, the induction model is instead trained to approximate 
the execution of the code directly. Our model is identical 
to the program synthesis model above, except that the test 
input example is prepended to the context string, and the 
model is trained to produce the target test output. 

4.3. Discussion 

Comparison between program synthesis and program 
induction Somewhat surprisingly, in preliminary experi-
ments end-to-end program induction performed better than 
predicting the program as an intermediate. However, the 
order changed when we started slicing the programs, which 
removed superfuous lines of code, making learning to syn-
thesize easier. There, the synthesis approach has a great 
advantage, as it can generate the program and let it solve 
arbitrarily complex inputs. 

This is specially the case for tasks returning collections 
(arrays, lists, strings, and matrices). This is understandable, 
since , for collections, program induction had to generate 
long stretches of tokens without error, which is very hard to 
do, especially for all inputs. 

Dependence on number of program examples Perfor-
mance consistently improves from 5 to 10 examples, but by 

Figure 5. Dependence of example and task accuracy when only 
evaluating the frst p ∈ [1, 10] programs coming from the beam 
search. Most of the the performance comes from the frst predic-
tion, but the rest provides a noticeable boost of more than one third 
in relative performance. 

less than one may expect. Human experiments in a prelimi-
nary version of this dataset indicated that their learning was 
also very fast, saturating at 5 examples. This also matches 
previous human experiments on inferring list-editing pro-
grams (Rule, 2020). Therefore, it appears that there is also 
a fundamental search problem, typical in program synthesis, 
where the task space is exponential. 

Dependence on text context Adding the text context im-
proved performance by a surprisingly high amount: between 
16% relative improvent in example accuracy and 23% in 
task accuracy.We did not observe any signifcant correlation 
with the type signature, instead producing improvements 
across the board. Further research into more effectively 
combining the two modalities of input is a promising area 
of future work. 

4.4. Open challenges 

The previous section highlights the need for better few-
shot program induction and program synthesis methods. 
Moreover, this benchmark opens up multiple interesting 
challenges. We highlight a few: 

Graph representations of programs although not 
explored in this work, the inclusion of PEGs in PRO-
GRES facilitates the evaluation of Graph Neural 
Networks (Scarselli et al., 2009; Bronstein et al., 2017; 
Battaglia et al., 2018) for code analysis at scale, an approach 
that has already shown promise (Li et al., 2019). 

Open-ended active learning The ability of asking for 
useful labels would allow a program synthesis method to 
interact with a human, improving the data effciency by 
actively trying to resolve uncertainties. This topic has been 
explored in the past for program induction (Pu et al., 2018), 
but only in selecting from a small number of examples. 
Since we provide an environment and the true program, we 

https://accuracy.We


Large-scale few-shot program induction and synthesis 

Method Pretrained Text context Example accuracy 
5-shot/10-shot 

Task accuracy 
5-shot/10-shot 

Entity task acc. 
5-shot/10-shot 

Collection task acc. 
5-shot/10-shot 

BART-Robustfll 
Induction 

no 

yes 

without 
with 

without 
with 

0.351 / 0.349 
0.340 / 0.338 

0.477 / 0.492 
0.504 / 0.521 

0.107 / 0.107 
0.114 / 0.116 

0.210 / 0.223 
0.246 / 0.259 

0.126 / 0.126 
0.135 / 0.137 

0.248 / 0.263 
0.289 / 0.305 

0.000 / 0.000 
0.000 / 0.000 

0.001 / 0.001 
0.010 / 0.010 

BART-Robustfll 
Synthesis 

no 

yes 

without 
with 

without 
with 

0.464 / 0.473 
0.510 / 0.516 

0.570 / 0.579 
0.592 / 0.602 

0.315 / 0.325 
0.363 / 0.370 

0.420 / 0.429 
0.444 / 0.456 

0.526 / 0.538 
0.560 / 0.565 

0.622 / 0.633 
0.645 / 0.655 

0.124 / 0.123 
0.240 / 0.249 

0.285 / 0.283 
0.306 / 0.313 

Table 2. Comparison of the different design choices based on BART-RobustFill. Synthesizing the program instead of directly predicting 
the outputs gave the biggest boost. Interestingly, in previous versions of the dataset where the programs were not sliced, induction gave 
better results, highlighting the need for clean code examples. Then, using the pretrained weights for the transformer has a very noticeable 
positive effect. Having the text context consistently improves performance by a noticeable margin. Finally, going from 5 to 10 examples 
gives a small, but positive boost to all methods. Note: since the camera-ready, we have made a fnal version of the dataset with more 
programs and diversity. The dataset description is the same, but concrete metrics and statistics change. You can fnd it the updated PDF 
and materials at: https://lis.csail.mit.edu/progres. 

can use it as an oracle for active learning. However, this has 
the added challenge (and beneft) of being unconstrained, 
with the model generating its own queries. 

Leveraging instructive examples and structured inputs 
In classic Machine Learning we assume examples come 
from randomly sampling the input distribution. Therefore, 
most training examples lie at the conceptual center of the in-
put space. In contrast, our examples tend to be extremal, pok-
ing at the edge-cases to differentiate the true program from 
reasonable alternatives. Humans actively use the knowledge 
that a teacher is giving them instructive examples to update 
their priors more effectively (Shafto et al., 2014). Construct-
ing algorithms capable of similar inferences is a promising 
avenue for future work. Similarly, our inputs tend to pertain 
to a class much smaller than that defned by their C++ type. 
For instance, for many problems, all integer inputs are posi-
tive, which makes some implementations easier. Being able 
to infer these conditions in the inputs and exploit them is 
something human programmers often do and an avenue for 
improving the performance of current systems. 

Leveraging intermediate states for program synthesis 
Our environment can be run in interactive mode, receiv-
ing individual (or groups of) instructions, and returning 
the relevant variables that changed value. This facilitates 
program synthesis that inspects intermediate values to in-
form search, which has been shown to signifcantly boost 
performance (Ellis et al., 2019; Nye et al., 2020). 

5. Conclusion 
We have presented a new way of scaling up few-shot pro-
gram induction and program synthesis benchmarks. We 

provide PROGRES, a meta-dataset of more than 200,000 
tasks based on real programs, of a wide variety of problems 
and input-output examples. Evaluations show a wide margin 
for improvements for current program induction and syn-
thesis methods. The scale of data, two orders of magnitude 
larger than previous work, together with the inclusion of 
text contexts and a custom code interpreter open up many 
possible avenues for future research. 
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