
Robust Pure Exploration in Linear Bandits with Limited Budget

A. Missing Proofs from Section 3
Before proving Lemma 4, we first need the following Lemma that bounds the probability of a single arm being misordered
when deciding which arms to remove in a round:

Lemma 3. Assume that the best arm was not eliminated prior to round m. Let [x]+ = max(x, 0). Then for any arm
xi ∈ Sm,

P[〈θ̂m, xi〉 > 〈θ̂m, x1〉] ≤

exp

−[∆i − (2 + 2
√

2h|Sm|/4)γmax

]2
+
T

16 log2(n)h|Sm|/4σ
2


Proof. For simplicity, we will drop all subscripts m in this proof, so that we say θ̂ instead of θ̂m and Z instead of Zm
etc. By slight abuse of notation, let y ∈ RN be the vector of true rewards for the sampled arms Z , let γ ∈ RN be the
misspecification vector, and let X ∈ RN×d be the design matrix whose rose are the elements of Z . That is, we have
y = Xθ + γ. Let s = ŷ − y, all of whose components are independent 1-subgaussian random variables

Fix some index i. Notice that if i does not satisfy ∆i > (2 + 2
√

2hSm
)|γmax|, then the statement is trivially true. Therefore,

we may safely assume ∆i > (2 + 2
√

2hSm
)|γmax|

Let θ′ = argminXθ=Xθ′ ‖θ′‖2. Notice that y = Xθ + γ = Xθ′ + γ implies that using θ′ does not introduce more
misspecification. (In fact, θ = θ′ if X has rank d.) Further, by Lemma 10, we have that xi − xj is in the span of Z for all xi
and xj in Sm, so that 〈θ′, xi − xj〉 = 〈θ, xi − xj〉 for all i and j.

Then, after the player obtains the vector of rewards ŷ by playing each arm in Z , the estimate θ̂ is given by:

θ̂ = argmin
θ∈span(Z)

∑
xi∈Ẑ

(〈θ, xi〉 − ŷi)2

= argmin{‖θ̂‖2 s.t. XTXθ̂ = XT ŷ}

Now, since for any v there exists u such that XTXu = XT v, we have:

θ̂ = (XTX)‡XT ŷ = (XTX)‡XT (Xθ + s+ γ)

= θ′ + (XTX)‡XT (s+ γ)

This implies:

〈θ̂, xi〉 > 〈θ̂, x1〉

〈θ̂, xi − x1〉 − yi + y1 ≥ ∆i

〈θ̂ − θ′, xi − x1〉 > ∆i − γ1 + γi

≥ ∆i − 2γmax

Substituting in our expression for θ̂, we have that the probability that the empirical average of the best arm is smaller than
the empirical average of arm i is at most

P[(xi − x1)T (XTX)‡XT (s+ γ) > ∆i − 2γmax]

Next, we will need some guarantee about the quality of the set Z . By Theorem 5, GetArms returns Z that satisfies |Z| = N
and

sup
xi−xj∈Sm

(xj − xi)T
(∑
z∈Z

zzT

)‡
(xj − xi) ≤ 8

h|Sm|/4

N
(3)
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Using this fact, we apply Cauchy-Schwarz to obtain:

|(xi − x1)T (XTX)‡XT γ| ≤ ‖X(XTX)‡(xi − x1)‖2‖γ‖2

≤
√
N‖γ‖∞

√
sup

xi,xj∈Sm

(xj − xi)T (XTX)
‡

(xj − xi)

=
√
N‖γ‖∞

√√√√√ sup
xi,xj∈Sm

(xj − xi)T

∑
z∈Ẑ

zzT

‡ (xj − xi)

≤
√
N

√
8h|Sm|/4

N
‖γ‖∞ ≤

√
8h|Sm|/4γmax

Thus,

P[(xi − x1)T (XTX)‡XT (s+ γ) > ∆i − 2γmax] ≤

P
[
(xi − x1)T (XTX)‡XT s > ∆i −

(
2 +

√
8h |Sm|

4

)
γmax

]
Then, since s is a mean zero, σ-subgaussian vector, for any v ∈ RN , 〈v, s〉 is a mean 0, ‖v‖2σ-subgaussian random variable.
Applying the Hoeffding bound, for any ε > 0,

P[〈v, s〉 > ε] ≤ exp

(
− ε2

2‖v‖22σ2

)
We will substitute X(XTX)‡(xi−x1) for v in the above formulation of Hoeffding’s bound. To start, we compute the norm:

‖X(XTX)‡(xi − x1)‖22 = (xi − x1)T (XTX)‡(xi − x1)

≤ sup
xi,xj∈Z

(xj − xi)T
∑
z∈Ẑ

zzT

‡ (xj − xi) ≤ 8
h|Sm|/4

N

Then substituting N = T
log2 n

, and combining the above, we get that

P[(xi − x1)T (XTX)‡XT (s+ γ) ≥ ∆i − 2γmax] ≤

exp

(
−

(∆i − (2 + 2
√

2h|Sm|/4)γmax )2T

16 log2(n)h|Sm|/4σ
2

)

Next, following (Karnin et al., 2013), we provide the missing proof of Lemma 4:

Lemma 4. Assume that the best arm was not eliminated prior to round m, and let [x]+ = max(0, x). Then the probability
that the best arm is eliminated on round m is at most

3 exp

−
[
∆ 1

4 |Sm| − (2 + 2
√

2h 1
4 |Sm|)γmax

]2
+

T

16 log2(n)h|Sm|/4σ
2


Proof. If the best arm is thrown out at round m, there are at least 1

2 |Sm| arms in Sm whose ŷ estimates are higher than that
of the best arm. Let S′m ⊂ Sm be the set of arms that excludes the 1

4 |Sm| arms with the largest true means in Sm. If the
best arm is thrown out, then at least 1

3 of arms in S′m must have higher ŷ estimates than that of the best arm. Let Nm be the
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number of such arms. Define D = max{(∆ 1
4 |Sm| − (2 + 2

√
2h|Sm|/4)γmax )2, 0}. Then using Lemma 3, the expected

number of such arms is at most

E[Nm] =
∑
xi∈S′

m

P[〈θ̂, xi〉 ≥ 〈θ̂, x1〉]

≤ |S′m| exp

(
− DT

16 log2(n)h|Sm|/4σ
2

)
Then, by Markov inequality, the probability of the best arm being thrown out at round m is at most

P
[
Nm >

1

3
|S′m|

]
≤ E[Nm]

1
3 |S′m|

≤ 3 exp

(
− DT

16 log2(n)h|Sm|/4σ
2

)

B. Missing Proofs from Section 4
Before proving Theorem 5, we need the following Lemmas, which characterize the quality of the candidate set of arms
returned by the method of (Allen-Zhu et al., 2017).

First, we have the following easy technical Lemma:

Lemma 10. If for some sets S and Z

sup
xi−xj∈S

(xj − xi)T (
∑
z∈Z

zzT )‡(xj − xi) <∞

then S ⊂ span(Z).

Proof. Fix any x = xi − xj 6= 0, xi, xj ∈ S. Then, since

xT (
∑
z∈Z

zzT )‡x <∞

there exists y s.t.
(
∑
z∈Z

zzT )y =
∑
z∈Z

z(zT y) = x

which implies that x ∈ span(Z).

Lemma 11. Given the set S ⊂ A ⊂ Rd the objective fS above, and a number N ≥ d the output Ẑ of OptDesign
satisfies Ẑ ⊂ A, |Ẑ| ≤ N and supxi,xj∈S(xj − xi)

T
(∑

z∈Ẑ zz
T
)‡

(xj − xi) ≤ 14
N infv inf ‖π‖1≤N

π∈[0,N ]|A|
supxi∈S(xi −

v)T (
∑
a∈A π(a)aaT )‡(xi − v) ≤ 14 d

N . That is, supxi,xj∈S(xj − xi)T
(∑

z∈Ẑ zz
T
)‡

(xj − xi) ≤ d̃ and also d̃ ≤ d.

Proof. Let

Z = argmin
Z′⊂A
|Z′|≤N

{ sup
xi,xj∈S

(xj − xi)T (
∑
z∈Z′

zzT )‡(xj − xi)} (4)

Note that we consider Z to be a set with multiplicity - it is permitted for an element to appear multiple times in Z . Computing
Z exactly is NP-hard, but (Allen-Zhu et al., 2017) provides a way to approximate the solution. Note that equation 4 can be
restated as follows:

c∗ = argmin
‖c‖1≤N

c∈{0,1,2,...,N}|A|

{ sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

c(a)aaT )‡(xj − xi)} (5)
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where c is treated as a vector in |A| indexed by a ∈ A and Z is related to c∗ as

Z = {a ∈ A repeated c∗(a) times}

Then, define the continuous relaxation of the objective in 5 as:

π∗ = argmin
‖π‖1≤N
π∈[0,N ]|A|

{ sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π(a)aaT )‡(xj − xi)} (6)

Section 3 from (Allen-Zhu et al., 2017) guarantees that a polynomial-time continuous optimization procedure can find a
fractional solution π such that

sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π(a)aaT )‡(xj − xi) ≤ 7/6 sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π∗(a)aaT )‡(xj − xi)

At the same time, Theorem 2.1 from (Allen-Zhu et al., 2017) (see Appendix C) provides a polynomial-time algorithm that
rounds any fractional solution π to an integer solution c such that

sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

c(a)aaT )‡(xj − xi) ≤ 3 sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π(a)aaT )‡(xj − xi)

Combining the two equations, we get that there exists a polynomial-time algorithm that finds an integer solution c (or,
equivalently, set Z) such that

sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

c(a)aaT )‡(xj − xi) ≤ 7/2 sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π∗(a)aaT )‡(xj − xi)

Now, notice that for any solution π, we have:

sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π(a)aaT )‡(xj − xi)

= inf
v

sup
xi,xj∈S

(xj − v + vxi)
T (
∑
a∈A

π(a)aaT )‡(xj − v + vxi)

≤ inf
v

sup
xi,xj∈S

(xi − v)T (
∑
a∈A

π(a)aaT )‡(xi − v) + (xj − v)T (
∑
a∈A

π(a)aaT )‡(xj − v) + 2(xj − v)T (
∑
a∈A

π∗(a)aaT )‡(xi − v)

Now, observe that a>Mb = 〈
√
Ma,

√
Mb〉 ≤ a>Ma

2 + b>Mb
2 for any positive-semidefinite matrix M by Young inequality.

Therefore:

sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π∗(a)aaT )‡(xj − xi) ≤ 4 inf
v

inf
‖π‖1≤N
π∈[0,N ]|A|

sup
x∈S

(x− v)T (
∑
a∈A

π(a)aaT )‡(x− v)

≤ 4

N
inf
v

inf
‖π‖1≤1

π∈[0,N ]|A|

sup
x∈S

(x− v)T (
∑
a∈A

π(a)aaT )‡(x− v)

≤ 4
d

N

where the last line follows from setting v = 0 and applying the Kiefer-Wolfowitz theorem (Kiefer & Wolfowitz, 1960).

Thus, combining everything, we get that

sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

c(a)aaT )‡(xj − xi) ≤

7/2 sup
xi,xj∈S

(xj − xi)T (
∑
a∈A

π∗(a)aaT )‡(xj − xi) ≤

14

N
inf
v

inf
‖π‖1≤1

π∈[0,N ]|A|

sup
x∈S

(x− v)T (
∑
a∈A

π(a)aaT )‡(x− v) ≤

14
d

N
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Lemma 11 depends only on the budget N and the number of dimensions d. Notice that the bound does not depend on
distrbution of the arms.

Lemma 12. Given the objective fS , the set A, and a number N ≥ |S|, the output Z of GetArms satisfies |Z| ≤ N and
supxi,xj∈S(xj − xi)T

(∑
z∈Z zz

T
)‡

(xj − xi) ≤ 2 |S|N .

Proof. By Lemma 14, for any xi, xj ∈ S,

(xj − xi)T (
∑
x∈S

xxT )‡(xj − xi) ≤ 2

So, letting Z̃ ← {s ∈ S repeated N
S times}

sup
xi,xj∈S

(xj − xi)T (
∑
z∈Z̃

zzT )‡(xj − xi)

≤ |S|
N

sup
xi,xj∈S

(xj − xi)T (
∑
x∈S

xxT )‡(xj − xi)

≤ 2
|S|
N

While the above Lemma requires the number of pulls to be greater than the candidate set S, the next Lemma shows that it is
possible to bound the performance of OptDesign even if N < |S|.
Lemma 13. Given the objective fS , the set A, and a number N , the output Z of GetArms satisfies |Z| ≤ N and
supxi,xj∈S(xj − xi)T

(∑
z∈Z zz

T
)‡

(xj − xi) ≤ 6 |S|N .

Proof. Given any fractional solution to fS π, using Theorem 2.1 from (Allen-Zhu et al., 2017), OptDesign outputs an
integer solution Z such that

sup
xi,xj∈s

(xj − xi)T (
∑
z∈Z

zzT )‡(xj − xi) ≤

3 sup
xi,xj∈Z

(xj − xi)T (
∑
z∈Z

πzzz
T )‡(xj − xi) ≤

3 sup
zi,zj∈Z

(xj − xi)T (
∑
z∈S

N

|S|
zzT )‡(xj − xi) ≤

3
|S|
N

sup
xi,xj∈S

(xj − xi)T (
∑
z∈S

zzT )‡(xj − xi) ≤ 6
|S|
N

where the last step uses Lemma 14 below.

Now we prove Lemma 14:

Lemma 14. Let x1, . . . xn be arbitrary vectors in Rd. Let X be a matrix s.t. ith row of X corresponds to xi for all i. Then
for any j, k,

(xj − xk)T (XTX)‡(xj − xk) ≤ 2

Proof. For any j, xj = XT ej where ej is the jth identity vector. Then for any j, k,

(xj − xk)T (XTX)‡(xj − xk) =

(ej − ek)TX(XTX)‡XT (ej − ek)
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Let e = ej − ek, and let u = (XTX)‡XT e. Then,

XTXu = XT e =⇒ XT (Xu− e) = 0 =⇒
Xu− e ∈ ker(XT ) =⇒ Xu− e ⊥ Im(X)

Then there exists a w such that e = Xu+Qw, where Q is a matrix with columns orthogonal to columns of X . Then,

eTX(XTX)‡XT e = uTXTX(XTX)‡XTXu

By definition of u, u ⊥ ker(XTX), and thus

(xj − xk)T (XTX)‡(xj − xk) =

uTXTX(XTX)‡XTXu =

uTXTXu = ‖Xu‖22 ≤ ‖e‖22 = 2

because ‖e‖22 = ‖Xu‖22 + ‖Qw‖22

Given the above, we are ready to proof Theorem 5.

Proof of Theorem 5. Combining Lemmas 11, 12, and 13, we get that on inputs S, N and A, GetArms produces a set Z
such that if T

dlog2 ne
= N ≥ |S|, GetArms returns a set Z that satisfies:

sup
xi,xj∈S

(xj − xi)T (
∑
z∈Z

zzT )‡(xj − xi) ≤ min{8|S|/4
N

,
14d̃

N
} = 8

h|S|/4

N

Similarly, if N < |S|, GetArms returns a set Z that satisfies:

sup
xi,xj∈S

(xj − xi)T (
∑
z∈Z

zzT )‡(xj − xi) ≤ min{14
d̃

N
, 24
|S|/4
N
} = 8

h|S|/4

N

C. Properties of the Objective fS

In this section we verify that the assumptions required to use the approach of (Allen-Zhu et al., 2017) in GetArms hold.

C.1. Equivalence of objectives

Lemma 15. Assume we are given a set of n vectors Z ⊂ Rd that span a k-dimensional subspace. Let Z ∈ Rn×d
be a matrix such that each row represents a vector in Z . Let Q ∈ Rk×d be a matrix with orthogonal rows such that
span(QT ) = span(ZT ). Define M = (QQT )−1/2Q. Then, for any symmetric, positive semi-definite matrix A ∈ Rd×d
such that A‡z <∞ for all z ∈ Z , it holds that MAMT is invertible and for all z ∈ Z

(Mz)T (MAMT )−1Mz = zTA‡z

Proof.

MAMT = (QQT )−1/2QAQT (QQT )−1/2

SinceA is a symmetric PSD matrix, it has a symmetric PSD rootA1/2. Since (QQT )−1/2 is invertible, A1/2QT (QQT )−1/2

has rank less than k iff there exists v 6= 0,

A1/2QT v = A1/2(

k∑
i=1

viqi) = 0
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where qi correspond to rows of Q. By assumption, for each zi ∈ Z , there exists yi s.t. Ayi = A1/2A1/2yi = zi. Thus,
zi ∈ Im(A1/2) for all i. Since span(ZT ) = span(QT ), it must be that

∑k
i=1 viqi ∈ Im(A1/2). Since the kernel of A1/2

is orthogonal to the image of A1/2, we get that A1/2(
∑k
i=1 viqi) = 0 iff

∑k
i=1 viqi = 0, which is impossible, since qi form

an orthogonal set.

Thus, B = A1/2QT (QQT )−1/2 has rank k, and thus MAMT = BTB ∈ Rk×k is invertible.

Moreover, note that if Z is not in the image of A, then MAMT is not invertible.

For the second part of the Lemma, fix some z ∈ Z . By assumption, there exists y ∈ Rd s.t. A‡z = y, which implies that
Ay = z and y is orthogonal to ker(A). Since A is a symmetric PSD matrix, this means that y ∈ Im(A). Let Q1 ∈ Rk1×d
be an orthogonal row matrix s.t. the rows of Q and Q1 together span Im(A) and rows of Q and Q1 are orthogonal to each
other. Notice that that implies that A = [QT |QT1 ]Λ[QT |QT1 ]T where Λ is diagonal. Then, y = QTw + QT1 w1 for some
w,w1. Then substituting the definition of M and using the fact that Ay = z,

(Mz)T (MAMT )−1Mz = zTQT (QAQT )−1QAy =

zTQT (QAQT )−1QA(QTw +QT1 w1) =

zTQTw + zTQT (QAQT )−1QAQT1 w1

Then,

QAQT1 = Q[QT |QT1 ]Λ[QT |QT1 ]TQT1 =

[Ik×k|0k×k1 ]Λ[0Tk1×k|Ik1×k1 ]T = 0

Thus, the equation above becomes

(Mz)T (MAMT )−1Mz = zTQTw

Since columns in Q1 are orthogonal to columns of z,

zTA‡z = zT y = zTQTw =

(Mz)T (MAMT )−1Mz

Using the above, given a set of of arms A ⊂ Rd and a set Z ⊂ Rd, define M as in Lemma 15. Then for any subset A′ ⊂ A,

sup
z∈Z

(Mz)T (
∑
x∈A′

Mx(Mx)T )−1Mz =

sup
z∈Z

zT (
∑
x∈A′

xxT )‡z

where we use
(Mz)T (

∑
x∈A′

Mx(Mx)T )−1Mz =∞

if
∑
x∈A′ Mx(MZx)T is not invertible. Notice that if Z = {zi− zj |zi, zj ∈ S} for some set of arms S , and S ⊂ span(A),

then Z is in the image of
∑
x∈A xx

T .

Thus, if we are give a number N , sets Z,A, then

argmin
X⊂A
|A|≤N

fZ(X ) =

argmin
X⊂A
|A|≤N

sup
z∈Z

zT (
∑
x∈X

xxT )‡z =

argmin
X⊂A
|A|≤N

sup
z∈Z

(Mz)T (
∑
x∈X

Mx(MZx)T )−1Mz
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The algorithm GetArms ensures that Z ⊂ A, and N ≥ dim(span(Z)) whenever it attempts to find a solution to

argmin
X⊂A
|A|≤N

fZ(X )

Thus, every time the minimization algorithm for the above objective is called, there exists a subset X that makes fZ finite.
Moreover,

∑
x∈X Mx(Mx)T is invertible.

Using this, we can now replace the minimization objective with

argmin
X̃⊂Ã
|Ã|≤N

sup
z∈Z̃

zT (
∑
x∈X̃

xxT )−1z

where Ã = MA and Z̃ = MZ . Notice that then, the solution to the objective X̃ forms an invertible matrix
∑
x∈X̃ xx

T .
Thus, to find an approximate solution, we can use the procedure in (Allen-Zhu et al., 2017) that finds an approximate
solution over the space of positive-definite matrices. Moreover, if Z ⊂ Rd span Rd, then M = I and the two objective are
exactly the same.

C.2. Solution over the set of positive-definite matrices

By the discussion in the previous section, we can assume that othe objective optimized in GetArms has the following form:

Given a set of arms A ⊂ Rk that span Rk, a subset Z ∈ A and number of pulls per round N ,

f(M) = sup
z=zi−zj
zi,zj∈A

zTM−1z

Below, we will show that f satisfies the conditions required by the approximation algorithm (Allen-Zhu et al., 2017) hold.

f satisfies the following assumptions (see (Allen-Zhu et al., 2017)):

(A1) Monotonicity: for any A,B ∈ S+d with A � B, f(A) ≥ f(B)

(A2) Reciprocal sub-linearity: for any A ∈ S+d and t ∈ (0, 1), f(tA) ≤ t−1f(A)

(A3) Polynomial-time approximability of continuous relaxation: for any fixed δ ∈ (0, 1), the continuous relaxation of 4
defined as

min
s∈C

F (s) = min
s∈C

f(

Nn∑
i=1

sixix
T
i ) where

C = {s ∈ [0, N ]Nn :

Nn∑
i=1

si ≤ N}

can be solved with (1 + δ)-relative error by a polynomial-time algorithm.

Assumptions (A1) and (A2) trivially hold. As for assumption (A3), notice that

Theorem 16. f is a convex function in s over a convex set C.

Proof. Given any s1, s2 ∈ C and t ∈ [0, 1],(
t

Nn∑
i=1

s1,ixix
T
i + (1− t)

Nn∑
i=1

s2,ixix
T
i

)−1
�

t

(
Nn∑
i=1

s1,ixix
T
i

)−1
+ (1− t)

(
Nn∑
i=1

s2,ixix
T
i

)−1
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Let

z = argmax
z=zi−zj
zi,zj∈Z

zT

(
t

Nn∑
i=1

s1,ixix
T
i + (1− t)

Nn∑
i=1

s2,ixix
T
i

)
z

Then, using (A1),

F (ts1 + (1− t)s2) =

zT

(
t

n∑
i=1

s1,ixix
T
i + (1− t)

n∑
i=1

s2,ixix
T
i

)
z ≤

tzT

(
n∑
i=1

s1,ixix
T
i )−1z + (1− t)zT (

n∑
i=1

s2,ixix
T
i

)−1
z ≤

tF (s1) + (1− t)F (s2)

Thus, since F (s) is convex, there are a number of convex solvers that minimize F over C in polynomial time. For
completeness, we also show that entropic mirror descent method from (Allen-Zhu et al., 2017) can be used to optimize F :
Assumptions B1 and B3 are trivially satisfied, while for B2, Fλ is Lipschitz because it is convex.

Then, notice that equation (4) can be restated as follows: let {x1, x2, . . . , xN×n} be a set of arms such that each of the n
arms in A is replicated exactly N times. Then, minimizing (4) is equivalent to

argmin
s∈S

F (s) = argmin
s∈S

f(

Nn∑
i=1

sixix
T
i ) where

S = {s ∈ {0, 1, . . . , N}Nn :

Nn∑
i=1

si ≤ N}

Thus, using Theorem 2.1 from (Allen-Zhu et al., 2017) (stated below, using our notation) and assuming T ≥ 45d log2 n, we
get that

Theorem 17. Suppose ε ∈ (0, 1/3], Nn ≥ N ≥ 5d/ε2, b ∈ {1, 2, ..., N}, and f : S+
d → R satisfies assumptions (A1) and

(A2). Let π ∈ C by any fractional solution so that F (π) <∞. Then, in time complexity Õ(Nnd2) we can round π to an
integral solution

ŝ ∈ S satisfying F (ŝ) ≤ (1 + 6ε)F (π)

where C = {c ∈ [0, N ]Nn :
∑Nn
i=1 ci ≤ N}.

For completion, we also note that our algorithm is almost optimal, which follows from Theorem 1.4 from (Allen-Zhu et al.,
2017):

Theorem 18. Suppose ε ∈ (0, 1/3], Nn ≥ N ≥ 5d/ε2, f : S+d → R satisfies assumptions (A1)-(A3), and mins∈S F (s) <
+∞. Then, there exist a polynomial-time algorithm that outputs ŝ ∈ S satisfying

F (ŝ) ≤ (1 + 8ε) min
s∈S

F (s)

Thus, under assumption that T > 45d log2 n, using N = T
log2 n

≥ 45d, we get that there exists an ε ∈ (0, 1/3] s.t.
Nε2 ≥ 5d and so the hypotheses of Theorem 18 are satisfied. In particular, we have the following result:

Theorem 19. If T > 45d log2(n), then in GetArms, the output X̂ provided by the algorithm of (Allen-Zhu et al., 2017)
satisfies:

fS(X̂ ) ≤ 11

3
inf
|X |=N

fS(X )
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D. Proof of Theorem 6
Theorem 6. Given a d-dimensional linear bandit pure-exploration algorithm, any p ∈ (0, 1/2), and any n ≥ d, there exists

an problem instance on which the probability of identifying the best arm is at most 1− exp
(
−(15+o(1))T
p(1−p)H̃2

)
, where the o(1)

depends on n, T and p and goes to zero as T →∞.

Proof. Suppose otherwise. Then given any d-armed multi-armed bandit problem with true rewards y1, . . . , yd contained
in [p, 1 − p], we construct an d + 1-dimensional linear bandit problem as follows: choose an arbitrary orthonormal set
z1, . . . , zd ⊂ Rd+1. Set θ =

∑d
i=1 yizi. For i > d, set xi = zi where now ri is an arbitrary value in [0, p], and zi is an

arbitary vector such that 〈z− i, zj〉 = 0 for all i ≤ d. When our algorithm queries arm xi for i ≤ d, we provide an observed
Bernoulli reward with mean 〈xi, θ〉 = yi, and for i > d, we provide 〈xi, θ〉 < p. Then finding the best arm in this setting
is equivelent to finding the best arm in the original multi-armed bandit problem. The value H2 in the multi-armed bandit
instance is maxi≤d i∆

−2
i ≥ 1

3H̃2, and so the Theorem follows from (Audibert & Bubeck, 2010a) Theorem 4.

E. Proof of Theorem 7
Theorem 7. Given a linear bandit pure-exploration algorithm, there exists a problem instance on which the probability of
identifying the best arm is at most 1− exp

(
−T · (1/

√
HLB + 2 sin π

n )2
)
.

We will use the following construction. Consider a problem instance with set A of n arms x1, x2, . . . , xn that are equispaced
on the unit circle S1 ⊂ R2 (the construction can be extended to higher dimensions). The angle between every consecutive
pair of arms is therefore 2π

n . Let θ have unit norm and be aligned along x1. Consider the set of parameter vectors M that
are exactly aligned along one of the arms, i.e. M := {x1, x2, · · · , xn}. By rotational invariance, for any parameter vector
λ ∈M , the problem instances will have exactly the same value of HLB . Now, we can use the same construction as in the
proof of Theorem 1 from (Degenne et al., 2020), but with the added assumption that the strategy ψ has knowledge of the
HLB value for the two probvlem instances, to show the following:

Lemma 20. For any linear-bandit fixed budget algorithm running for time T and achieving error probability δ, for all
θ ∈M , we have

T

log2(1/δ)
≥ 1

maxw∈Dd
minλ∈M,λ∈¬θ ‖θ − λ‖2Vw

,

where ¬θ refers to the set {λ : max
a∈A

λTa > max
a∈A

θTa}

Proof. Suppose there exists a linear bandit fixed-budget algorithm for which the above bound is not true. We will use such
an algorithm. along with the value of HLB from the construction to create a fixed-confidence strategy ψ to distinguish
between two problem instances with parameter vector θ, λ ∈M , as described in the proof of Theorem 1 of (Degenne et al.,
2020), from which the lemma follows.

We can further show the following lemma, that relates minλ∈M,λ∈¬θ ‖θ − λ‖2

Lemma 21. For a fixed w and θ, we have

min
λ∈M,λ∈¬θ

‖θ − λ‖Vw
< min
λ∈S1,λ∈¬θ

‖θ − λ‖Vw
+ 2 sin

π

n

Proof. Let λ∗ be the minimizer of minλ∈S1,λ∈¬θ ‖θ − λ‖Vw
. By definition of M , there exists a λ′ ∈M such that ‖λ′ −

λ∗‖Vw
≤ ‖λ′ − λ∗‖2‖Vw‖2 = 2 sin π

n‖Vw‖2 ≤ 2 sin π
n . The last inequality is true since ‖Vw‖2 = ‖

∑d
i=1 wixix

T
i ‖2 ≤∑d

i=1 wi‖xixTi ‖ = 1, since the wi lie on a simplex and xi lie on the unit circle.



Robust Pure Exploration in Linear Bandits with Limited Budget

Using the above two lemmas, we have

T

log2(1/δ)
≥ 1

maxw∈Dd
minλ∈M,λ∈¬θ ‖θ − λ‖2Vw

=
1

maxw∈Dd
(minλ∈M,λ∈¬θ ‖θ − λ‖Vw)2

≥ 1

maxw∈Dd
(minλ∈S1,λ∈¬θ ‖θ − λ‖Vw

+ 2 sin π
n )2

≥ 1

( 1√
HLB

+ 2 sin π
n )2

where the last inequality follows from Lemma 8 of (Degenne et al., 2020). The theorem follows.

F. Proofs for Section 6
Lemma 8. The probability that y1,m+1 < y1,m − ε is at most:

3 exp

(
−

max{(ε− (2 +
√

2h|Sm|/4)γmax)2, 0}T
log2(n)h|Sm|/4

)

Proof. Define ∆i,m ≤ ∆i to be the gap between the ith best arm and the best arm remaining in Sm. Then notice that the
result of Lemma 3 still holds if we replace x1 with the best arm remaining in Sm and ∆i with ∆i,m

Let Sεm be the set of arms in Sm with y value less than y1,m − ε. Notice that in order for y1,m+1 to be less than y1,m − ε,
we must have |Sm|/2 elements of |Sεm| to have ŷ values larger than those of the best arm left in Sm. Let Sε

′

m be the
set of arms that excludes the 1

4 |Sm| arms with highest true mean from Sεm. Then if y1,m+1 < y1,m, we must have
1
3 of the arms in Sε

′

m have higher ŷ estimates than the best arm in Sm. Let Nm be the number of such arms. Define
D = max{(ε− (2 +

√
h|Sm|/4)γmax)2, 0}.

Then, since all arms in Sεm have ∆i,m ≥ ε, we have by Lemma 3 that

E[Nm] ≤ |Sε
′

m| exp

(
− DT

log2(n)h|Sm|/4

)
So using Markov inequality in exactly the same way as in the proof of Lemma 3, the conclusion follows.


