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Abstract

We investigate fast and communication-efficient
algorithms for the classic problem of minimiz-
ing a sum of strongly convex and smooth func-
tions that are distributed among n different nodes,
which can communicate using a limited number of
bits. Most previous communication-efficient ap-
proaches for this problem are limited to first-order
optimization, and therefore have linear depen-
dence on the condition number in their communi-
cation complexity. We show that this dependence
is not inherent: communication-efficient methods
can in fact have sublinear dependence on the con-
dition number. For this, we design and analyze the
first communication-efficient distributed variants
of preconditioned gradient descent for General-
ized Linear Models, and for Newton’s method.
Our results rely on a new technique for quantizing
both the preconditioner and the descent direction
at each step of the algorithms, while controlling
their convergence rate. We also validate our find-
ings experimentally, showing fast convergence
and reduced communication.

1. Introduction
Due to the sheer size of modern datasets, many practical
instances of large-scale optimization are now distributed, in
the sense that data and computation are split among several
computing nodes, which collaborate to jointly optimize the
global objective function. This shift towards distribution
induces new challenges, and many classic algorithms have
been revisited to reduce distribution costs. These costs are
usually measured in terms of the number of bits sent and
received by the nodes (communication complexity) or by
the number of parallel iterations required for convergence
(round complexity).
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In this paper, we focus on the communication (bit) com-
plexity of the classic empirical risk minimization problem

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x),

where the global d-dimensional cost function f is formed
as the average of smooth and strongly-convex local costs fi,
each owned by a different machine, indexed by i = 1, ..., n.

This problem has a rich history. The seminal paper of Tsit-
siklis & Luo (1986) considered the case n = 2, and provided
a lower bound of Ω(d log(d/ε)) for quadratic functions, as
well as an almost-matching upper bound for this case, within
logarithmic factors. (Here, d is the problem dimension and
ε is the error-tolerance.)

The problem has concentrated significant attention, given
the surge of interest in distributed optimization and machine
learning, e.g. (Niu et al., 2011; Jaggi et al., 2014; Alistarh
et al., 2016; Nguyen et al., 2018; Ben-Nun & Hoefler, 2019).
In particular, a series of papers (Khirirat et al., 2018; Ye
& Abbe, 2018; Magnússon et al., 2020; Alistarh & Korho-
nen, 2020) continued to provide improved upper and lower
bounds for the communication complexity of this problem,
both for deterministic and randomized algorithms, as well
as examining related distributed settings and problems (Sca-
man et al., 2017; Jordan et al., 2018; Vempala et al., 2020;
Mendler-Dünner & Lucchi, 2020; Hendrikx et al., 2020).

The best known lower bound for solving the above problem
for deterministic algorithms and general d and n is of

Ω(nd log(d/ε))

total communication bits, given recently by (Alistarh & Ko-
rhonen, 2020). This lower bound can be asymptotically
matched for quadratic functions by a quantized variant of
gradient descent (Magnússon et al., 2020; Alistarh & Ko-
rhonen, 2020) using

O(ndκ log κ log(γd/ε))

total bits, where κ is the condition number of the problem
and γ is the smoothness bound of f .

An intriguing open question concerns the optimal depen-
dency on the condition number for general objectives. While
existing lower bounds show no such explicit dependency,
all known algorithms have linear (or worse) dependency
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on κ. Resolving this problem is non-trivial, since one usu-
ally removes this dependency in the non-distributed case by
leveraging curvature information in the form of precondi-
tioning or full Newton steps. However, existing distribution
techniques are designed for gradient quantization, and it
is not at all clear for instance how using a preconditioning
matrix would interact with the convergence properties of the
algorithm, and in particular whether favourable convergence
behaviour can be preserved at all following quantization.

Contribution. In this paper, we resolve this question in
the positive, and present communication-efficient variants
of preconditioned gradient descent for generalized linear
models (GLMs) and distributed Newton’s method.

Specifically, given a small enough error-tolerance ε, a
communication-efficient variant of preconditioned gradient
descent for GLMs (QPGD-GLM) can find an ε-minimizer
of a γ-smooth function using a total number of bits

BQPGD-GLM = O (ndκ` log(nκ`κ(M)) log(γD/ε)) ,

where d is the dimension, n is the number of nodes, κ` is
the condition number of the loss function ` used to measure
the distance of training data from the prediction, κ(M) is
the condition number of the averaged covariance matrix of
the training data, and D is a bound on the initial distance
from the optimum. In practice, κ` is often much smaller
than the condition number κ of the problem, and is equal to
1 in the case that ` is a quadratic.

This first result suggests that distributed methods need not
have linear dependence on the condition number of the
problem. Our main technical result extends the approach to
a distributed variant of Newton’s method, showing that the
same problem can be solved using

BNewton = O
(
nd2 log (dκ) log(γµ/σε)

)
total bits,

under the assumption that the Hessian is σ-Lipschitz.

Viewed in conjunction with the above Ω(nd log(d/ε)) lower
bound, these algorithms outline a new communication com-
plexity trade-off between the dependency on the dimension
of the problem d, and its condition number κ. Specifically,
for ill-conditioned but low-dimensional problems, it may
be advantageous to employ quantized Newton’s method,
whereas QPGD-GLM can be used in cases where the struc-
ture of the training data favors preconditioning. Further,
our results suggest that there can be no general communica-
tion lower bound with linear dependence on the condition
number of the problem.

Our results assume the classic coordinator / parameter
server (Li et al., 2014) model of distributed computing, in
which a distinguished node acts as a coordinator by gather-
ing model updates from the nodes. In this context, we intro-
duce a few tools which should have broader applicability.
One is a lattice-based matrix quantization technique, which

extends the state-of-the-art vector (gradient) quantization
techniques to preconditioners. This enables us to carefully
trade off the communication compression achieved by the
algorithm with the non-trivial error in the descent directions
due to quantization. Our main technical advance is in the
context of quantized Newton’s method, where we need to
keep track of the concentration of quantized Hessians rel-
ative to the full-precision version. Further, our algorithms
quantize directly the local descent directions obtained by
multiplying the inverse of the quantized estimation of the
preconditioner with the exact local gradient. This is a non-
obvious choice, which turns out to be the correct way to
deal with quantized preconditioned methods.

We validate our theoretical results on standard regression
datasets, where we show that our techniques can provide
an improvement of over 3× in terms of total communica-
tion complexity used by the algorithm, while maintaining
convergence and solution quality.

Related Work. There has been a surge of interest in dis-
tributed optimization and machine learning. While a com-
plete survey is beyond our scope, we mention the significant
work on designing and analyzing communication-efficient
versions of classic optimization algorithms, e.g. (Jaggi et al.,
2014; Scaman et al., 2017; Jordan et al., 2018; Khirirat et al.,
2018; Nguyen et al., 2018; Alistarh et al., 2016; 2018; Ye
& Abbe, 2018; Ramezani-Kebrya et al., 2019; Magnússon
et al., 2020; Ghadikolaei & Magnússon, 2020), and the grow-
ing interest in communication and round complexity lower
bounds, e.g. (Zhang et al., 2013; Shamir, 2014; Arjevani &
Shamir, 2015; Vempala et al., 2020; Alistarh & Korhonen,
2020). In this context, our work is among the first to address
the bit complexity of optimization methods which explicitly
employ curvature information, and shows that such methods
can indeed be made communication-efficient.

Tsitsiklis & Luo (1986) gave the first upper and lower
bounds for the communication (bit) complexity of dis-
tributed convex optimization, considering the case of two
nodes. Their algorithm is a variant of gradient descent
which performs adaptive quantization, in the sense that
nodes adapt the number of bits they send and the quanti-
zation grid depending on the iteration. Follow-up work,
e.g. (Khirirat et al., 2018; Alistarh et al., 2016) general-
ized their algorithm to an arbitrary number of nodes, and
continued to improve complexity.

In this line, the work closest to ours is that of Magnússon
et al. (2020), who introduce a family of adaptive gradient
quantization schemes which can enable linear convergence
in any norm for gradient-descent-type algorithms, in the
same system setting considered in our work. However, we
emphasize that this work did not consider preconditioning.
(Alistarh & Korhonen (2020) also focus on GD, but use
different quantizers and a more refined analysis to obtain
truly tight communication bounds for quadratics.)
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Conceptually, the quantization techniques we introduce
serve a similar purpose—to allow the convergence prop-
erties of the algorithm to be preserved, despite noisy di-
rectional information. At the technical level, however, the
schemes we describe and analyze are different, and arguably
more complex. For instance, since only the gradient in-
formation is quantized, (Magnússon et al., 2020) can use
grid quantization adapted to gradient norms, whereas em-
ploy more complex quantization, as well as fine-grained
bookkeeping with respect to the concentration of quantized
matrices and descent directions.

There has been significant work on distributed approximate
second-order methods with the different goal of minimizing
the number of communication rounds required for conver-
gence. One of the first such works is (Shamir et al., 2014),
who considered the strongly convex case, and proposed a
method called DANE, where each worker solves a subprob-
lem using full gradients at each iteration, and the global
iterate is the average of these sub-solutions. Follow-up
work (Zhang & Lin, 2015; Reddi et al., 2016; Wang et al.,
2018; Zhang et al., 2020) proposed improvements both in
terms of generalizing the structure of the loss functions,
but also in terms of convergence rates. Recently, Hendrikx
et al. (2020) also proposed a round-efficient distributed pre-
conditioned accelerated gradient method for our setting,
where preconditioning is done by solving a local optimiza-
tion problem over a subsampled dataset at the server. Their
convergence rate depends on the square root of the rela-
tive condition number between the global and local loss
functions.

Concurrent work by Islamov et al. (2021) considers the same
problem of reducing the bit cost of distributed second-order
optimization, and proposes a series of algorithms based
on the novel idea of learning parameters of the Hessian
at the optimum in a communication-efficient manner. The
resulting algorithms allow for `2-regularization, and can
achieve local linear and superlinear rates, independent of
the condition number, with linear communication cost per
round in the dimension d.

Relative to our setting, their results require two additional
assumptions: The first is that, for linear communication cost,
either the coordinator must have access to all the training
data at the beginning of the optimization process, or the
data should be highly sparse. The second assumption is
on the structure of the individual loss functions, which are
weaker than the assumptions we make for our “warm-up”
algorithm for GLMs, but stronger than the ones required for
our generalized quantized Newton’s method. Their results
are therefore not directly comparable to ours, however, we
note that our communication cost should be lower in e.g. the
case where the data is dense and the number of points m is
larger than the dimension d. The algorithmic techniques are
rather different. Follow-up work extended their approach to
the federated learning setting (Safaryan et al., 2021).

2. Preliminaries
Distributed Setting. As discussed, we are in a standard
distributed optimization setting, where we have n nodes,
and each node i has its own local cost function fi : Rd → R
(where d is the dimension of the problem). We wish to min-
imize the average cost f = 1

n

∑n
i=1 fi and, for that, some

communication between nodes is required. We denote the
(unique) minimizer of f by x∗ and the (unique) minimizer
of each fi by x∗i (minimizers are unique since these func-
tions are assumed to be strongly convex). Communication
may be performed over various network topologies, but in
this work we assume a simple structure where an arbitrary
node plays the role of the central server, i.e. receives mes-
sages from the others, processes them, and finally sends
the result back to all. (Such topologies are also common
in practice (Li et al., 2014).) Then, the nodes compute an
update based on their local cost, and subsequently transmit
this information again to the master, repeating the pattern
until convergence.

The two main usually considered complexity metrics are
the total number of rounds, or iterations, which the algo-
rithm requires, and the total number of bits transmitted. In
this paper, we focus on the latter metric, and assume that
nodes cannot communicate their information with infinite
precision, but instead aim to limit the number of bits that
each node can use to encode messages. Thus, we measure
complexity in terms of the total number of bits that the op-
timization algorithm needs to use, in order to minimize f
within some accuracy.

Matrix Vectorization. One of the main technical tools of
our work is quantization of matrices. All the matrices that
we care to quantize turn out to be symmetric. The first step
for quantizing is to vectorize them. We do so by using the
mapping

φ : S(d)→ R
d(d+1)

2

defined by

φ(P ) = (p11, ..., p1d, p22, ..., p2d, ..., pdd),

where P = (pij)
d
i,j=1 and S(d) is the space of d × d sym-

metric matrices. Thus, the mapping φ just isolates the up-
per triangle of a symmetric matrix and writes it as a vec-
tor. It is direct to check that φ is a linear isomorphism
(dim(S(d)) = d(d+ 1)/2).
We can now bound the deformation of distances produced
by this mapping for the `2 norm in S(d) and the `2 one in
R

d(d+1)
2 :

Lemma 1. For any matrices P, P ′ ∈ S(d), we have

1√
d
‖φ(P )−φ(P ′)‖2 ≤ ‖P−P ′‖2 ≤

√
2‖φ(P )−φ(P ′)‖2.

The proof can be found in Appendix A.
We will use the isomorphism φ later in our applications to
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Generalized Linear Models and Newton’s method. This is
the reason of appearance of the extra d inside a logarithm
in our upper bounds. From now on we use ‖ · ‖ to denote
the `2 norm of either vectors or matrices.

Lattice Quantization. For estimating the gradient and
Hessian in a distributed manner with limited communica-
tion, we use a quantization procedure developed in (Davies
et al., 2021). The original quantization scheme involves
randomness, but we use a deterministic version of it, by
picking up the closest point to the vector that we want to
encode. This is similar to the quantization scheme used by
(Alistarh & Korhonen, 2020) for standard gradient descent,
and has the following properties:

Proposition 2. (Davies et al., 2021; Alistarh & Korhonen,
2020) Denoting by b the number of bits that each machine
uses to communicate, there exists a quantization function

Q : Rd × Rd × R+ × R+ → Rd,

which, for each ε, y > 0, consists of an encoding func-
tion encε,y : Rd → {0, 1}b and a decoding one decε,y :
{0, 1}b × Rd → Rd, such that, for all x, x′ ∈ Rd,

• decε,y(encε,y(x), x′) = Q(x, x′, y, ε), if ‖x−x′‖ ≤ y.
• ‖Q(x, x′, y, ε)− x‖ ≤ ε, if ‖x− x′‖ ≤ y.
• If y/ε > 1, the cost of the quantization procedure in

number of bits satisfies b = O(dlog2
(
y
ε )
)
.

3. Quantized Preconditioned Gradient
Descent for GLMs

As a warm-up, we consider the case of a Generalized Lin-
ear Model (GLM) with data matrix A ∈ Rm×d. GLMs
are particularly attractive models to distribute, because the
distribution across nodes can be performed naturally by
partitioning the available data. For more background on
distributing GLMs see (Mendler-Dünner & Lucchi, 2020).

The matrix A consists of the data used for training in its
rows, i.e. we have m-many d-dimensional data points. As
is custom in regression analysis, we assume that m� d, i.e.
we are in the case of big but low-dimensional data. If m is
very large, it can be very difficult to store the whole matrix
A in one node, so we distribute it in n-many nodes, each
one owning mi-many data points (m =

∑n
i=1mi). We

pack the data owned by node i in a matrix Ai ∈ Rmi×d and
denote the function used to measure the error on machine i
by `i : Rmi → R. Then the local cost function fi : Rd → R
at machine i reads

fi(x) = `i(Aix).

We can express the global cost function f in the form

f(x) = `(Ax)

where ` : Rm → R is a global loss function defined by

`(y) =
1

n

n∑
i=1

`i(yi),

where yi are sets of mi-many coordinates of y obtained by
the same data partitioning.
Assumption 3. The local loss functions `i are µ`-strongly
convex and γ`-smooth.

This assumption implies that the global loss function ` is
µ`

n -strongly convex and γ`
n -smooth. This is because the

Hessian of ` has the block-diagonal structure

∇2
y`(y) =

1

n
diag

(
∇2
y1`1(y1), ...,∇2

yn`n(yn)
)

and the eigenvalues of all matrices ∇2
yi`i(yi) are between

µ` and γ`. The Hessian of f can be written as

∇2f(x) = AT∇2`(Ax)A ∈ S(d) ⊆ Rd×d.

We detail the computation of∇2f in Appendix B.
Assumption 4. The matrix A ∈ Rm×d is of full rank (i.e.
rank(A) = d, since d < m).

This assumption is natural: if two columns of the matrix A
were linearly dependent, we would not need both the related
features in our statistical model. Practically, we can prune
one of them and get a new data matrix of full-rank.
Proposition 5. The maximum eigenvalue λmax of∇2f sat-
isfies

γ := λmax(∇2f) ≤ γ`λmax
(
ATA

n

)
and the minimum eigenvalue λmin of∇2f satisfies

µ := λmin(∇2f) ≥ µ`λmin
(
ATA

n

)
.

The proof is presented in Appendix B. Thus, we have that the
condition number κ of our minimization problem satisfies

κ ≤ κ`κ
(
ATA

n

)
,

where κ
(
ATA
n

)
is the condition number of the covariance

matrix ATA averaged in the number of machines. The con-
vergence rate of gradient descent generally depends on κ,
which can be much larger than κ` in case that the condi-
tion number of ATA is large. The usual way to get rid of
κ
(
ATA
n

)
is to precondition gradient descent using ATA

n ,
which we denote by M from now on (we recall the conver-
gence analysis of this method in Appendix C). In our setting
M is not known to all machines simultaneously, since each
machine owns only a part of the overall data. However, we
observe that

M =
1

n

n∑
i=1

ATi Ai,

where ATi Ai =: Mi is the local covariance matrix of the
data owned by the node i.
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3.1. The Algorithm

In this section we present our QPGD-GLM algorithm and
study its communication complexity. We structure the al-
gorithm in four steps: first, we describe how to recover
a quantized version of the averaged covariance matrices.
Then, we describe how nodes perform initialization. Next,
we describe how nodes can quantize the initial descent di-
rection. Finally, we describe how to quantize the descent
directions for subsequent steps. Our notation for quantiza-
tion operations follows Section 2.

1. Choose an arbitrary master node, say i0.

(A) Averaged Covariance Matrix Quantization:

2. Compute Mi := ATi Ai in each node.
3. Encode Mi in each node i and decode it in the master

node using its information:

M̄i = φ−1
(
Q
(
φ(Mi), φ(Mi0), 2

√
dnλmax(M), λmin(M)

16
√
2κ`

))
.

In detail, we first transform the local matrix Mi via
the isomorphism φ, and then quantize it via Q, with
carefully-set parameters. The matrix will be then
de-quantized relative to the master’s reference point
φ(Mi0), and then re-constituted (in approximate form)
via the inverse isomorphism.

4. Average the decoded matrices in the master node:
S = 1

n

∑n
i=1 M̄i.

5. Encode the average in the master node and decode in
each node i using its local information
M̄ = φ−1

(
Q(φ(S), φ(Mi),

√
d
(
λmin(M)

16κ`
+ 2nλmax(M)

)
, λmin(M)

16
√
2κ`

)
)
.

(B) Starting Point and Parameters for Descent
Direction Quantization:

6. Choose D > 0 and x(0) ∈ Rd, such that

max
i
{‖x(0) − x∗‖, ‖x(0) − x∗i ‖} ≤ D.

7. Define the parameters

ξ := 1− 1

2κ`
,K :=

2

ξ
, δ :=

ξ(1− ξ)
4

,

R(t) :=
γ`
2
K

(
1− 1

4κ`

)t
D.

(C) Quantizing the Initial Descent Direction:

8. Compute M̄−1∇fi(x(0)) in each node.
9. Encode M̄−1∇fi(x(0)) in each node and decode it in

the master node using its local information:
v
(0)
i = Q

(
M̄−1∇fi(x(0)), M̄−1∇fi0(x0), 4nκ(M)R(0), δR

(0)

2

)
.

10. Average the quantized local information in the master
node:
r(0) = 1

n

∑n
i=1 v

(0)
i .

11. Encode r(0) in the master node and decode it in each
machine i using its local information:

v(0) = Q
(
r(0), M̄−1∇fi(x(0)),

(
δ
2 + 4nκ(M)

)
R(0), δR

(0)

2

)
.

For t ≥ 0:

12. Compute
x(t+1) = x(t) − ηv(t)

for η > 0.

(D) Descent Direction Quantization for Next
Steps:

13. Encode M̄−1∇fi(x(t)) in each node i and decode in
the master node using the previous local estimate:

v
(t+1)
i = Q

(
M̄−1∇fi(x(t+1)

)
, v

(t)
i , 4nκ(M)R(t+1), δR

(t+1)

2 ).

14. Average the quantized local information:
r(t+1) = 1

n

∑n
i=1 v

(t+1)
i .

15. Encode r(t+1) in the master node and decode it in each
node using the previous global estimate:

v(t+1) = Q
(
r(t+1), v(t),

(
δ
2 + 4nκ(M)

)
R(t+1), δR

(t+1)

2

)
.

We now discuss the algorithm’s assumptions. First, we
assume that an over-approximation D for the distance of the
initialization from the minimizer is known. This is practical,
especially in the case of GLMs: since the loss functions `i
are often quadratics, we can use strong convexity and write

‖x(0) − x∗‖2 ≤ 2

µ
(f(x(0))− f∗) ≤ 2

µ
f(x(0)) =: D2.

and similarly for ‖x(0) − x∗i ‖2. Further, following
Magnússon et al. (2020) (Assumption 2, page 5), the value
f(x(0)) is often available, for example in the case of logistic
regression. Of course, if we are restricted in a compact do-
main as is the case of (Tsitsiklis & Luo, 1986) and (Alistarh
& Korhonen, 2020), then the domain itself provides an over
approximation for all the distances inside it.
The parameters λmax(M), λmin(M) used for quantization
of the matrix M are usually assumed to be known. Specif-
ically, it is common in distributed optimization to assume
that all nodes know estimates of the smoothness and strong
convexity constants of each of the local cost functions (Tsit-
siklis & Luo, 1986). In our case this would imply knowing
all λmax(Mi), λmin(Mi). However, we assume knowledge
of just λmax(M) and λmin(M). This also explains the
appearance of the extra log n factor in our GLM bounds,
relative to those for Newton’s method.
The convergence and communication complexity of our
algorithm are described in the following theorem:
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Theorem 6. The iterates x(t) produced by the pre-
vious algorithm with η = 2

µ`+γ`
satisfy

‖x(t) − x∗‖ ≤
(

1− 1

4κ`

)t
D

and the total number of bits used for communication
until f(x(t))− f∗ ≤ ε is

O
(
nd2 log

(√
dnκ`κ(M)

))
+

O
(
ndκ` log(nκ`κ(M)) log

γD2

ε

)
.

(1)

When the accuracy ε is sufficiently small (which is often
the case in practice), the first summand is negligible and the
total number of bits until reaching it is just

b = O
(
ndκ` log(nκ`κ(M)) log

γD2

ε

)
which gains over quantized gradient descent in (Alistarh
& Korhonen, 2020) the linear dependence on the condition
number of M . We prove Theorem 6 in Appendix D.

4. Quantized Newton’s method
After warming-up with quantizing fixed preconditioners in
the case of Generalized Linear Models, we move forward
to quantize non-fixed ones. The extreme case of a pre-
conditioner is the whole Hessian matrix; preconditioning
with it yields Newton’s method, which is computationally
expensive, but removes completely the dependency on the
condition number from the iteration complexity. We develop
a quantized version of Newton’s method in order to address
a question raised by (Alistarh & Korhonen, 2020) regard-
ing whether the communication complexity of minimizing
a sum of smooth and strongly convex functions depends
linearly on the condition number of the problem. The main
technical challenge towards that, is keeping track of the
concentration of the Hessians around the Hessian evaluated
at the optimum, while the algorithm converges. We show
that the linear dependence of the communication cost on
the condition number of the problem is not necessary, in
exchange with extra dependence on the dimension of the
problem, i.e. d2 instead of d. This can give significant ad-
vantage for low-dimensional and ill-conditioned problems
(training generalized linear models is among them).
As it is natural for Newton’s method, we make the following
assumptions for the objective function f :
Assumption 7. The functions fi are all γ-smooth and µ-
strongly convex with a σ-Lipschitz Hessian, γ, µ, σ > 0.

We note that the lower bound derived by Alistarh & Ko-
rhonen (2020) is obtained for the case that fi are quadratic
functions; quadratic functions indeed satisfy Assumption 7.

As in the case of GLMs, we define the condition number of
the problem to be

κ :=
γ

µ
.

We also introduce a constant α ∈ [0, 1), to be specified later,
which will control the convergence of the algorithm.

4.1. Algorithm Description

We now describe our quantized Newton’s algorithm. Again,
we split the presentation into several parts: local initializa-
tion (A), estimating the initial Hessian modulo quantization
(B), as well as the quantized initial descent direction (C),
and finally, quantization and update for each iteration (D,E).

1. Choose the master node at random, e.g. i0.

(A) Starting Point and Parameters for Hessian
Quantization:

2. Choose x(0) ∈ Rd, such that

max
i
{‖x(0) − x∗‖, ‖x(0) − x∗i ‖} ≤

αµ

2σ
.

3. We define the parameter

G(t) =
µ

4
α

(
1 + α

2

)t
.

(B) Initial Hessian Quantized Estimation:

4. Compute ∇2fi(x
(0)) in each node.

5. Encode ∇2fi(x
(0)) in each node i and decode it in the

master node i0 using its information:
Hi

0 = φ−1
(
Q
(
φ(∇2fi(x

(0))), φ(∇2fi0(x(0))), 2
√
dγ, G

(0)

2
√
2κ

))
.

6. Average the decoded matrices in the master node:
S0 = 1

n

∑n
i=1H

i
0.

7. Encode the average in the master node and decode in
each node i using its local information
H0 = φ−1

(
Q
(
φ(S0), φ(∇2fi(x

(0))),
√
d
(
G(0)

2κ + 2γ
)
, G

(0)

2
√
2κ

))
.

Parameters for Descent Direction Quantzation:

8. Define the parameters

θ :=
α(1− α)

4
,K :=

2

α
, P (t) :=

µ

2σ
Kα

(
1 + α

2

)t
.

(C) Initial Descent Direction Quantized
Estimation:

9. Compute H−10 ∇fi(x(0)) in each node.
10. Encode H−10 ∇fi(x(0)) in each node and decode it in

the master node using its local information:

v
(0)
i = Q

(
H−10 ∇fi(x(0)), H

−1
0 ∇fi0(x(0)), 4κP (0), θP

(0)

2

)
.

11. Average the quantized local information:
p(0) = 1

n

∑n
i=1 v

(0)
i .
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12. Encode p(0) in the master node and decode it in each
machine i using its local information:

v(0) = Q
(
p(0), H−10 ∇fi(x(0)),

(
θ
2 + 4κ

)
P (0), θP

(0)

2

)
.

For t ≥ 0:

13. Compute
x(t+1) = x(t) − v(t).

(D) Hessian Quantized Estimation for Next Steps:

14. Compute ∇2fi(x
(t+1)) in each node.

15. Encode∇2fi(x
(t+1)) in each node i and decode in the

master node using the previous local estimate:

Hi
t+1 = φ−1

(
Q
(
φ(∇2fi(x

(t+1))), φ(Hi
t),

10
√
d

1+α G
(t+1), G

(t+1)

2
√
2κ

))
.

16. Average the quantized local Hessian information:
St+1 = 1

n

∑n
i=1H

i
t+1.

17. Encode St+1 in the master node and decode it back in
each node using the previous global estimate:

Ht+1 = φ−1
(
Q
(
φ(St+1), φ(Ht),

√
d
(

1
2κ + 10

1+α

)
G(t+1), G

(t+1)

2
√
2κ

))
.

(E) Descent Direction Quantized Estimation:

18. Compute H−1t+1∇fi(x(t+1)) in each node.

19. Encode H−1t+1∇fi(x(t+1)) in each node i and decode
in the master node using the previous local estimate:

v
(t+1)
i = Q

(
H−1t+1∇fi(x(t+1)), v

(t)
i , 11κP (t+1), θP

(t+1)

2

)
.

20. Average the quantized local Hessian information:
p(t+1) = 1

n

∑n
i=1 v

(t+1)
i .

21. Encode St+1 in the master node and decode it back in
each node using the previous global estimate:

v(t+1) = Q
(
p(t+1), v(t),

(
θ
2 + 11κ

)
P (t+1), θP

(t+1)

2

)
.

The restriction of the initialization x(0) is standard for New-
ton’s method, which is known to converge only locally.
Usually x(0) is chosen such that α ≥ σ

µ‖x
(0) − x∗‖, while

we choose it such that α ≥ 2σµ‖x
(0) − x∗‖ (and the same

for x∗i in the place of x∗). This difference occurs from the
extra errors due to quantization. This assumption implies
also that the minima of the local costs cannot be too far
away from each other.
We now state our theorem on communication complexity of
quantized Newton’s algorithm, which is the main result of
the paper. The proof is in Appendix E, and relies on analyz-
ing the behaviour of both the quantized Hessian estimates
and the quantized descent direction estimates simultane-
ously, as can be seen in Lemma 16.

Theorem 8. The iterates of the quantized Newton’s
method starting from a point x(0), such that

‖x(0) − x∗‖ ≤ µ

4σ

(
α =

1

2

)
satisfy

‖x(t) − x∗‖ ≤ µ

4σ

(
3

4

)t
and the communication cost until reaching accuracy
ε in terms of function values is

O
(
nd2 log

(√
dκ
)

log
γµ2

σ2ε

)
(2)

many bits in total.

We note that the lower bound derived in (Alistarh & Korho-
nen, 2020) is for the case that all functions fi are quadratics.
For quadratics, the Hessian is constant, thus σ = 0 and α
can be chosen equal to 0 as well. Then, (non-distributed)
Newton’s method converges in only one step. However,
in the distributed case, σ = 0 implies G(t) = 0, thus the
estimation of ∇2f(x(t)) must be exact. This would mean
that we need to use an infinite number of bits, and this can
be seen also in our communication complexity results. In
order to apply our result in a practical manner, we need to
allow the possibility for strictly positive quantization error
of the Hessian, thus we must choose σ > 0.

5. Estimation of the Minimum in the Master
In the previous sections we computed an approximated min-
imizer of our objective function up to some accuracy and
counted the communication cost of the whole process. We
now extend our interest to the slightly harder problem of es-
timating the minimum f∗ of the function f (which is again
assumed to be γ-smooth and µ-strongly convex) in the mas-
ter node with accuracy ε. This extension is not considered
in (Magnússon et al., 2020), but is discussed in (Alistarh &
Korhonen, 2020). To that end, we estimate the minimizer x∗

of f by a vector x(t), such that f(x(t))− f∗ ≤ ε
2 , and the

communication cost of doing that is again given by expres-
sion (1) for GLM training and expression (2) for Newton’s
method.
We denote x∗i the minimizer of the local cost function fi
and f∗i := fi(x

∗
i ) its minimum. We also assume that we

are aware of an over approximation C > 0 of the maximum
distance of x∗ from the minimizers of the local costs x∗i , i.e.
maxi=1,...,n ‖x∗−x∗i ‖ ≤ C and a radius c > 0 for the min-
ima of the local costs: maxi=1,...,n | f∗i |≤ c. Estimating
these constants can be feasible in many practical situations:

• We can always bound the quantity maxi=1,...,n ‖x∗ −
x∗i ‖ by a known constant if we set our problem in a
compact domain as it is the case in (Tsitsiklis & Luo,
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1986) and (Alistarh & Korhonen, 2020). Also, if our
local data are obtained from the same distribution, then
we do not expect the minimizers of the local costs to
be too far away from the global minimizer.

• The minima f∗i of the local costs are often exactly 0
(as assumed in (Alistarh & Korhonen, 2020)). This is
because the local cost functions fi are often quadratics,
as it happens in the case of GLMs. In the worst case,
knowing just that fi ≥ 0, we can write

| f∗i |= f∗i ≤ fi(x(0)) ≤ nf(x(0))

and the value f(x(0)) is often available as discussed in
Section 3 and in (Magnússon et al., 2020).

For estimating the minimum f∗, we start by computing
fi(x

(t)) in each node i and communicate them to the master
node i0 as follows:

q
(t)
i := Q(fi(x

(t)), fi0(x(t)), 2(γC2 + c), ε/2).

Then the master node computes and outputs the average

f̄ =
1

n

n∑
i=1

q
(t)
i .

Proposition 9. The value f̄ which occurs from the previous
quantization procedure is an estimate of the true minimum
f∗ of f with accuracy ε and the cost of quantization is

O
(
n log

γC2 + c

ε

)
.

if ε is sufficiently small.

The proof is presented in Appendix F.
Thus, for the problem that the master node needs to output
estimates for both the minimizer and the minimum with
accuracy ε in terms of function values, the total communica-
tion cost is at most

O
(
ndκ` log(nκ`κ(M)) log

γ(C2 +D2) + c)

ε

)
many bits in total for QPGD-GLM

O
(
nd2 log

(√
dκ
)

log

((
γ

(
µ2

σ2
+ C2

)
+ c

)
1

ε

))
.

many bits in total for quantized Newton’s method when ε is
sufficiently small.

6. Experiments
6.1. Experiment 1: Least-Squares Regression

We first test our method experimentally to compress a par-
allel solver for least-squares regression. The setting is as

follows: we are given as input a data matrix A, with rows
randomly partitioned evenly among the nodes, and a target
vector b, with the goal of finding x∗ = argminx‖Ax− b‖22.
Since this loss function f(x) := ‖Ax− b‖22 is quadratic, its
Hessian is constant, and so Newton’s method and QPGD-
GLM are equivalent: in both cases, we need only to provide
the preconditioner matrix ATA in the first iteration, and
machines can henceforth use it for preconditioning in every
iteration.

To quantize the preconditioner matrix, we apply the ‘practi-
cal version’ (that is, using the cubic lattice with mod-based
coloring) of the quantization method of (Davies et al., 2021),
employing the ‘error detection’ method in order to adap-
tively choose the number of bits required for the decoding
to succeed. Each node i quantizes the matrix ATi Ai, which
is decoded by the master node i0 using ATi0Ai0 . Node i0
computes the average, quantizes, and returns the result to
the other nodes, who decode using ATi Ai.

To quantize gradients, we use two leading gradient quan-
tization techniques: QSGD (Alistarh et al., 2016), and the
Hadamard-rotation based method of (Suresh et al., 2017),
since these are optimized for such an application.1 In each
iteration (other than the first), we quantize the difference
between the current local gradient and that of last itera-
tion, average these at the master node i0, and quantize and
broadcast the result.

Compared Methods. In Figure 1a we compare the fol-
lowing methods: GDn and GDf are full-precision (i.e., us-
ing 32-bit floats) gradient descent using no preconditioning
and full-precision preconditioning respectively, as baselines.
QSGDq and QSGDf use QSGD for gradient quantization,
and the quantized and full-precision preconditioner respec-
tively. HADq and HADf are the equivalents using instead
the Hadamard-rotation method for gradient quantization.
When using a preconditioner, we rescale preconditioned
gradients to preserve `2-norm, so that our comparison is
based only on update direction and not step size.

Parameters. In addition to m, n, and d, we also have the
following parameters: the learning rate (lr in the figure titles)
is set close to the maximum for which gradient descent will
converge, since this is the regime in which preconditioning
can help. The number of bits per coordinate used to quan-
tize gradients (qb) and preconditioners (pb) are also shown;
the latter is an average since the quantization method uses
a variable number of bits2. The results presented are an
average of the cost function per descent iteration, over 10

1There is a wide array of other gradient quantization methods;
we use these two as a representative examples, since we are mostly
concerned with the effects of preconditioner quantization.

2These quantization methods (and most others) also require
exchange of two full-precision scalars, which are not included in
the per-coordinate costs since they are independent of dimension.
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(a) Least-squares regression performance on
cpusmall scale

(b) Logistic regression performance on
phishing

(c) Logistic regression performance on
german numer

repetitions with different random seeds.

Dataset We use the dataset cpusmall scale from
LIBSVM (Chang & Lin, 2011). Here we outperform non-
preconditioned gradient descent and approach the perfor-
mance of full-precision preconditioned gradient descent
using significantly reduced communication (Figure 1a).

6.2. Experiment 2: Logistic Regression

In order to compare the performance of Q-Newton and
QPGD-GLM, we implement a common application in which
the Hessian is not constant: logistic regression, for binary
classification problems.

QPGD-GLM, QSGD, and full-precision gradient descent
are implemented as before; we now add full-precision New-
ton’s method for comparison, and our Q-Newton algorithm.
The latter uses the quantization method of (Davies et al.,
2021) for the initial Hessian (as for QPGD-GLM), and
QSGD for subsequent Hessian updates.

Rather than re-scaling gradients, we take a different ap-
proach to choosing a learning rates in order to compare
the methods fairly: we test each with learning rates in
{2−0, 2−1, 2−2, . . . }, and plot the highest rate for which
the method stably converges. Our results are averaged over
five random seeds.

We demonstrate the methods on the phishing and
german numer datasets from the LIBSVM collection
(Chang & Lin, 2011), in Figures 1b and 1c respectively. The
former demonstrates that Q-Newton improves over (even
full precision) first-order methods, while quantizing Hes-
sians at only 4 bits per coordinate. The latter demonstrates
an instance in which QPGD-GLM is even faster, since it
remains stable under a higher learning rate.

7. Discussion
We proposed communication-efficient versions for two fun-
damental optimization algorithms, and analyzed their con-
vergence and communication complexity. Our work shows
that quantizing second-order information can i) theoreti-
cally yield to communication complexity upper bounds with

sub-linear dependence on the condition number of the prob-
lem, and ii) empirically achieve superior performance over
vanilla methods.

There are intriguing questions for future work:
The log κ-dependency for Newton’s method occurs because
of our bounds for the input and output variance of quantiza-
tion. It would be interesting to see whether this dependency
can be avoided, making the bounds completely independent
of the condition number.

Another interesting question is whether the log d-
dependency can be circumvented. log d is obtained directly
from the use of the vectorization φ and could be avoided by
quantization using lattices with good spectral norm proper-
ties. We are however unaware of such lattice constructions.

One key issue left is the d2-dependence for the general-
ized Newton’s method, which is due to quantization of d2-
dimensional preconditioners. It would be interesting to de-
termine if linear communication per round can be achieved
in the general setting we consider here.

Finally, we would like to point out that there exist more
second order methods with superior guarantees compared
to vanilla Newton, such as cubic regularization (Nesterov &
Polyak, 2006). A very interesting direction for future work
would be to investigate whether it is possible to run these al-
gorithms in a distributed setting with limited communication
by adding quantization.
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Appendix: Proofs and Supplementaries

A. The isomorphism φ

Lemma 1. For any matrices P, P ′ ∈ S(d), we have

1√
d
‖φ(P )− φ(P ′)‖2 ≤ ‖P − P ′‖2 ≤

√
2‖φ(P )− φ(P ′)‖2.

Proof. The Frobenius norm of a matrix P = (pij)
d
i,j=1 is defined as

‖P‖F =

√√√√ d∑
i,j=1

p2ij

thus

‖P − P ′‖2F =

d∑
i,j=1

(pij − p′ij)2 =
∑
i=j

(pij − p′ij)2 +
∑
i 6=j

(pij − p′ij)2 =
∑
i=j

(pij − p′ij)2 + 2
∑
i<j

(pij − p′ij)2 =: X + 2Y

with P ′ = (p′ij)
d
i,j=1.

We also have
‖φ(P )− φ(P ′)‖2 =

∑
i=j

(pij − p′ij)2 +
∑
i<j

(pij − p′ij)2 =: X + Y

Thus
‖φ(P )− φ(P ′)‖2 ≤ ‖P − P ′‖F ≤

√
2‖φ(P )− φ(P ′)‖2.

Now for the `2 norm, we have
‖P − P ′‖2 ≤ ‖P − P ′‖F ≤

√
2‖φ(P )− φ(P ′)‖2

and
‖P − P ′‖2 ≥

1√
d
‖P − P ′‖F ≥

1√
d
‖φ(P )− φ(P ′)‖2

and the desired result follows.

B. Technicalities regarding GLMs
We firstly compute the Hessian of the global cost function f in terms of the Hessian of the global loss function `:

Lemma 10. We have
∇2f(x) = AT `(Ax)A.

Proof. We start by computing the gradient of f . We fix an arbitrary vector v ∈ Rd and we write

〈∇f(x), v〉 = dxf(x)v = dx(`(Ax))v = dy(`(y))|y=Axdx(Ax)v = dy(`(y))|y=AxAv
= 〈∇`(y)|y=Ax, Av〉 = (Av)T∇`(Ax) = vTAT∇`(Ax) = 〈AT∇`(Ax), v〉

Since v is arbitrary, the gradient of f is
∇f(x) = AT∇`(Ax)

For the Hessian, we have

∇2
xf(x) = ∇x∇xf(x) = ∇x(AT∇x`(Ax)) = AT∇x(∇x`(Ax)) = AT∇y(∇y`(y))|y=Ax∇x(Ax) = AT∇2`(Ax)A.

We recall standard technical results from linear algebra in order to prove Proposition 5. They will be useful also in the proof
of Proposition 13 and Lemma 14.
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Lemma 11. Given matrices P ∈ Rm×d and Q ∈ Rd×m, we have that PQ and QP have exactly the same non-zero
eigenvalues.

Proof. Let λ 6= 0 an eigenvalues of PQ. Then there exists v 6= 0, such that PQv = λv. Multiplying both sides by Q, we
get QP (Qv) = λ(Qv). We know that Qv 6= 0, because then λ would be 0. Thus λ is an eigenvalue of QP with eigenvector
Qv. Thus any non-zero eigenvalue of PQ is also an eigenvalue of QP . Switching P and Q in the previous argument
implies that any non-zero eigenvalue of QP is also an eigenvalue of PQ. Thus, PQ and QP have the same non-zero
eigenvalues.

Corollary 11.1. Given matrices P ∈ Rm×d and Q ∈ Rd×m, we have that

rank(PQ) = rank(QP ) = min{rank(P ), rank(Q)}

Lemma 12. Given a symmetric positive semi-definite matrix S ∈ Rm×m and a symmetric positive definite T ∈ Rm×m
with eigenvalues

λ1(S) ≤ ... ≤ λm(S)

and
λ1(T ) ≤ ... ≤ λm(T )

we have that
λk(S)λ1(T ) ≤ λk(ST ) ≤ λk(S)λm(T )

for any k = 1, ...,m.

Proof. We use the min-max principle for the k-th eigenvalue of a matrix A ∈ Rm×m. This reads

λk(A) = min
F⊂RM

dim(F )=k

(
max

x∈F\{0}

(Ax, x)

(x, x)

)

We know that λk(ST ) = λk(
√
TS
√
T ). Since T is symmetric and positive-definite, its square root

√
T is also symmetric

and positive-definite. Thus, we have

λk(ST ) = λk(
√
TS
√
T ) = min

F⊂RM

dim(F )=k

(
max

x∈F\{0}

(
√
TS
√
Tx, x)

(x, x)

)
= min

F⊂Rn

dim(F )=k

(
max

x∈F\{0}

(S
√
Tx,
√
Tx)

(
√
Tx,
√
Tx)

(Tx, x)

(x, x)

)

Thus

min
F⊂Rn

dim(F )=k

(
max

x∈F\{0}

(S
√
Tx,
√
Tx)

(
√
Tx,
√
Tx)

)
λmin(T ) ≤ λk(ST ) ≤ min

F⊂Rn

dim(F )=k

(
max

x∈F\{0}

(S
√
Tx,
√
Tx)

(
√
Tx,
√
Tx)

)
λmax(T )

If {e1, ..., ek} is a basis for F , we define F ′ = span(
√
T
−1
e1, ...,

√
T
−1
ek) and we have

min
F⊂Rn

dim(F )=k

(
max

x∈F\{0}

(S
√
Tx,
√
Tx)

(
√
Tx,
√
Tx)

)
= min

F ′⊂Rn

dim(F ′)=k

(
max

x∈F ′\{0}

(Sx, x)

(x, x)

)
= λk(S)

and the desired result follows.

Proposition 5. The maximum eigenvalue λmax of∇2f satisfies

γ := λmax(∇2f) ≤ γ`λmax
(
ATA

n

)
and the minimum eigenvalue λmin of∇2f satisfies

µ := λmin(∇2f) ≥ µ`λmin
(
ATA

n

)
.
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Proof. Using Lemma 11, we have that the eigenvalues of the d× d matrix∇2f are equal to the non-zero eigenvalues of the
m×m matrix ∇2`AAT . Using Corollary 11.1, we have that the matrix AAT is of rank d, thus the matrix∇2`AAT is also
of rank d. This means that it has exactly m− d zero eigenvalues. Exactly the same holds for the matrix AAT . We use also
Lemma 12 for the positive definite matrix∇2` and the positive semi-definite matrix AAT and we have:

• The maximum eigenvalue of the matrix ∇2f is equal to the maximum eigenvalue of the matrix ∇2`AAT . For that we
have

λmax(∇2`AAT ) ≤ λmax(∇2`)λmax(AAT ).

Similarly the maximum eigenvalue of AAT is equal to the maximum one of ATA and we finally have

λmax(∇2f) ≤ γ`
n
λmax(ATA) = γ`λmax

(
1

n
ATA

)
.

• The minimum eigenvalue of the matrix ∇2f is equal to the eigenvalue of the matrix ∇2`AAT of order m − d + 1.
Using Lemma 12, we have

λm−d+1(∇2`AAT ) ≥ λmin(∇2`)λm−d+1(AAT ).

By using similar arguments as before, we have that

λm−d+1(AAT ) = λmin(ATA).

Thus, we finally have

λmin(∇2f) ≥ µ`
n
λmin(ATA) = µ`λmin

(
1

n
ATA

)
.

C. Gradient Descent with Preconditioning for GLMs
Gradient descent for a γ-smooth and µ-strongly convex function f(x) = `(Ax) : Rd → R preconditioned by a matrix
M ∈ Rd×d reads

x(t+1) = x(t) − ηM−1∇f(x(t)),

x(0) ∈ Rd.

In our setting the matrix M := 1
nA

TA is invertible, because we have assumed that the matrix A is of full rank. The
convergence is now improved up to the condition number of M . For the proof we follow the technique presented in (Chen,
2019) for (non-preconditioned) gradient descent.
Proposition 13. The iterates x(t) of the previous algorithm with η = 2

µ`+γ`
satisfy

‖x(t) − x∗‖ ≤
(

1− 1

κ`

)t
‖x(0) − x∗‖

Proof. Similarly to the previous argument, we have

x(t+1) − x∗ = x(t) − ηM−1∇f(x(t))− x∗ = (x(t) − x∗)− ηM−1
(∫ 1

0

∇2f(x(ξ))dξ

)
(x(t) − x∗)

=

(
Id− η

∫ 1

0

M−1∇2f(x(ξ))dξ

)
(x(t) − x∗)

where
x(ξ) = x(t) + ξ(x∗ − x(t))

Thus

‖x(t+1) − x∗‖ ≤
∥∥∥∥Id− η ∫ 1

0

M−1∇2f(x(ξ))dξ

∥∥∥∥ ‖x(t) − x∗‖ ≤ max
0≤ξ≤1

‖Id− ηM−1∇2f(x(ξ))‖‖x(t) − x∗‖
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Now we can write
M−1∇2f(x(ξ)) = M−1AT∇2`(Ax(ξ))A

By Lemma 11, the eigenvalues of the last matrix are exactly the same with the non-zero eigenvalues of the matrix
∇2`(Ax(ξ))AM−1AT . This matrix is m×m with rank d, thus it has exactly m− d zero eigenvalues. The same holds for
the matrix AM−1AT . Again by applying Lemma 11, we know that AM−1AT has m− d eigenvalues equal to 0 and the
others are exactly equal with the ones of M−1ATA = nId, i.e. they are all equal to n.
Thus, we have

λmax(M−1AT∇2`(Ax(ξ))A) = λmax(∇2`(Ax(ξ))AM−1AT ) ≤ λmax(∇2`)λmax(AM−1AT ) =
γ`
n
n = γ`

and

λmin(M−1AT∇2`(Ax(ξ))A) = λm−d+1(∇2`(Ax(ξ))AM−1AT ) ≥ λmin(∇2`)λm−d+1(AM−1AT ) =
µ`
n
n = µ`

by Lemma 12, because ∇2` is positive definite and AM−1AT is positive semi-definite.
Since we choose η = 2

µ`+γ`
, the maximum eigenvalues of the matrix ηM−1∇2f(x(ξ)) is 2γ`

µ`+γ`
and the minimum one is

2µ`

µ`+γ`
. Thus, the maximum eigenvalue of Id − ηM−1∇2f(x(ξ)) is less or equal than max

{
2γ`
µ`+γ`

− 1, 1− 2µ`

µ`+γ`

}
=

γ`−µ`

γ`+µ`
≤ 1− 1

κ`
. Thus

‖xt+1 − x∗‖ ≤
(

1− 1

κ`

)
‖x(t) − x∗‖

and by an induction argument we get the desired result.

D. Proofs of convergence for GLMs
We prove the convergence result of the preconditioned algorithm for GLMs. We recall firstly the algorithm in compact form:

Algorithm 1 Quantized Preconditioned Gradient Descent for GLM training

1: M̄i = φ−1
(
Q
(
φ(Mi), φ(Mi0), 2

√
dnλmax(M), λmin(M)

16
√
2κ`

))
2: S = 1

n

∑n
i=1 M̄i

3: M̄ = φ−1
(
Q(φ(S), φ(Mi),

√
d
(
λmin(M)

16κ`
+ 2nλmax(M)

)
, λmin(M)

16
√
2κ`

)
)

4: x(0) ∈ Rd,maxi{‖x(0) − x∗‖, ‖x(0) − x∗i ‖} ≤ D
5: v(0)i = Q

(
M̄−1∇fi(x(0)), M̄−1∇fi0(x(0)), 4nκ(M)R(0), δR

(0)

2

)
6: r(0) = 1

n

∑n
i=1 v

(0)
i .

7: v(0) = Q
(
r(0), M̄−1∇fi(x(0)),

(
δ
2 + 4nκ(M)

)
R(0), δR

(0)

2

)
8: for t ≥ 0 do
9: x(t+1) = x(t) − ηv(t)

10: v
(t+1)
i = Q

(
M̄−1∇fi(x(t+1)), v

(t)
i , 4nκ(M)R(t+1), δR

(t+1)

2

)
11: r(t+1) = 1

n

∑n
i=1 v

(t+1)
i

12: v(t+1) = Q
(
r(t+1), v(t), ( δ2 + 4nκ(M))R(t+1), δR

(t+1)

2

)
13: end for

Lemma 14. Consider the algorithm
x(t+1) = x(t) − ηM̄−1∇f(x(t))

starting from a point x(0) ∈ Rd such that ‖x(0) − x∗‖ ≤ D, where η = 2
µ`+γ`

and M̄ is the quantized estimation of M
obtained in Algorithm 1. Then, the iterates of this algorithm satisfy

‖x(t) − x∗‖ ≤
(

1− 1

2κ`

)t
D.
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Proof. We use the same proof technique as in Proposition 13, with the difference that now we have the quantized estimation
M̄ of M instead of the original:

x(t+1) − x∗ = x(t) − ηM̄−1∇f(x(t))− x∗ = (x(t) − x∗)− ηM̄−1
(∫ 1

0

∇2f(x(ξ))dξ

)
(x(t) − x∗)

=

(
Id− η

∫ 1

0

M̄−1∇2f(x(ξ))dξ

)
(x(t) − x∗)

where
x(ξ) = x(t) + ξ(x∗ − x(t)).

Thus

‖x(t+1) − x∗‖ ≤
∥∥∥∥Id− η ∫ 1

0

M̄−1∇2f(x(ξ))dξ

∥∥∥∥ ‖x(t) − x∗‖ ≤ max
0≤ξ≤1

‖Id− ηM̄−1∇2f(x(ξ))‖‖x(t) − x∗‖.

Now we can write
M̄−1∇2f(x(ξ)) = M−1∇2f(x(ξ)) + (M̄−1 −M−1)∇2f(x(ξ))

and
‖Id− ηM̄−1∇2f(x(ξ))‖ ≤ ‖Id− ηM−1∇2f(x(ξ))‖+ η‖(M̄−1 −M−1)∇2f(x(ξ))‖.

For the matrix M−1AT∇`2(Ax(ξ))A we apply exactly the same argument as in Proposition 13 and have

max
0≤ξ≤1

‖Id− ηM−1∇2f(x(ξ))‖ ≤ γ` − µ`
γ` + µ`

< 1− 1

κ`
.

For the extra error term, we firstly have to study the quantization error ‖M − M̄‖:
Notice that

‖φ(Mi)− φ(Mi0)‖ ≤
√
d‖Mi −Mi0‖ ≤

√
d(‖Mi‖+ ‖Mi0‖) ≤ 2

√
dnλmax(M)

which implies that

‖φ(M̄i)− φ(Mi)‖ ≤
λmin(M)

16
√

2κ`

by the definition of quantization parameters (we have λmax(Mi) ≤ nλmax(M), because nM =
∑n
i=1Mi and every Mi is

positive semi-definite). The last inequality implies

‖M̄i −Mi‖ ≤
λmin(M)

16κ`

and

‖S −M‖ ≤ 1

n

n∑
i=1

‖M̄i −Mi‖ ≤
λmin(M)

16κ`
.

Now we can write

‖φ(S)−φ(Mi)‖ ≤
√
d‖S−Mi‖ ≤

√
d(‖S−M‖+‖M−Mi‖) ≤

√
d

(
λmin(M)

16κ`
+ 2nλmax(M)

)
≤ 3n

√
dλmax(M).

By the definition of quantization parameters, this implies

‖φ(M̄)− φ(S)‖ ≤ λmin(M)

16
√

2κ`

and concequently

‖M̄ − S‖ ≤ λmin(M)

16κ`
.

Then

‖M − M̄‖ ≤ ‖M − S‖+ ‖S − M̄‖ ≤ λmin(M)

8κ`
.
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By standard results in perturbation theory, we know that

λmin(M̄) ≥ λmin(M)− ‖M − M̄‖ ≥ λmin(M)− λmin(M)

8κ`
≥ λmin(M)

2
.

This implies

‖M̄−1‖ = λmax(M̄−1) =
1

λmin(M̄−1)
≤ 2

λmin(M)
.

Now we have

max
0≤ξ≤1

2

µ` + γ`
‖(M̄−1 −M−1)∇2f(x(ξ))‖ ≤ max

0≤ξ≤1

2

µ` + γ`
‖M̄−1(M − M̄)M−1∇2f(x(ξ))‖

≤ max
0≤ξ≤1

2

µ` + γ`
‖M̄−1(M − M̄)‖‖M−1∇2f(x(ξ))‖ ≤ 2

µ` + γ`
‖M̄−1‖‖M − M̄‖γ`

≤ 4

λmin(M)

λmin(M)

8κ`
=

1

2κ`
.

Thus, it holds

‖x(t+1) − x∗‖ ≤
(

1− 1

2κ`

)
‖x(t) − x∗‖

which implies

‖x(t+1) − x∗‖ ≤
(

1− 1

2κ`

)t
‖x(0) − x∗‖ ≤

(
1− 1

2κ`

)t
D.

We recall the parameters

ξ = 1− 1

2κ`
,

K =
2

ξ
,

δ =
ξ(1− ξ)

4
,

R(t) =
γ`
2
K

(
1− 1

4κ`

)t
D.

Lemma 15. The iterates of Algorithm 1 satisfy the following inequalities:

‖x(t) − x∗‖ ≤
(

1− 1

4κ`

)t
D,

‖M̄−1∇fi(x(t))− v(t)i ‖ ≤
δR(t)

2
,

‖M̄−1∇f(x(t))− v(t)‖ ≤ δR(t).

Proof. We firstly prove the inequalities for t = 0. The first one is direct by the definition of D. For the second one, we
notice that

‖M̄−1∇fi(x(0))− M̄−1∇fi0(x(0))‖ ≤ 2

λmin(M)
(‖∇fi(x(0))‖+ ‖∇fi0(x(0))‖) ≤

2

λmin(M)
(γi‖x(0) − x∗i ‖+ γi0‖x(0) − x∗i0‖) ≤ 2γ`

λmax(Mi)

λmin(M)
D + 2γ`

λmax(Mi0)

λmin(M)
D ≤ 4nκ(M)R(0).
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The last inequality follows because K ≥ 2 and λmax(Mi) ≤ nλmax(M).
(We recall also that ‖M̄−1‖ ≤ 2

λmin(M) , because λmin(M̄) ≥ λmin(M)− ‖M − M̄‖ ≥ λmin(M)/2.)

By the definition of v(0)i , we have

‖v(0)i − M̄
−1∇fi(x(0))‖ ≤

δR(0)

2
.

Towards the third inequality at t = 0, we have

‖r(0) − M̄−1∇f(x(0))‖ ≤ 1

n

n∑
i=1

‖v(0)i − M̄
−1∇fi(x(0))‖ ≤

δR(0)

2
.

Also, it holds

‖r(0) − M̄−1∇fi(x(0))‖ ≤ ‖r(0) − M̄−1∇f(x(0))‖+ ‖M̄−1∇f(x(0))− M̄−1∇fi(x(0))‖ ≤
(
δ

2
+ 4nκ(M)

)
R(0),

thus, by the definition of v(0),

‖v(0) − r(0)‖ ≤ δR(0)

2

and putting everything together, we have

‖v(0) − M̄−1∇f(x(0))‖ ≤ ‖v(0) − r(0)‖+ ‖r(0) − M̄−1∇f(x(0))‖ ≤ δR(0)

2
+
δR(0)

2
= δR(0).

Now we assume that the inequalities hold for t and prove that they continue to hold for t+ 1. We start with the first one:

‖x(t+1) − x∗‖ = ‖x(t) − ηv(t) + ηM̄−1∇f(x(t))− ηM̄−1∇f(x(t))− x∗‖
≤ η‖M̄−1∇f(x(t))− v(t)‖+ ‖x(t) − ηM̄−1∇f(x(t))− x∗‖

≤ 2

γ`
δR(t) + ξ

(
1− 1

4κ`

)t
D

=
2

γ`
δ
γ`
2
K

(
1− 1

4κ`

)t
D + ξ

(
1− 1

4κ`

)t
D

= δK

(
1− 1

4κ`

)t
D + ξ

(
1− 1

4κ`

)t
D

= (δK + ξ)

(
1− 1

4κ`

)t
D =

(
1− 1

4κ`

)t+1

D.

For the second inequality it suffices to show that

‖M̄−1∇fi(x(t+1))− v(t)i ‖ ≤ 4nκ(M)R(t+1).
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To that end, we write

‖M̄−1∇fi(x(t+1))− v(t)i ‖ = ‖M̄−1∇fi(x(t+1))− M̄−1∇fi(x(t)) + M̄−1∇fi(x(t))− v(t)i ‖

≤ ‖M̄−1∇fi(x(t+1))− M̄−1∇fi(x(t))‖+ ‖M̄−1∇fi(x(t))− v(t)i ‖
≤ γi‖M̄−1‖‖x(t+1) − x(t)‖+ δR(t)

≤ γ`λmax(Mi)
2

λmin(M)
(‖x(t+1) − x∗‖+ ‖x(t) − x∗‖) + δR(t)

≤ 4nγ`κ(M)

(
1− 1

4κ`

)t
D + δ

γ`
2
K

(
1− 1

4κ`

)t
D

≤ 2n(2/K + δ/4)Kγ`κ(M)

(
1− 1

4κ`

)t
D

≤ 2n(2/K + δK)Kγ`κ(M)

(
1− 1

4κ`

)t
D

≤ 4nκ(M)R(t+1).

Previously we have used again that λmax(Mi) ≤ nλmax(M), because nM =
∑n
i=1Mi and all matrices Mi are positive

semi-definite.
For the last inequality we have

‖M̄−1∇f(x(t+1))− r(t+1)‖ ≤ 1

n

n∑
i=1

‖M̄−1∇fi(x(t+1))− v(t+1)
i ‖ ≤ δR(t+1)

2

and

‖r(t+1) − v(t)‖ = ‖r(t+1) − M̄−1∇f(x(t+1)) + M̄−1∇f(x(t+1))− M̄−1∇f(x(t)) + M̄−1∇f(x(t))− v(t)‖
≤ ‖r(t+1) − M̄−1∇f(x(t+1))‖+ ‖M̄−1∇f(x(t+1))− M̄−1∇f(x(t))‖+ ‖M̄−1∇f(x(t))− v(t)‖

≤ δR(t+1)

2
+ γ

2

λmin(M)
‖x(t+1) − x(t)‖+ δR(t)

≤ δR(t+1)

2
+ 4γ`κ(M)(‖x(t+1) − x∗‖+ ‖x(t) − x∗‖) + δR(t)

≤ δR(t+1)

2
+ 4κ(M)R(t+1) ≤

(
4nκ(M) +

δ

2

)
R(t+1).

The last part of the inequality follows from the same argument used in deriving the second one.
The last inequality implies that

‖v(t+1) − r(t+1)‖ ≤ δR(t+1)

2
.

Thus, putting everything together, we have

‖M̄−1∇f(x(t+1))− v(t+1)‖ ≤ ‖M̄−1∇f(x(t+1))− r(t+1)‖+ ‖r(t+1) − v(t+1)‖ ≤ δR(t+1)

2
+
δR(t+1)

2
= δR(t+1).

Theorem 6. The iterates x(t) produced by the previous algorithm with η = 2
µ`+γ`

satisfy

‖x(t) − x∗‖ ≤
(

1− 1

4κ`

)t
D

and the total number of bits used for communication until f(x(t))− f∗ ≤ ε is

O
(
nd2 log

(√
dnκ`κ(M)

))
+

O
(
ndκ` log(nκ`κ(M)) log

γD2

ε

)
.

(1)
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Proof. The inequality for the convergence rate of the distance of the iterates from the minimizer holds from the previous
lemma. We now turn our interest to the total communication cost. We start from the quantization of the matrix M :
The communication cost for encoding each Mi and decoding in the master node is

O

d(d+ 1)

2
log2

2
√
dnλmax(M)
λmin(M)

16
√
2κ`

 = O(d2log2(
√
dnκ`κ(M))).

The communication cost of encoding S in the master node and then decode back in every machine is

O

d(d+ 1)

2
log2

3
√
dnλmax(M)
λmin(M)

16
√
2κ`

 = O(d2log2(
√
dnκ`κ(M))).

Since we have n-many communications of each kind, the total communication cost is

bm = O(nd2log2(
√
dnκ`κ(M)) = O(nd2log(

√
dnκ`κ(M)).

The communication cost of quantizing the descent direction v(t) at step t ≥ 0 is at most

O
(
nd log2

4nκ(M)

δ/2

)
= O

(
nd log

nκ(M)

δ

)
for encoding the local descent directions and

O

(
nd log2

4nκ(M) + δ
2

δ/2

)
≤ O

(
nd log

9nκ(M)

δ

)
= O

(
nd log

nκ(M)

δ

)
for decoding back. Since we have

1

δ
=

4

ξ(1− ξ)
=

4

1
2κ`

(
1− 1

2κ`

) ≤ 16κ`,

we can bound the total communication cost by

b = O (nd log(nκ`κ(M)) .

We have f(x(t)) − f(x∗) ≤ ε if ‖x(t) − x∗‖ ≤
√

2ε
γ , thus we reach accuracy ε in terms of function values in at most

t = 2κ` log γD2

2ε and putting everything together we find the total communication cost for quantizing the descent directions
along the whole optimization process to be

O
(
ndκ` log(nκ`κ(M)) log

γD2

2ε

)
.

Thus, the total communication cost in number of bits is obtained by summing the cost for matrix and descent direction
quantization:

b = O
(
nd2 log

(√
dnκ`κ(M)

))
+O

(
ndκ` log(nκ`κ(M)) log

γD2

ε

)
.

E. Proofs for Quantized Newton’s Method
We firstly recall Quantized Newton’s method in a compact form as we did also for GLMs:
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Algorithm 2 Quantized Newton’s Method

1: x(0) ∈ Rd,maxi{‖x(0) − x∗‖, ‖x(0) − x∗i ‖} ≤
αµ
2σ

2: Hi
0 = φ−1

(
Q
(
φ(∇2fi(x

(0))), φ(∇2fi0(x(0))), 2
√
dγ, G

(0)

2
√
2κ

))
3: S0 = 1

n

∑n
i=1H

i
0

4: H0 = φ−1
(
Q
(
φ(S0), φ(∇2fi(x

(0))),
√
d
(
G(0)

2κ + 2γ
)
, G

(0)

2
√
2κ

))
5: v(0)i = Q

(
H−10 ∇fi(x(0)), H

−1
0 ∇fi0(x(0)), 4κP (0), θP

(0)

2

)
6: p(0) = 1

n

∑n
i=1 v

(0)
i

7: v(0) = Q
(
P (0), H−10 ∇fi(x(0)),

(
θ
2 + 4κ

)
P (0), θP

(0)

2

)
8: for t ≥ 0 do
9: x(t+1) = x(t) − v(t)

10: Hi
t+1 = φ−1

(
Q
(
φ(∇2fi(x

(t+1))), φ(Hi
t),

10
√
d

1+α G
(t+1), G

(t+1)

2
√
2κ

))
11: St+1 = 1

n

∑n
i=1H

i
t+1

12: Ht+1 = φ−1
(
Q
(
φ(St+1), φ(Ht),

√
d
(

1
2κ + 10

1+α

)
G(t+1), G

(t+1)

2
√
2κ

))
13: v

(t+1)
i = Q

(
H−1t+1∇fi(x(t+1)), v

(t)
i , 11κP (t+1), θP

(t+1)

2

)
14: p(t+1) = 1

n

∑n
i=1 v

(t+1)
i

15: v(t+1) = Q
(
r(t+1), v(t),

(
θ
2 + 11κ

)
P (t+1), θP

(t+1)

2

)
16: end for

We recall the parameters

G(t) =
µ

4
α

(
1 + α

2

)t
,

α ≥ 2
σ

µ
max
i
{‖x(0) − x∗‖, ‖x(0) − x∗i ‖}

θ =
α(1− α)

4
,

K =
2

α
,

P (t) =
µ

2σ
Kα

(
1 + α

2

)t
.

Lemma 16. The iterates x(t) of the quantized Newton’s algorithm satisfy the inequalities

‖x(t) − x∗‖ ≤ µ

2σ
α

(
1 + α

2

)t
,

‖Hi
t −∇2fi(x

(t))‖ ≤ G(t)

2κ
,

‖Ht −∇2f(x(t))‖ ≤ G(t)

κ
,

‖H−1t ∇fi(x(t))− v
(t)
i ‖ ≤

θP (t)

2
,

‖H−1t ∇f(x(t))− v(t)‖ ≤ θP (t).

Proof. We firstly prove that the inequalities hold at t = 0. The first one is trivial by the choice of x(0).

For the second one, it suffices to show that

‖φ(Hi
0)− φ(∇2fi(x

(0)))‖ ≤ G(0)

2
√

2κ
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by Lemma 1, and for that suffices

‖φ(∇2fi(x
(0)))− φ(∇2fi0(x(0)))‖ ≤ 2

√
dγ,

which is indeed the case because

‖φ(∇2fi(x
(0)))− φ(∇2fi0(x(0)))‖ ≤

√
d‖∇2fi(x

(0))−∇2fi0(x(0))‖ ≤
√
d(‖∇2fi(x

(0))‖+ ‖∇2fi0(x(0))‖) ≤ 2
√
dγ,

again using Lemma 1.

For the third inequality at t = 0, we have

‖∇2f(x(0))− S0‖ ≤
1

n

n∑
i=1

‖∇2fi(x
(0))−Hi

0‖ ≤
G(0)

2κ
.

We need also ‖S0 −H0‖ ≤ G(0)

2κ and for that it suffices ‖φ(S0)− φ(H0)‖ ≤ G(0)

2
√
2κ

, which follows from

‖φ(S0)− φ(∇2fi(x
(0)))‖ ≤

√
d

(
G(0)

2κ
+ 2γ

)
.

In order to show the latter, we write

‖φ(S0)− φ(∇2fi(x
(0)))‖ ≤

√
d‖S0 −∇2fi(x

(0))‖ ≤
√
d(‖S0 −∇2f(x(0))‖+ ‖∇2f(x(0))−∇2fi(x

(0))‖)

≤
√
d

(
G(0)

2κ
+ 2γ

)
.

For the fourth one it suffices to show that

‖H−10 ∇fi(x(0))−H
−1
0 ∇fi0(x(0))‖ ≤ 4κP (0).

Indeed,

‖H−10 ∇fi(x(0))−H
−1
0 ∇fi0(x(0))‖ ≤ ‖H−10 ‖(‖∇fi(x(0))‖+ ‖∇fi0(x(0))‖) ≤ 2

µ
(γ‖x(0) − x∗i ‖+ γ‖x(0) − x∗i0‖)

≤ 4
γ

µ
K
µ

2σ
α = 4κP (0).

In the previous inequality we used that ‖H−10 ‖ ≤ 2
µ and this can be seen as follows:

‖H−10 ‖ =
1

λmin(H0)
≤ 1

λmin(∇2f(x(0)))− G(0)

κ

≤ 1

µ− µ
4α
≤ 2

µ
.

For the fifth inequality at t = 0, we have

‖H−10 ∇f(x(0))− p(0)‖ ≤ 1

n

n∑
i=1

‖H−10 ∇fi(x(0))− v
(0)
i ‖ ≤

θP (0)

2
.

We need also

‖v(0) − p(0)‖ ≤ θP (0)

2
.

For that it suffices to show that

‖p(0) −H−10 ∇fi(x(0))‖ ≤
(
θ

2
+ 4κ

)
P (0).

Indeed

‖p(0) −H−10 ∇fi(x(0))‖ ≤ ‖p(0) −H
−1
0 ∇f(x(0))‖+ ‖H−10 ∇f(x(0))−H−10 ∇fi(x(0))‖

≤ θP (0)

2
+

2

µ
(γ‖x(0) − x∗‖+ γ‖x(0) − x∗i ‖) ≤

θP (0)

2
+ 4κP (0) =

(
θ

2
+ 4κ

)
P (0).
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Now we assume that the inequalities hold for t and wish to prove that they also hold for t+ 1. We start with an auxiliary
result regarding taking a Newton iterate using the quantized version of the Hessian but the exact gradient:

‖x(t) −H−1t ∇f(x(t))− x∗‖ ≤ α‖x(t) − x∗‖.

For proving that we start by writing

x(t) −H−1t ∇f(x(t))− x∗ = (x(t) − x∗)−H−1t
(∫ 1

0

∇2f(x(ξ))dξ

)
(x(t) − x∗) =(

Id−
∫ 1

0

H−1t ∇2f(x(ξ))dξ

)
(x(t) − x∗),

where
x(ξ) = x(t) + ξ(x∗ − x(t)).

Thus

‖x(t)−H−1t ∇f(x(t))− x∗‖ ≤
∥∥∥∥Id− ∫ 1

0

H−1t ∇2f(x(ξ))dξ

∥∥∥∥ ‖x(t)− x∗‖ ≤ max
0≤ξ≤1

‖Id−H−1t ∇2f(x(ξ))‖‖x(t)− x∗‖.

Now we need to deal with the quantity max0≤ξ≤1 ‖Id−H−1t ∇2f(x(ξ))‖.

We first write bound ‖H−1t ‖:

‖H−1t ‖ =
1

λmin(Ht)
≤ 1

λmin(∇2f(xt)− ‖∇2f(xt))−Ht‖
≤ 1

µ− G(t)

κ

.

Now, we have
G(t)

κ
≤ µ

2

and the result follows. This happens if
1

κ
≤ 2

α

which holds always true, because 1
κ , α < 1. Thus

‖H−1t ‖ ≤
2

µ
.

Second, we bound the quantity ‖∇2f(x(t))−1 −H−1t ‖:

‖∇2f(x(t))−1−H−1t ‖ = ‖∇2f(x(t))−1(∇2f(x(t))−Ht)H
−1
t ‖ ≤ ‖∇2f(x(t))−Ht‖‖∇2f(x(t))−1‖‖H−1t ‖ ≤

G(t)

κ

1

µ

2

µ
=

2

µ2

G(t)

κ
.

Using that and the fact that f is µ-strongly convex, γ-smooth, with a σ-Lipschitz Hessian, we get

max
0≤ξ≤1

‖Id−H−1t ∇2f(x(ξ))‖ = max
0≤ξ≤1

‖Id−∇2f(x(t))−1∇2f(x(ξ)) + (∇2f(x(t))−1 −H−1t )∇2f(x(ξ))‖ ≤

max
0≤ξ≤1

‖Id−∇2f(x(t))−1∇2f(x(ξ))‖+ max
0≤ξ≤1

‖(∇2f(x(t))−1 −H−1t )∇2f(x(ξ))‖ ≤

max
0≤ξ≤1

‖∇2f(x(t))−1(∇2f(x(t))−∇2f(x(ξ)))‖+ ‖∇2f(x(t))−1 −H−1t ‖ max
0≤ξ≤1

‖∇2f(x(ξ))‖ ≤

σ

µ
‖x(t) − x∗‖+

2

µ2

G(t)

κ
γ.
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Thus, we finally get

‖x(t) −H−1t ∇f(x(t))− x∗‖ ≤ σ

µ
‖x(t) − x∗‖2 +G(t) 2

µ
‖x(t) − x∗‖

≤ σ

µ
‖x(t) − x∗‖ µ

2σ
α

(
1 + α

2

)t
+
µ

4
α

(
1 + α

2

)t
2

µ
‖x(t) − x∗‖

≤ α
(

1 + α

2

)t
‖x(t) − x∗‖ ≤ α‖x(t) − x∗‖,

which is the desired result.

Now we pass to the exact iterate of our algorithm. Using the induction hypothesis and the previous inequality, we have

‖x(t+1) − x∗‖ = ‖x(t) − v(t) +H−1t ∇f(x(t))−H−1t ∇f(x(t))− x∗‖
≤ ‖H−1t ∇f(x(t))− v(t)‖+ ‖x(t) −H−1t ∇f(x(t))− x∗‖
≤ θP (t) + α‖x(t) − x∗‖

= θ
µ

2σ
Kα

(
1 + α

2

)t
+ α

µ

2σ
α

(
1 + α

2

)t
= (θK + α)

µ

2σ
α

(
1 + α

2

)t
=

µ

2σ
α

(
1 + α

2

)t+1

.

which is what we need.

For the second inequality it suffices to prove that

‖φ(Hi
t+1)− φ(∇2fi(x

(t+1)))‖ ≤ G(t+1)

2
√

2κ

and for that it suffices

‖φ(∇2fi(x
(t+1)))− φ(Hi

t)‖ ≤
10
√
d

1 + α
G(t+1).

We indeed have

‖φ(∇2fi(x
(t+1)))− φ(Hi

t)‖ ≤ ‖φ(∇2fi(x
(t+1)))− φ(∇2fi(x

(t))) + φ(∇2fi(x
(t)))− φ(Hi

t)‖
≤ ‖φ(∇2fi(x

(t+1)))− φ(∇2fi(x
(t)))‖+ ‖φ(∇2fi(x

(t)))− φ(Hi
t)‖

≤
√
d(‖∇2fi(x

(t+1))−∇2fi(x
(t))‖+ ‖∇2fi(x

(t))−Hi
t‖)

≤
√
d

(
σ‖x(t+1) − x(t)‖+

G(t)

κ

)
≤
√
d

(
2σ

µ

2σ
α

(
1 + α

2

)t
+

1

κ

µ

4
α

(
1 + α

2

)t)

≤
√
d

5µ

4
α

(
1 + α

2

)t
=
√
d

5µ

4 1+α
2

α

(
1 + α

2

)t+1

=
10
√
d

1 + α
G(t+1).

For the third inequality, we have

‖∇2f(x(t+1))− St+1‖ ≤
1

n

n∑
i=1

‖∇2fi(x
(t+1))−Hi

t+1‖ ≤
G(t+1)

2κ
.
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Now it suffices to prove

‖St+1 −Ht+1‖ ≤
G(t+1)

2κ

which holds if

‖φ(St+1)− φ(Ht+1)‖ ≤ G(t+1)

2
√

2κ

and for that suffices

‖φ(St+1)− φ(Ht)‖ ≤
√
d

(
1

2κ
+

10

1 + α

)
G(t+1).

We now have

‖φ(St+1)− φ(Ht)‖ ≤
√
d‖St+1 −Ht‖ ≤

√
d‖St+1 −∇2f(x(t+1)) +∇2f(x(t+1))−∇2f(x(t)) +∇2f(x(t))−Ht‖

≤
√
d(‖St+1 −∇2f(x(t+1))‖+ ‖∇2f(x(t+1))−∇2f(x(t))‖+ ‖∇2f(x(t))−Ht‖)

≤
√
d

(
G(t+1)

2κ
+ σ‖x(t+1) − x(t)‖+

G(t)

κ

)
≤
√
d
G(t+1)

2κ
+

10
√
d

1 + α
G(t+1)

=
√
d

(
1

2κ
+

10

1 + α

)
G(t+1)

which concludes the induction.

For the fourth inequality it suffices to prove

‖H−1t+1∇fi(x(t+1))− v(t)i ‖ ≤ 11κP (t+1).

To that end, we use γ-smoothness of fi, the bound ‖x(t)− x∗i ‖ ≤ ‖x(t)− x∗‖+ ‖x∗− x∗i ‖ ≤ ‖x(0)− x∗‖+ ‖x(0)− x∗‖+
‖x(0) − x∗i ‖ ≤

3µ
2σα, the fact that ‖H−1t ‖, ‖H−1t+1‖ ≤ 2

µ and the induction hypothesis. Also, we use that alpha < 1, κ ≥ 1

and K ≥ 2.

Indeed, we have

‖H−1t+1∇fi(x(t+1))− v(t)i ‖ = ‖H−1t+1∇fi(x(t+1))−H−1t+1∇fi(x(t)) +H−1t+1∇fi(x(t))−H
−1
t ∇fi(x(t)) +H−1t ∇fi(x(t))− v

(t)
i ‖

≤ ‖H−1t+1∇fi(x(t+1))−H−1t+1∇fi(x(t))‖+ ‖H−1t+1 −H
−1
t ‖‖∇fi(x(t))‖+ ‖H−1t ∇fi(x(t))− v

(t)
i ‖

≤ 2

µ
γ‖x(t+1) − x(t)‖+ ‖H−1t+1‖‖H

−1
t ‖‖Ht+1 −Ht‖γi‖x(t) − x∗i ‖+ θP (t)

≤ 2
γ

µ
‖x(t+1) − x(t)‖+

4

µ2
(‖Ht+1 −∇2f(x(t+1))‖+ ‖∇2f(x(t+1))−∇2f(x(t))‖+ ‖∇2f(x(t))−Ht‖)γ

3µ

2σ
α+ θP (t)

≤ 2
γ

µ
‖x(t+1) − x(t)‖+

4

µ2

(
G(t+1)

κ
+
G(t)

κ
+ σ‖x(t+1) − x(t)‖

)
γ

3µ

2σ
α+ θP (t)

≤ 4κ
µ

2σ
α

(
1 + α

2

)t
+

4

µ2

(
2
µ

4κ
α

(
1 + α

2

)t
+ 2σ

µ

2σ
α

(
1 + α

2

)t)
γ

3µ

2σ
α+ θ

µ

2σ
Kα

(
1 + α

2

)t
= 4κ

µ

2σ
α

(
1 + α

2

)t
+

12γ

µ2

( µ
2κ
α+ µα

) µ

2σ
α

(
1 + α

2

)t
+ θ

µ

2σ
Kα

(
1 + α

2

)t
= 4κ

µ

2σ
α

(
1 + α

2

)t
+ 12κ

( α
2κ

+ α
) µ

2σ
α

(
1 + α

2

)t
+ θ

µ

2σ
Kα

(
1 + α

2

)t
≤ (4κ+ 6 + 12κ+ θK)

µ

2σ
α

(
1 + α

2

)t
≤ (22κ+ θK)

µ

2σ
α

(
1 + α

2

)t
≤ 11κ(2/K + θ)K

µ

2σ
α

(
1 + α

2

)t
= 11κKα

µ

2σ

(
1 + α

2

)t+1

≤ 11κP (t+1).
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For the third inequality, we have

‖H−1t+1∇f(x(t+1))− p(t+1)‖ ≤ 1

n

n∑
i=1

‖H−1t+1∇fi(x(t+1))− v(t+1)
i ‖ ≤ θP (t+1)

2
.

We want to prove also that

‖p(t+1) − v(t+1)‖ ≤ θP (t+1)

2
.

For that it suffices to show that

‖p(t+1) − v(t)‖ ≤
(
θ

2
+ 11κ

)
P (t+1).

We have

‖p(t+1) − v(t)‖ ≤ ‖p(t+1) −H−1t+1∇f(x(t+1)) +H−1t+1∇f(x(t+1))−H−1t+1∇f(x(t))

+H−1t+1∇f(x(t))−H−1t ∇f(x(t)) +H−1t ∇f(x(t))− v(t)‖
≤ ‖p(t+1) −H−1t+1∇f(x(t+1))‖+ ‖H−1t+1∇f(x(t+1))−H−1t+1∇f(x(t))‖
+ ‖H−1t+1∇f(x(t))−H−1t ∇f(x(t))‖+ ‖H−1t ∇f(x(t))− v(t)‖

≤ θP (t+1)

2
+

2

µ
γ‖x(t+1) − x(t)‖+ ‖H−1t+1‖‖H

−1
t ‖‖Ht+1 −Ht‖‖∇f(x(t))‖+ θP (t)

≤
(
θ

2
+ 11κ

)
P (t+1)

which completes the induction by the same argument as in the previous derivation.

Theorem 8. The iterates of the quantized Newton’s method starting from a point x(0), such that

‖x(0) − x∗‖ ≤ µ

4σ

(
α =

1

2

)
satisfy

‖x(t) − x∗‖ ≤ µ

4σ

(
3

4

)t
and the communication cost until reaching accuracy ε in terms of function values is

O
(
nd2 log

(√
dκ
)

log
γµ2

σ2ε

)
(2)

many bits in total.

Proof. The claim about the convergence of the iterates follows easily by applying Lemma 16 with α = 1
2 .

This means that we achieve ‖x(t) − x∗‖ ≤ ε in at most

t =
1

1− 3
4

log
µ
4σ

ε
= 4 log

µ

4σε

many iterates. We have f(x(t))− f∗ ≤ ε, if ‖x(t) − x∗‖ ≤
√

2ε
γ , thus in at most

t = 4 log
γµ2

32σ2ε

many iterates.
For the communication cost, we have that in order to pursue Hessian quantization at t = 0, we need

O

(
n
d(d+ 1)

2
log

2
√
dγ

G(0)/2
√

2κ

)
= O

nd(d+ 1)

2
log

2
√
dγ

µ2

16
√
2γ

 = O

(
n
d(d+ 1)

2
log

√
dγ2

µ2

)
≤ O

(
nd2 log

(√
dκ
))
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many bits for encoding the local Hessian matrices

O

(
n
d(d+ 1)

2
log

√
d
(

1
2κG

(0) + 2γ
)

G(0)/2
√

2κ

)
= O

(
n
d(d+ 1)

2
log

2
√
dγ

G(0)/2
√

2κ

)
≤ O

(
nd2 log

(√
dκ
))

for decoding their sum back to all machines (this is because 1
2κG

(0) ≤ 2γ). Thus the total communication cost for Hessian
quantization at t = 0 is

O
(
nd2 log

(√
dκ
))

.

For t ≥ 1, we have that the cost for quantizing the local Hessians is

O

(
n
d(d+ 1)

2
log

10
√
dG(t+1)/(1 + α)

G(t+1)/2
√

2κ

)
= O

(
n
d(d+ 1)

2
log

10
√
d/(1 + α)

1/2
√

2κ

)
= O

(
nd2 log

(√
dκ
))

and for communicating the sum back to all machines is

O

(
n
d(d+ 1)

2
log

√
d(1/2κ+ 10/(1 + α))G(t+1)

G(t+1)/2
√

2κ

)
= O

(
n
d(d+ 1)

2
log

10
√
d/(1 + α)

1/2
√

2κ

)
= O

(
nd2 log

(√
dκ
))

,

again because 1/2κ ≤ 10/(1 + α).
Thus the total cost of Hessian quantization along the whole optimization process until reaching accuracy ε is

bm = O
(
nd2 log

(√
dκ
)

log
γµ2

32σ2ε

)
many bits in total.
On the other hand, the cost of quantizing the local descent directions at t ≥ 0 is

O

(
nd log

11κP (t)

θP (t)

2

)
= O (nd log κ)

because now θ is just 1
16 . The cost of sending the average of the quantized local directions back to any machine is

O
(
nd log

(θ/2 + 11κ)P (t)

θP (t)/2

)
= O

(
nd log

11κP (t)

θP (t)

2

)
= O (nd log κ) ,

because θ
2 ≤ 11κ. Thus, the total communication cost for quantizing the descent directions until reaching accuracy ε is

b = O
(
nd log κ log

γµ2

32σ2ε

)
many bits.
The total communication cost of Quantized Newton’s method overall is

O
(
nd2 log

(√
dκ
)

log
γµ2

32σ2ε

)
+O

(
nd log κ log

γµ2

32σ2ε

)
= O

(
nd2 log

(√
dκ
)

log
γµ2

σ2ε

)
.

F. Estimation of the Minimum
Proposition 9. The value f̄ which occurs from the previous quantization procedure is an estimate of the true minimum f∗

of f with accuracy ε and the cost of quantization is

O
(
n log

γC2 + c

ε

)
.

if ε is sufficiently small.
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Proof. We have that

| fi(x(t))− fi0(x(t)) |≤| fi(x(t)) | + | fi0(x(t)) |≤ γ

2
‖x(t) − x∗i ‖2+ | f∗i | +

γ

2
‖x(t) − x∗i0‖

2+ | f∗i0 |

In order x(t) to satisfy f(x(t)) − f∗ ≤ ε
2 , we compute x(t) by our main algorithms, such that ‖x(t) − x∗‖ ≤

√
ε
γ . This

gives the respective communication complexities from the previous sections.
Given that, we can write

‖x(t) − x∗i ‖2 = ‖x∗ − x∗i ‖2 + ‖x(t) − x∗‖2 + 2〈x∗ − x∗i , x(t) − x∗〉 ≤

‖x∗ − x∗i ‖2 + ‖x(t) − x∗‖2 + 2‖x∗ − x∗i ‖‖x(t) − x∗‖ ≤ ‖x∗ − x∗i ‖2 +
ε

γ
+

√
ε

γ
‖x∗ − x∗i ‖ ≤

C2 +
ε

γ
+

√
ε

γ
C ≤ 2C2

for sufficiently small ε. Similarly we have
‖x(T ) − x∗i0‖

2 ≤ 2C2

for small ε.
Thus

| fi(x(t))− fi0(x(t)) |≤ 2(γC2 + c)

and by the definition of the quantization, we have

| q(t)i − fi(x
(t)) |≤ ε

2
.

which implies

| f̄ − f(x(t)) |≤ 1

n

n∑
i=1

| q(t)i − fi(x
(t)) |≤ ε

2
.

Overall, we get
f̄ − f∗ ≤| f̄ − f(x(t)) | +f(x(t))− f∗ ≤ ε

2
+
ε

2
= ε.

The communication cost for quantizing fi(x(t)) is

O
(
n log

γC2 + c

ε

)
since we quantize real numbers, which are 1-dimensional, and we need to communicate n-times.


