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Abstract
We tackle the problem of online optimization with
a general, possibly unbounded, loss function. It is
well known that when the loss is bounded, the ex-
ponentially weighted aggregation strategy (EWA)
leads to a regret in

√
T after T steps. In this

paper, we study a generalized aggregation strat-
egy, where the weights no longer depend expo-
nentially on the losses. Our strategy is based on
Follow The Regularized Leader (FTRL): we min-
imize the expected losses plus a regularizer, that
is here a φ-divergence. When the regularizer is
the Kullback-Leibler divergence, we obtain EWA
as a special case. Using alternative divergences
enables unbounded losses, at the cost of a worst
regret bound in some cases.

1. Introduction
We focus in this paper on the online optimization problem as
formalized for example in (Shalev-Shwartz, 2012): at each
time step t ∈ N, a learning machine has to make a decision
θt ∈ Θ. Then, a loss function `t : Θ→ R+ is revealed and
the machine suffers loss `t(θt). Typical example include
online linear regression, where `t(θ) =

(
yt − θTxt

)2
for

some xt ∈ Rd and yt ∈ R, or online linear classification
with `t(θ) = 1{yt 6=sign(θT xt)} or `t(θ) = max(1−θTxt, 0)

for some xt ∈ Rd and yt ∈ {−1,+1}. The objective is to
design a strategy for the machine that will ensure that the
regret at time T ,

RT :=

T∑
t=1

`t(θt)− inf
θ∈Θ

T∑
t=1

`t(θ), (1)

satisfiesRT = o(T ).

Various strategies were investigated under different assump-
tions. When the functions `t are convex, methods based on
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the sub-gradient of `t can be used. Such strategies lead to
regret in

√
T under the additional assumption that the `t are

Lipschitz. The regret bounds and strategies are detailed in
Chapter 2 in (Shalev-Shwartz, 2012). Another very popular
strategy is the so-called exponentially weighted aggregation
(EWA) that is based on the probability distribution:

ρt(dθ) =
exp

(
−η
∑t−1
s=1 `s(θ)

)
π(dθ)∫

exp
(
−η
∑t−1
s=1 `s(ϑ)

)
π(dϑ)

(2)

for some prior distribution π on Θ and some learning rate
η > 0. Drawing θt ∼ ρt leads to an expected regret in

√
T ,

under the strong assumption that the losses `t are uniformly
bounded, see (Gerchinovitz, 2011).

Is is actually well known that

ρt = argmin
ρ∈P(Θ)

{
t−1∑
s=1

Eθ∼ρ[`s(θ)] +
KL(ρ||π)

η

}
(3)

where KL is the Kullback-Leibler divergence and P(Θ)
is the set of all probability distributions on Θ equipped
with a suitable σ-algebra (rigorous notations will come in
Subsection 1.2). In this paper, we will study a generalization
of the EWA strategy given by

ρt = argmin
ρ∈P(Θ)

{
t−1∑
s=1

Eθ∼ρ[`s(θ)] +
Dφ(ρ||π)

η

}
, (4)

where Dφ can be any φ-divergence (on the condition that
this minimizer exists, which will be discussed). Such a strat-
egy is known as “Follow The Regularized Leader” (FTRL)
in the online optimization community, and has been stud-
ied extensively in the finite Θ case (Shalev-Shwartz, 2012;
Hazan, 2016; Orabona, 2019). In Bayesian statistics, (4)
was advocated recently in (Li & Turner, 2016; Knoblauch
et al., 2019). Some generalization error bounds were proven
by (Alquier & Guedj, 2018). However, (Alquier & Guedj,
2018) is written in the batch setting, and the error bounds
thus require strong assumptions: for θ ∈ Θ, the (`t(θ))t∈N
must be independent and identically distributed random
variables.

Let us call ρt the Dφ-posterior associated to the φ-
divergence Dφ, the prior π, the learning rate η and the
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sequence of losses (`s)s∈N. In this paper, we study Dφ-
posteriors in the online setting, which allows to get com-
pletely rid of the stochastic assumptions of (Alquier &
Guedj, 2018). First, we prove a regret bound on the Dφ-
posterior. Our proof follows the same scheme as the study of
FTRL in (Shalev-Shwartz, 2012; Orabona, 2019), but in the
general case (Θ is not assumed to be finite). Interestingly,
when Dφ is the χ2 divergence, our bound holds under very
general assumptions – in particular, it does not require that
the losses are bounded, Lipschitz, nor convex, but that might
be at the cost of a larger regret. We also provide explicit
forms for the Dφ-posterior. It turns out that it extends the
idea of EWA beyond the exponential function, thus the title
of the paper. Finally, it is known that EWA is not always
feasible in practice. A way to overcome this issue is to use
variational approximations of EWA. We thus propose an
algorithm that can be seen as the generalization of online
variational inference to φ-divergences, and provide a regret
bound.

1.1. Related works

The case Dφ = KL, (3) has been studied under the name
“multiplicative update”, aggregating strategy, EWA (Vovk,
1990; Littlestone & Warmuth, 1994; Catoni, 2004) to name
a few. Regret bounds in

√
T can be found in (Stoltz, 2005;

Cesa-Bianchi & Lugosi, 2006; Devaine et al., 2013) in the
case where Θ is finite, we refer the reader to (Gerchinovitz,
2011) for the general case. Note that in (Shalev-Shwartz,
2012; Hazan, 2016; Orabona, 2019), EWA is studied as
a special case of the FTRL strategy (Follow The Regular-
ized Leader), in the case where Θ is finite. This point of
view is the main inspiration of the proofs in this paper, even
though we deal here with a general set Θ. Also, note that
smaller regret in log T is feasible under a stronger assump-
tion: exp-concavity (Hazan et al., 2007; Cesa-Bianchi & Lu-
gosi, 2006; Audibert, 2009). (Reid et al., 2015; Mhammedi
& Williamson, 2018) also studied small regrets and used for
this a generalization of EWA beyond the KL divergence, but
here again the study was restricted to a finite set Θ. Similar
techniques were also considered by (Audibert & Bubeck,
2009; Zimmert & Seldin, 2019) in incomplete information
problems (bandits).

Given a statistical model, that is, a family of densities
pθ with respect to a reference measure ν on some space
X , and i.i.d random variables X1, X2, . . . , drawn from
some probability distribution on X , one can define the loss
`t(θ) = − log pθ(Xt). In this case, for η = 1, ρt is actually
the posterior distribution of θ given X1, . . . , Xt−1 used in
Bayesian statistics. Thus, EWA is also sometimes refered to
as “generalized Bayes”. (Li & Turner, 2016) proposed (4)
as one further generalization of Bayes, using Rényi diver-
gences instead of KL. More recently, (Knoblauch et al.,
2019) advocated for a use of taylored losses and diver-

gences. Note that in the batch setting, a general theory al-
lows to provide risk bounds for generalized Bayes (or EWA):
PAC-Bayes bounds (Shawe-Taylor & Williamson, 1997;
McAllester, 1999; Catoni, 2007; Alquier, 2008), see (Guedj,
2019) for a recent survey. PAC-Bayes bounds for general-
ized Bayes with the χ2-divergence were proven in (Honorio
& Jaakkola, 2014) and for the Rényi divergence in (Bégin
et al., 2016). (Alquier & Guedj, 2018; Ohnishi & Hono-
rio, 2021) showed that while these bounds are usually less
tight than standard PAC-Bayes bounds, they allow to get
rid of the boundedness assumption in these results. The
corresponding optimal posteriors are derived in (Alquier &
Guedj, 2018). Other techniques to get rid of boundedness
are discussed in (Holland, 2019; Rivasplata et al., 2020) in
the batch case.

The idea of variational approximations is to minimize (3)
over a restricted set of probability distributions in order to
get a feasible approximation of ρt, see (Blei et al., 2017;
Alquier, 2020) for recent surveys. In the online setting, on-
line variational approximations are studied by (Khan & Lin,
2017; Khan & Nielsen, 2018) and led to the first scaling of
Bayesian principles to state-of-the-art neural networks (Os-
awa et al., 2019). In the i.i.d setting, a series of paper estab-
lished the first theoretical results on variational inference,
for many of them through a connection with PAC-Bayes
bounds (Alquier et al., 2016; Sheth & Khardon, 2017; Dz-
iugaite & Roy, 2018; Chérief-Abdellatif & Alquier, 2018;
Chérief-Abdellatif, 2019; Wang & Blei, 2019b; Alquier
& Ridgway, 2020; Yang et al., 2020; Wang & Blei, 2019a;
Jaiswal et al., 2020; Zhang & Gao, 2020; Cherief-Abdellatif,
2020; Plummer et al., 2020; Banerjee et al., 2021; Frazier
et al., 2021; Medina et al., 2021). Up to our knowledge, the
only regret bound for online variational inference can be
found in (Chérief-Abdellatif et al., 2019). The analysis of
our generalized online variational approximation is based
on this work.

1.2. Notations

Let us now provide accurate notations and a few basic
assumptions that will be used throughout the paper. We
assume that the set Θ is equipped with a σ-algebra T .
Let P(Θ) denote the set of all probability distributions on
(Θ, T ). Let π ∈ P(Θ) be a probability distribution called
the prior and (`s)s∈N be a sequence of functions called
losses, `s : Θ→ R+, assumed to be T -measurable.

LetM(Θ) be the set of all finite, signed measures on (Θ, T ).
Note that P(Θ) (M(Θ). A norm N onM(Θ) is a func-
tion N : M(Θ) → [0,∞] with i) N(ν) = 0 ⇔ ν = 0,
ii) N(ν + µ) ≤ N(ν) + N(µ) and iii) for λ ∈ R,
N(λ.ν) = |λ|N(ν). A norm N onM(Θ) induces a metric
on P(Θ) given by dN (µ, ν) = N(ν −µ). For example, the
total variation norm NTV(ν) = supA∈T |ν(A)| leads to the
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classical total variation distance on P(Θ).

Given a sctrictly convex function φ : R+ → R∪{+∞}with
φ(1) = 0 and infx≥0 φ(x) > −∞, define the φ-divergence
between ρ and π ∈ P(Θ) by

Dφ(ρ||π) = Eθ∼π
[
φ

(
dρ

dπ
(θ)

)]
if ρ� π (5)

and +∞ otherwise. By Jensen’s inequality, Dφ(ρ||π) ≥ 0.
Put PDφ,π(Θ) = {ρ ∈ P(Θ) : Dφ(ρ||π) < +∞}.

A real-valued function f is said to be upper semicontinuous
if for any α, {x : f(x) ≥ α} is closed. For any real-
valued function f , we will denote by f+ the function defined
by f+(x) = max(f(x), 0). Given a function f : Rd →
R ∪ {+∞} that is not uniformly infinite, we will let f∗

denote its convex conjugate, that is, for any y ∈ Rd,

f∗(y) = sup
x∈Rd

{
xT y − f(x)

}
∈ R ∪ {+∞}. (6)

1.3. Outline of the paper

We state our general regret bound in Section 2. In particular,
we show that for some divergences, our result extends the
results known for EWA to unbounded losses. We then pro-
vide an explicit form for the Dφ-posterior in Section 3. We
study generalized online variational inference in Section 4.
Section 5 contains the proofs of the results in Sections 2
and 3, the remaining proofs are in the Appendix.

2. A Regret Bound for Dφ-Posteriors
2.1. General result

Theorem 2.1. Assume that there is a norm N on M(Θ)
and real numbers α,L > 0 such that

• for any ρ ∈M(Θ), N(ρ) ≥ NTV(ρ),

• for any t ∈ N, for any (ρ, ρ′) ∈ PDφ,π(Θ)2,

|Eθ∼ρ[`t(θ)]− Eθ∼ρ′ [`t(θ)]| ≤ LN(ρ− ρ′), (7)

• for any γ ∈ [0, 1], for any (ρ, ρ′) ∈ PDφ,π(Θ)2,

Dφ(γρ+ (1−γ)ρ′||π) ≤ −2αγ(1−γ)N(ρ−ρ′)2

+ γDφ(ρ||π) + (1− γ)Dφ(ρ′||π). (8)

Assume that each `t is π-integrable. Then ρt in (4) exists, is
unique, and

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
ρ∈P(Θ)

{
T∑
t=1

Eθ∼ρ[`t(θ)]

+
ηL2T

α
+
Dφ(ρ||π)

η

}
. (9)

The assumptions have a simple interpretation: (7) states
that each Eθ∼ρ[`t] is L-Lipschitz in ρ with respect to the
norm N , while (8) states that Dφ, as a function of its first
argument, is α-strongly convex with respect to N .

Regarding the choice of η, η ∼ 1/
√
T seems natural (in-

deed, in the countable case studied below, it leads to regrets
in
√
T = o(T )). However, this choice depends on the

horizon T . The doubling trick can be used to avoid this
dependence, see e.g. (Cesa-Bianchi & Lugosi, 2006).

When the losses `t are convex, Jensen’s inequality gives
Eθ∼ρt [`t(θ)] ≥ `t[Eθ∼ρt(θ)]. We can thus use the posterior
mean Eθ∼ρt(θ) instead of a randomized strategy.
Corollary 2.2. Under the assumptions of Theorem 2.1,
assuming moreover that each `t is convex, and writing
θ̂t = Eθ∼ρt(θ), we have

T∑
t=1

`t(θ̂t) ≤ inf
ρ∈P(Θ)

{
T∑
t=1

Eθ∼ρ[`t(θ)]

+
ηL2T

α
+
Dφ(ρ||π)

η

}
. (10)

We now apply Theorem 2.1 to classical divergences.
Example 2.1. Consider φ(x) = x log x so that
Dφ(ρ||π) = KL(ρ||π) the Kullback-Leibler divergence. As-
suming that, for any t ∈ N, |`t(θ)| ≤ L holds π-almost
surely on θ, we have, for (ρ, ρ′) ∈ PDφ,π(Θ)2,∫

`t(θ)ρ(dθ)−
∫
`tρ
′(dθ) (11)

=

∫
`t(θ)

∣∣∣∣dρdπ
(θ)− dρ′

dπ
(θ)

∣∣∣∣π(dθ) (12)

≤ L
∫ ∣∣∣∣dρdπ

(θ)− dρ′

dπ
(θ)

∣∣∣∣π(dθ) (13)

that is, (7) holds with the norm onM(Θ):

N(ρ) =

∫ ∣∣∣∣dρdπ
(θ)

∣∣∣∣π(dθ) = 2NTV(ρ). (14)

It is known that (8) holds with α = 1, the calculations are
detailed in the discrete case page 30 in (Shalev-Shwartz,
2012) and can be directly extended to the general case. So

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
ρ∈P(Θ)

{
T∑
t=1

Eθ∼ρ[`t(θ)]

+ ηL2T +
KL(ρ||π)

η

}
. (15)

This is essentially the same result as Theorem 2.2 page 16
in (Cesa-Bianchi & Lugosi, 2006). Note however that a
different proof technique is used there, that leads to better
constants: the term in ηL2T is replaced by ηL2T/8.
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Before considering a new example, let us simply remind the
definition of strong convexity: a function ϕ : Rd → R is
said to be α-strongly convex with respect to a norm ‖ · ‖
when, for any (u, v) ∈ (Rd)2 and γ ∈ [0, 1], ϕ(γu+ (1−
γ)v) ≤ γϕ(u)+(1−γ)ϕ(v)−αγ(1−γ)‖u−v‖2/2. It is
known that when ϕ : R→ R is twice differentiable and ‖ ·‖
is the Euclidean norm, this is equivalent to the condition:
∀u, ϕ′′(u) ≥ α. Plugging u = dρ

dπ (θ) and v = dρ′

dπ (θ) in
this definition and integrating with respect to π immediately
yields the following.

Lemma 2.3. Assume that φ : R → R with φ(1) = 0 is
α-strongly convex, then the φ-divergence Dφ satisfies (8)
for the L2(π)-norm

N2(ρ) :=

√∫ (
dρ

dπ
(θ)

)2

π(dθ) ≥ 2NTV(ρ) (16)

(extended by +∞ when ρ� π does not hold).

Example 2.2. Now, φ(x) = x2 − 1, so Dφ(ρ||π) =
χ2(ρ||π) the χ2-divergence. As x 7→ x2 is 2-strongly con-
vex, Lemma 2.3 gives (8) with N = N2. Moreover,∣∣∣∣∣

∫
`t(θ)ρ(dθ)−

∫
`tρ
′(dθ)

∣∣∣∣∣
≤
∫
`t(θ)

∣∣∣∣dρdπ
(θ)− dρ′

dπ
(θ)

∣∣∣∣π(dθ)

≤ N2(ρ− ρ′)
(∫

`t(θ)
2π(dθ)

)1/2

. (17)

So, we obtain (7) under the only assumption that, for any
t ∈ R,

∫
`t(θ)

2π(dθ) ≤ L2.

As the application of Theorem 2.1 to the context of the
previous example is new to our knowledge, we state it now
as a separate corollary.

Corollary 2.4. Define ρt as in (4) with Dφ = χ2. Assume
that for any t ∈ R,∫

`t(θ)
2π(dθ) ≤ L2 (18)

for some L > 0, then

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
ρ∈P(Θ)

{
T∑
t=1

Eθ∼ρ[`t(θ)]

+
ηL2T

2
+
χ2(ρ||π)

η

}
. (19)

It is important to note that (18) allows choices of priors that
are not possible with EWA. Consider for example classifica-
tion with the exponential loss `t(θ) = exp(−ytxTt θ) or with

the hinge loss `t(θ) = max(0, 1− ytxTt θ), where Θ = Rd,
yt ∈ {−1,+1} and ‖xt‖ ≤ 1. In this case, (18) will be
satisfied with any Gaussian prior. However, we don’t have
`t(θ) ≤ L uniformly on Rd: this prevents to use EWA with
such a prior. Another example (quadratic loss) is provided
in Appendix A.

Remark 2.1. One of the anonymous Referees suggested
an alternative proof for Corollary 2.4, in the finite Θ case:
rewrite the χ2 divergence as a weighted quadratic norm
between ρ and π, and use the results on weighted `p norms
in Section 5 of (Orabona et al., 2015). This would require
some adaptation of the proof to constrain ρ to belong to the
simplex, but it would be interesting to compare Corollary 2.4
to the results obtained in this way.

2.2. Comparison of the bounds in the countable case

In this subsection, Θ = {θ0, θ1, . . . } is countable. Consider
any prior π. In this case, we upper bound the infimum in (9)
by its restriction to all Dirac masses. We obtain:

Corollary 2.5. Under the conditions of Theorem 2.1, as-
suming in addition that Θ = {θ0, θ1, . . . } we have:

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
j∈N

{
T∑
t=1

`t(θj) +
ηL2T

α

+
π(θj)φ

(
1

π(θj)

)
+ (1− π(θj))φ(0)

η

}
. (20)

In any case, chosing η = 1/
√
T will lead to a regret in

√
T :

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
j∈N

{
T∑
t=1

`t(θj) +

[
L2

α

π(θj)φ

(
1

π(θj)

)
+ (1− π(θj))φ(0)

]
√
T

}
. (21)

Regarding the dependence on π, let us now to compare the
bounds for Dφ = KL and Dφ = χ2.

Example 2.3. When Dφ = KL, the assumption in (7) im-
plies that 0 ≤ `t(θj) ≤ L for any t, j ∈ N. In the case
`t(θ) = |yt− fθ(xt)| this can be obtained by assuming that
|yt| ≤ L/2 where L is known, so that the predictors will
be designed or truncated by the user to stay in the interval
[−L/2, L/2]. In this case, the bound in (20) becomes

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
j∈N

{
T∑
t=1

`t(θj) + ηL2T

+
log
(

1
π(θj)

)
η

}
. (22)
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Example 2.4. When Dφ = χ2, the bound in (20) becomes

T∑
t=1

Eθ∼ρt [`t(θ)] ≤ inf
j∈N

{
T∑
t=1

`t(θj) +
ηL2T

2

+

1
π(θj)

− 1

η

}
(23)

which is much worse for large j’s (for which we necessarily
will have π(θj) small). On the other hand, the assumption
in (7) only requires

0 ≤
∞∑
j=0

π(θj)`t(θj)
2 ≤ L2 (24)

for any t ∈ N. In the case `t(θ) = |yt − fθ(xt)| this can
be obtained by assuming that |yt| ≤ c where c is unknown.
Indeed the user might be tempted to use predictors with
various magnitude: |fθj (x)| ≤ cj where cj grows with j.
In order to ensure (7) we must take a prior π such that

L2 := 2c2 + 2

∞∑
j=0

π(θj)c
2
j < +∞. (25)

Remark 2.2. The take-home message of these examples is
that the χ2 divergence allows unbounded losses, but at the
cost of a worst regret bound. One of the anonymous Referees
asked whether it is possible to get the best of both worlds,
that is, unbounded losses with the same regret bound of
EWA. This is of course a very important question, we are
not aware of existing answers. In an additional example in
Appendix A, we show however that it is possible to mitigate
the deterioration of the bound in the unbounded case.

Remark 2.3. Another anonymous Referee pointed out
that (Kalnishkan & Vyugin, 2008) also derived regret
bounds for unbounded losses. In their bound (8), there
is a term in εT where ε > 0 is some tuning parameter, thus,
when ε is constant, their bound is in T and not in

√
T . Chos-

ing ε = 1/
√
T in their bound leads to non-explicit regret

bounds because of the term Lε.

3. Explicit Dφ-Posteriors: Non-Exponentially
Weighted Aggregation

We now provide an explicit formula for the Dφ-posterior ρt.

Proposition 3.1. Assume that φ is differentiable, strictly
convex and define φ̃ on R by φ̃(x) = φ(x) if x ≥ 0 and
φ̃(x) = +∞ otherwise. Then

φ̃∗ = sup
x∈R

[xy − φ̃(x)] = sup
x≥0

[xy − φ(x)] (26)

is differentiable and for any y ∈ R,

∇φ̃∗(y) = argmax
x≥0

{xy − φ(x)} . (27)

Assume moreover that φ̃∗(λ− a)− λ→∞ when λ→∞,
for any a ≥ 0. Then

λt = argmin
λ∈R

{∫
φ̃∗

(
λ− η

t−1∑
s=1

`s(θ)

)
π(dθ)− λ

}
(28)

exists, and

ρt(dθ) = ∇φ̃∗
(
λt − η

t−1∑
s=1

`s(θ)

)
π(dθ) (29)

minimizes (4).

In the finite Θ case, (29) was proven by (Reid et al., 2015).
An anonymous Referee pointed out that it can also be re-
covered thanks to (Teboulle, 1992). The techniques used
in these papers cannot be used in the general case, though.
Instead, we use new tools from (Agrawal & Horel, 2020),
that are introduced in the proof.

A similar formula in the context of bandits (with a finite
number of arms) can also be found in (Audibert & Bubeck,
2009). The distribution ρt is also related to the generalized
exponential family in (Grünwald & Dawid, 2004) and the
generalized MaxEnt models of (Frongillo & Reid, 2014).
Example 3.1. First, φ(x) = x log(x) so Dφ = KL. In
this case, φ̃∗(y) = exp(y − 1) so ∇φ̃∗(y) = φ̃∗(y) =
exp(y − 1). This leads to

λt = − log

∫
exp

[
−η

t−1∑
s=1

`s(θ)− 1

]
π(dθ), (30)

and

ρt(dθ) =
exp

[
−η
∑t−1
s=1 `s(θ)

]
π(dθ)∫

exp
[
−η
∑t−1
s=1 `s(ϑ)

]
π(dϑ)

. (31)

Example 3.2. Then φ(x) = x2 − 1, so Dφ = χ2. In this
case, φ̃∗(y) = (y2/4)1{y≥0}, so ∇φ̃∗(y) = (y/2)+ and

ρt(dθ) =

[
λt − η

∑t−1
s=1 `s(θ)

2

]
+

π(dθ). (32)

In this case, λt is not available in closed form, but it exists
and is the only constant that will make the above sum to 1.
Example 3.3. More generally, consider φ(x) = xp − 1. In
this case ∇φ̃∗(y) = (y/p)

1/(p−1)
+ , which leads to

ρt(dθ) =

[
λt − η

∑t−1
s=1 `s(θ)

p

] 1
p−1

+

π(dθ). (33)

This is quite similar to the Polynomially Weighted Average
forecaster studied in Corollary 2.1 page 12 in (Cesa-Bianchi
& Lugosi, 2006) in the finite Θ case, even though the nor-
malization procedure is different.
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Remark 3.1. When Θ = {θ1, . . . , θM} is finite, these re-
sults are simply opbtained by minimizing

F (ρt1, . . . , ρ
t
M ) =

M∑
j=1

ρtj

t−1∑
s=1

`s(θj) +
πjφ

(
ρtj
πj

)
η

(34)

under the constraint that ρt1 + · · ·+ρtM = 1 and that for all
j, ρj ≥ 0 (for the sake of simplicity, we wrote πj := π(θj)
and ρtj := ρt(θj)). The Lagrange operator is given by

L(ρt1, . . . , ρ
t
M , λ, ν1, . . . , νM ) =

M∑
j=1

ρtj

t−1∑
s=1

`s(θj)

+

∑M
j=1 πjφ

(
ρtj
πj

)
η

+ λ
1−

∑M
j=1 ρ

t
j

η
+

M∑
j=1

νjρ
t
j (35)

(the notation λ is carefully chosen: it indeed corresponds
to (28)). Under the assumptions of Proposition 3.1, the
method of Lagrange multipliers will lead to (27). We believe
that this derivation gives some insights on (29). So, we
provide it in full length in Appendix C.

4. Generalized Online Variational Inference
Apart from the special case of conjugacy, the probability
distribution ρt in (2) is not tractable. Thus, ρt in (4) is
not expected to be tractable either. It can of course be
implemented via Monte-Carlo methods, but the cost of
these methods is often prohibitive for the online setting.
In (Chérief-Abdellatif et al., 2019), the authors proposed
to use a variational approximation, that is, to minimize (3)
on a set smaller than P(Θ). We here propose to extend this
idea to the minimization in (4).

4.1. The algorithm

Let (qµ)µ∈M be a set of probability distributions in P(Θ),
where M is some closed convex set in Rd. We could define
the variational approximation of ρt in this family by:

argmin
µ∈M

{
t−1∑
s=1

Eθ∼qµ [`s(θ)] +
Dφ(qµ||π)

η

}
, (36)

but even this problem might be challenging. We thus replace
it by the linearized version

µt = argmin
µ∈M

{
t−1∑
s=1

〈
µ,∇µ=µsEθ∼qµ [`s(θ)]

〉
+
Dφ(qµ||π)

η

}
. (37)

Observe that when µ 7→ Eθ∼qµs [`s(θ)] is convex, (37) can
be seen as a convex relaxation of (36) as Eθ∼qµ [`s(θ)] ≤
Eθ∼qµs [`s(θ)] +

〈
µ,∇µ=µsEθ∼qµ [`s(θ)]

〉
.

Proposition 4.1. Let F (µ) = Dφ(qµ||π). Assume that F
is a differentiable and strictly convex function on Rd, then
F ∗ is differentiable with

∇F ∗(λ) = argmax
µ∈M

[〈µ, λ〉 − F (µ)] . (38)

Then the solution of (37) exists, is unique and given by

µt = ∇F ∗
(
−η

t−1∑
s=1

∇µ=µsEθ∼qµ [`s(θ)]

)
. (39)

Note the “Mirror Descent” structure of this strategy: we can
simply initialize λ0 = 0, and update at each step:{

λt = λt−1 − η∇µ=µt−1Eθ∼qµ [`t−1(θ)],
µt = ∇F ∗ (λt)

(40)

(on mirror descent, see (Nemirovski & Yudin, 1983),
and (Shalev-Shwartz, 2012) for an analysis in the online
setting). That is, we have a simple update rule for the “dual
parameters” λt, and then we compute µt = ∇F ∗(λt). An
anonymous Referee also pointed out a similarity with “dual
averaging” (Xiao, 2010).

4.2. Regret bound

Theorem 4.2. Let ‖ · ‖ be a norm on Rd. If each µ 7→
Eθ∼qµ [`s(θ)] is convex and L-Lipschitz with respect to ‖ · ‖,
if µ 7→ Dφ(qµ||π) is α-strongly convex with respect to ‖ · ‖,

T∑
t=1

Eθ∼qµt [`t(θ)] ≤ inf
µ∈M

{
T∑
t=1

Eθ∼qµ [`t(θ)]

+
ηL2T

α
+
Dφ(qµ||π)

η

}
. (41)

Let us consider for example a location scale family (qµ)µ∈M
with µ = (m,C), m ∈ Rk and C is a k × k matrix.
That is, when ϑ ∼ q(0,Ik), then m + Cϑ ∼ q(m,C).
It is proven in (Domke, 2019), under minimal assump-
tions on q(0,Ik), that if θ 7→ `t(θ) is convex, then so is
(m,C) 7→ Eθ∼q(m,C)

[`t(θ)]. In (Chérief-Abdellatif et al.,
2019), it is proven that if θ 7→ `t(θ) is L-Lipschitz, then
(m,C) 7→ Eθ∼q(m,C)

[`t(θ)] is 2L-Lipschitz.

Example 4.1. Consider Gaussian distributions. Using the
above parametrization µ = (m,C) with qµ = q(m,C) =
N (m,CTC), C ∈ UT (d) the set of full-rank upper trian-
gular d×d real matrices, and chosing as a prior π = q(m̄,C̄)

we have

KL(q(m,C), q(m̄,C̄)) =
(m− m̄)T (C̄T C̄)−1(m− m̄)

2

+
tr[(C̄T C̄)−1(CTC)] + log

(
det(C̄T C̄)
det(CTC)

)
− d

2
(42)
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which is known to be strongly convex on Rd ×MC where
MC is any closed bounded subset of UT (d). Formulas for
the updates are derived in (Chérief-Abdellatif et al., 2019).

Other parametrizations can also be used in practice. For
exponential families, (Khan & Nielsen, 2018) proposed a
parametrization based on the expectation of the sufficient
statistics. It enjoys very nice properties, and leads to excel-
lent results in practice. However, Theorem 4.2 cannot be
applied as the convexity assumption is generally not satis-
fied with this parametrization. The analysis of this algorithm
in this case remains an important open question.

5. Proofs
We first remind a classical result in convex analysis, e.g
page 95 in (Boyd & Vandenberghe, 2004) or (2.13) page 43
in (Shalev-Shwartz, 2012).

Lemma 5.1. Let f : Rd → R∪{+∞} be a function that is
differentiable and strictly convex. Then, its convex conjugate
f∗ is differentiable and

∇f∗(y) = argmax
x∈Rd

[
xT y − f(x)

]
. (43)

Proof of Theorem 2.1: Let us start by proving the existence.
For the sake of shortness, put

F (ρ) =

t−1∑
s=1

∫
`s(θ)ρ(dθ) +

Dφ(ρ||π)

η
(44)

for any ρ ∈ P(Θ) andC = infρ∈P(Θ) F (ρ). For any n ∈ N
there is a ρtn such that C ≤ F (ρtn) ≤ C + 1/n. Also, the
ρtn are absolutely continous with respect to π, otherwise,
Dφ(ρtn||π) = +∞. Then

C ≤ F
(
ρtn + ρtm

2

)
≤ F (ρtn) + F (ρtm)

2
− αN(ρtn − ρtm)2/2

≤ C + 1/(2n) + 1/(2m)− αN(ρtn − ρtm)2/2

which leads to N(ρtn − ρtm)2 ≤ 1/(αn) + 1/(αm), prov-
ing that ρtn is a Cauchy sequence w.r.t the norm N . Thus,
it is also a Cauchy sequence w.r.t the norm NTV by the
inequality N(ρtn − ρtm) ≥ NTV(ρtn − ρtm). From Propo-
sition A.10 page 512 in (Ghosal & Van der Vaart, 2017),
the set of probability distributions that are absolutely con-
tinuous with respect to π is complete for NTV, so, there
is a ρt∞ absolutely continuous with respect to π such that
NTV(ρtn − ρt∞) −−−−→

n→∞
0. This can be rewritten as

∫ ∣∣∣∣dρtndπ
(θ)− dρt∞

dπ
(θ)

∣∣∣∣π(dθ) −−−−→
n→∞

0. (45)

This means that the nonnegative random variable dρtn
dπ con-

verges to the random variable dρt∞
dπ in L1, thus it converges

in probability, and thus, there exists a subsequence
dρtnk
dπ

that converges almost surely to dρt∞
dπ . Now, φ being lower-

bounded, we can use Fatou lemma:

C ≤ F (ρt∞)

=

∫ [t−1∑
s=1

`s(θ)
dρt∞
dπ

(θ) + φ

(
dρt∞
dπ

(θ)

)]
π(dθ)

=

∫
lim inf

k

[
t−1∑
s=1

`s(θ)
dρtnk
dπ

(θ) + φ

(
dρtnk
dπ

(θ)

)]
π(dθ)

≤ lim inf
k

∫ [t−1∑
s=1

`s(θ)
dρtnk
dπ

(θ) + φ

(
dρtnk
dπ

(θ)

)]
π(dθ)

= lim inf
k
F (ρtnk) ≤ lim inf

k

(
C +

1

nk

)
= C

which proves that ρt∞ is indeed a minimizer of (4) (the
previous series of inequalities follows the proof of the fact
that φ-divergences are lower semi-continuous in Chapter
2 in (Keziou, 2003)). Let us now prove its uniqueness:
assume that ρ̃t∞ 6= ρt∞ is another minimizer. Put ρ̄t∞ =
(ρ̃t∞ + ρt∞)/2, using (8) we have:

C ≤ F (ρ̄t∞) ≤ F (ρ̃t∞) + F (ρt∞)

2
− α

2
N(ρ̃t∞ − ρt∞)

= C − αN(ρ̃t∞ − ρt∞)/2 < C, (46)

a contradiction. Thus, ρt = ρt∞ exists and is unique.

Let us now prove the regret bound. We follow the main
steps of the analysis of the FTRL. We start by proving by
induction on T that

T∑
s=1

∫
`s(θ)ρ

s+1(dθ)

≤ inf
ρ∈P(Θ)

[
T∑
s=1

∫
`s(θ)ρ(dθ) +

Dφ(ρ||π)

η

]
. (47)

Indeed, for T = 0, the statement is simply Dφ(ρ||π)/η ≥ 0
that is true by definition of a divergence. Now, assuming
that (47) is true at step T , we add

∫
`s(θ)ρ

T+1(dθ) to each
side of (47) to obtain

T+1∑
s=1

∫
`s(θ)ρ

s+1(dθ) ≤
∫
`T+1(θ)ρT+1(dθ)

+ min
ρ∈P(Θ)

[
T∑
s=1

∫
`s(θ)ρ(dθ) +

Dφ(ρ||π)

η

]
. (48)
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Upper bounding the minimum in ρ by the value for ρ =
ρT+1 we obtain

T+1∑
s=1

∫
`s(θ)ρ

s+1(dθ)

≤
T+1∑
s=1

∫
`s(θ)ρ

T+1(dθ) +
Dφ(ρT+1||π)

η
(49)

= min
ρ∈P(Θ)

[
T+1∑
s=1

∫
`s(θ)ρ(dθ) +

Dφ(ρ||π)

η

]
(50)

by the definition of ρT+1. This ends the proof of (47).

Now that (47) is proven, adding
∑T
s=1

∫
`s(θ)ρ

s(dθ) to
each side and rearranging the terms leads to

T∑
s=1

∫
`s(θ)ρ

s(dθ) ≤ inf
ρ∈P(Θ)

[
T∑
s=1

∫
`s(θ)ρ(dθ)

+

T∑
s=1

(∫
`s(θ)ρ

s(dθ)−
∫
`s(θ)ρ

s+1(dθ)

)

+
Dφ(ρ||π)

η

]
. (51)

The last step is thus to prove that, for any s,∫
`s(θ)ρ

s(dθ)−
∫
`s(θ)ρ

s+1(dθ) ≤ ηL2

α
. (52)

First, by (7),∫
`s(θ)ρ

s(dθ)−
∫
`s(θ)ρ

s+1(dθ)

≤ LN(ρs − ρs+1). (53)

Define Hs(ρ) =
∫ ∑s−1

t=1 `t(θ)ρ(dθ) + Dφ(ρ||π)/η. Di-
viding (8) by η and adding γ

∫ ∑s−1
t=1 `t(θ)ρ(dθ) + (1 −

γ)
∫ ∑s−1

t=1 `s(θ)ρ
′(dθ) to each side, we obtain:

Hs(γρ+ (1− γ)ρ′) ≤ γHs(ρ) + (1− γ)Hs(ρ
′)

− 2α

η
γ(1− γ)N(ρ− ρ′)2. (54)

Now, put hs(u) = Hs(uρ
s + (1−u)ρs+1). Thanks to (54),

we have hs(γu+ (1− γ)u′) ≤ γhs(u) + (1− γ)hs(u
′)−

α
2 γ(1−γ)(u−u′)2N(ρs−ρs+1)2, that is: hs is αN(ρs−
ρs+1)2-strongly convex. Moreover, hs(u) is minimized
by u = 0, because by definition, Hs(ρ) is minimized by
ρ = ρs. Using the well-known property of strongly convex
functions of a real variable, we obtain:

hs(u) ≥ hs(0) +
αN(ρs − ρs+1)2

2η
u2 (55)

and so, for u = 1,

Hs(ρs) ≥ Hs(ρ
s+1) +

αN(ρs − ρs+1)2

2η
. (56)

We obtain in a similar way:

Hs+1(ρs+1) ≥ Hs+1(ρs) +
αN(ρs − ρs+1)2

2η
. (57)

Summing (56) and (57) gives:∫
`s(θ)ρ

s(dθ)−
∫
`s(θ)ρ

s+1(dθ)

≥ αN(ρs − ρs+1)2

η
. (58)

Combining (58) with (53) gives:

N(ρs − ρs+1)

≤

√
η

α

(∫
`s(θ)ρs(dθ)−

∫
`s(θ)ρs+1(dθ)

)
(59)

which, using again (53), gives (52). �

Proof of Proposition 3.1: First, note that (26) is obvious
from the definition of φ̃. Then apply Lemma 5.1 to f = φ̃
that is α-strongly convex. We obtain (27).

Let us now define Fφ,π(ρ) = Dφ(ρ||π) and its convex con-
jugate, for g : Θ→ R that is π-integrable,

F ∗φ,π(g) = sup
ρ∈PD,φ(Θ)

[∫
g(θ)ρ(dθ)−Dφ(ρ||π)

]
. (60)

Then, by Proposition 4.3.2 in (Agrawal & Horel, 2020),

F ∗φ,π(g) = inf
λ∈R

{∫
φ̃∗(g(θ) + λ)π(dθ)− λ

}
, (61)

where the infimum is actually reached as soon as it is finite.

In our case, we apply this result to the nonpositive, π-
integrable function

gt(θ) = −η
t−1∑
s=1

`s(θ). (62)

Using Jensen’s inequality, we have:∫
φ̃∗(gt(θ) + λ)π(dθ)− λ

≥ φ̃∗
(∫

gt(θ)π(dθ) + λ

)
− λ. (63)

This quantity is convex, ≥ 0 when λ ≤ 0, and→∞ when
λ → ∞. So, its infimum is finite, and thus, according
to (Agrawal & Horel, 2020), it is reached by some λ = λt.
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Let us now define ρt as in (31): ρt(dθ) = ∇φ̃∗(λt +
gt(θ))π(dθ). A first step is to check that ρt is indeed a
probability distribution. By differentiating (28) with respect
to λ we obtain:

∂

∂λ

[∫
φ̃∗(λt + gt(θ))π(dθ)

]
λ=λt

= 1. (64)

Note that ∇φ̃∗ is the differential of a convex, differentiable
function. Thus, it is a nondecreasing function, and it has no
jumps. So, it is continuous, and so, we have∫

ρt(dθ) =

∫
∇φ̃∗(λ+ g(θ))π(dθ) = 1. (65)

Let us now remind the following formula, which can be
found for example in (Boyd & Vandenberghe, 2004) page
95, for a convex and differentiable function f :

f∗(∇f(x)) = xT∇f(x)− f(x). (66)

Applying this formula to f = φ̃∗ that is convex and differ-
entiable, we obtain:

φ̃∗∗(∇φ̃∗(x)) = xT∇φ̃∗(x)− φ̃∗(x). (67)

Now, it is easy to check that the function φ̃ is upper semi-
continuous and convex. So, φ̃∗∗ = φ̃ (e.g Exercice 3.39
page 121 in (Boyd & Vandenberghe, 2004)), and we obtain:

φ̃(∇φ̃∗(x)) = xT∇φ̃∗(x)− φ̃∗(x). (68)

So, we have:∫ [
−gt(θ)

η

]
ρt(dθ) +

Dφ(ρt||π)

η

=

∫ [
−gt(θ)

η
∇φ̃∗(λt + gt(θ))

+
1

η
φ̃
(
∇φ̃∗(λt + gt(θ))

)]
π(dθ)

and applying (68) gives∫ [
−gt(θ)

η

]
ρt(dθ) +

Dφ(ρt||π)

η

=

∫ [
−gt(θ)

η
∇φ̃∗(λt + g(θ))

+
(λt + g(θ))

η
∇φ̃∗(λt + g(θ))

− φ̃∗(λt + gt(θ))

]
π(dθ)

= λt −
∫
φ̃∗(λt + gt(θ))π(dθ)

= min
ρ∈PD,π(Θ)

[
−
∫
gt(θ)

η
ρt(dθ) +

Dφ(ρt||π)

η

]
(69)

by (61). So ρt minimizes the desired criterion. �

The proof of Proposition 4.1 and Theorem 4.2 are provided
in Appendix B.
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Chérief-Abdellatif, B.-E., Alquier, P., and Khan, M. E. A
generalization bound for online variational inference. Pro-
ceedings of The Eleventh Asian Conference on Machine
Learning, PMLR, 101:662–677, 2019.

Devaine, M., Gaillard, P., Goude, Y., and Stoltz, G. Forecast-
ing electricity consumption by aggregating specialized
experts. Machine Learning, 90(2):231–260, 2013.

Domke, J. Provable smoothness guarantees for black-box
variational inference. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, PMLR 119, pp.
2587–2596, 2019.

Dziugaite, G. K. and Roy, D. Entropy-SGD optimizes the
prior of a PAC-Bayes bound: Generalization properties of
Entropy-SGD and data-dependent priors. In International
Conference on Machine Learning, pp. 1377–1386, 2018.

Frazier, D. T., Loaiza-Maya, R., Martin, G. M., and Koo, B.
Loss-based variational Bayes prediction. arXiv preprint
arXiv:2104.14054, 2021.

Frongillo, R. and Reid, M. D. Convex foundations for gener-
alized MaxEnt models. In AIP Conference Proceedings,
volume 1636, pp. 11–16. American Institute of Physics,
2014.

Gerchinovitz, S. Prédiction de suites individuelles et cadre
statistique classique: étude de quelques liens autour de la
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