
A. Brief Discussion of Convergence and Guarantees
Proving existence and uniqueness of solutions of gradient flows in Wasserstein space, or convergence of their discretized
schemes, is challenging. But it can be achieved through different types of assumptions on the spaces, metrics, and func-
tionals. Here, we will briefly discuss guarantees that depend on one of the simplest such assumptions: geodesic convexity.

Definition A.1. LetX be a geodesic metric space and F : X → R∪{+∞} a functional. We say that F is (λ-)geodesically
convex if it is (λ-)convex along geodesics in X , i.e., for every pair of points x0, x1 ∈ X , there exists a constant-speed
geodesic ω connecting ω(0) = x0 to ω(1) = x1 such that t 7→ F (ω(t)), t ∈ [0, 1] is (λ-)convex.

Note that if X is Euclidean, the definition above is simply λ-convexity. On the other hand, this concept is well defined
for metric measure spaces like Wp(Ω) too. In particular, for W2(Ω), all geodesics are displacement geodesics, so the
condition above is also known as displacement convexity.

Thus, a functional F : Wp(X) → R ∪ {+∞} is λ-geodesically convex if and only if for every pair µ1, µ2 ∈ P(X) there
exists an optimal transport coupling π ∈ Π(µ1, µ2) such that

F (µ1�2
t) ≤ (1− t)F (µ1) + tF (µ2)− λ

2
t(1− t)W2

p(µ
1, µ2) ∀t ∈ [0, 1] (18)

where µ1�2
t , ((1− t)x+ ty)]π is a geodesic in Wp(X) interpolating between µ1 and µ2.

It can be shown that the functionals used in this work (i.e., those in Eq. (9)) are displacement convex under suitable
conditions (Santambrogio, 2017). Specifically, V andW are λ-displacement convex if the underlying potentials V and W
are λ-convex. For the internal energy functional F , some technical assumptions on f are needed, such as requiring that
f(0) = 0, s 7→ sdf(s−d) is convex and decreasing, and the underlying space is convex (Santambrogio, 2017, Thm 7.28).
It is easy to see that simple functions, such as the entropy term discussed before, or power functions with exponent q > 1,
all satisfy this condition.

The following result, one of the simplest in such family of guarantees, shows the crucial importance of λ-geodesic convexity
for establishing guarantees of gradient flows in Wasserstein space:

Proposition A.2 (Santambrogio 2017, Prop 4.13). Suppose that F : W2(X)→ R ∪ {+∞} is λ-geodesically convex and
that the two curves ρ0

t and ρ1
t are solutions of (8). Then, setting δ(t) = 1

2 W2
2(ρ1

t , ρ
2
t), we have

δ′(t) ≤ −2λd(t)

This implies uniqueness of the solution of (8) for a fixed initial state, stability and exponential convergence of the flow as
t→ +∞ if λ > 0.

Unfortunately —and somewhat unexpectedly— the functional Tβ(ρ) = W2
2(ρ, β) turns out to be not displacement convex

in general. However, it does satisfy an alternate and more general notion of convexity: along generalized geodesics.

Definition A.3. Let ρ ∈ P(X) be fixed. For every pair µ1, µ2 ∈ P(X), a generalized geodesic between them with base
ρ in W2(X) is given by the curve µt =

(
(1− t)T0 + tT1)]ρ where Ti is the optimal transport map (for the squared cost)

from ρ to µi.

Thus, a functional F : Wp(X)→ R∪{+∞} is λ-geodesically convex along generalized geodesics if it satisfies condition
(18) for generalized geodesics. Under the same assumptions as above, the functionals V,W , and F are all convex along
generalized geodesics too (Santambrogio, 2017; Ambrosio et al., 2005). But now, as hinted at before, so is Tβ(ρ) if we
choose β as the base point of the generalized geodesics (Santambrogio, 2015).

The notion of convexity along generalized geodesics can be used to establish results analogous to Proposition A.2 but
which apply to more general functionals, including Tβ(ρ). Such results usually involve appealing to a characterization of
gradient flows known as the evolution variational inequality (EVI):

d

dt

1

2
d(ρt, β) ≤ F (β)− F (ρt)−

λ

2
d(µt, β)2 ∀β ∈ P(X) (19)

Convexity along generalized geodesics can be used to prove the EVI conditions holds for a certain functional, which in
turn implies uniqueness and stability of the flow. We refer the reader to (Santambrogio, 2017) for further details.

Dataset Dynamics via Gradient Flows in Probability Space

B. First Variations, Gradient Flows, and Connections to PDEs.
B.1. First variation of a functional

As mentioned in Section 4.1, having a notion of derivative of functionals over measures is a crucial step towards defining
gradient flows in that space. The notion we rely on here is that of first variation of a functional (Santambrogio, 2017):
Definition B.1. Given a functional F : P(Ω) → R, consider perturbations χ such that at least for every ε ∈ [0, ε0],
ρ+ εχ ∈ P(Ω). If there exists a function G such that

d

dε
F (ρ+ εχ)

∣∣
ε=0

=

∫
G(ρ) dχ

for every such perturbation χ, we call it the first variation of F at ρ, and denote it by δF
δρ .

B.2. Gradient flows and PDEs

The connection between OT and certain diffusive partial differential equations (PDE) has been well studied over the past
two decades (Jordan et al., 1998; Otto, 2001). Indeed, equation (8) defines a PDE over densities ρ. As mentioned before,
it has a fluid dynamics interpretation as a continuity equation on a density-dependent flow velocity vector field u ,
−∇ δF

δρ (ρ), or a conservation-of-energy PDE for the energy flux q , −ρ∇ δF
δρ (ρ). In the context of densities and datasets,

this PDE can be roughly understood as a conservation-of-mass principle: no probability mass is created or destroyed in the
sequence of densities on X × Y that solve this system.

For a functional of the form (12) with only F ,V,W terms, the corresponding PDE (eq. (14)) is known as a diffu-
sion–advection–interaction equation. Certain choices of functionals F ,V,W recover familiar PDEs. For example, taking
F (ρ) = F(ρ) + V(ρ), and f(t) = t log t, the gradient flow of F solves a Fokker-Planck equation (Santambrogio, 2015):

∂tρ−∆ρ−∇ · (ρ∇V) = 0.

In dataset space, this equation can be interpreted as the time evolution of a dataset subject to a drift force imposed by
the potential function V and a constant-variance diffusion term (∆ρ) resulting from the entropy-inducing functional F .
Other choices of functionals allow us to recover the advection equation, porous-media equation, and various other dif-
fusion–advection–interaction PDEs (Santambrogio, 2017). As we did for the Fokker-Planck equation, interpreting these
PDEs in our context of dataset dynamics might yield interesting insights for designing objective functions.

C. Implementation and Experimental Details
We implement our method on PyTorch (Paszke et al., 2019), using the geomloss (Feydy et al., 2019) and POT (Flamary
et al., 2021) libraries for OT-related computations, including the OTDD distance needed at every step. The three types
of feature-label dynamics described in Section 6 are implemented by detaching parts of the computational graph in order
to make gradient updates only in some of them. For the variable label dynamics, there are two options for clustering:
fixed-size or nonparametric. We use k-means for the former and density-based spatial clustering of applications with noise
(DBSCAN) with parameters ε = 5 and minimum points per cluster 4 for the latter. Pseudocode for the three types of
feature-label gradient flow dynamics described in Section 6 is shown here in Algorithms 1 to 3.

For the parametrized flow mapping hflow (§7.2), we use an autoencoder-type architecture with an encoder consisting of
2 convolutional and 5 fully-connected layers, and the decoder is a inverted copy of the encoder. It was trained for 20
epochs using ADAM with learning rate 1× 10−3 , using ten different random restarts and choosing the best performing
one in a held-out set. For transfer learning (§7.2), we use a LeNet-5 architecture with ReLU nonlinearities trained for
20 epochs using ADAM with learning rate 1× 10−3 and weight decay 1× 10−6 It was fine-tuned for 10 epochs on the
target domain(s) using the same optimization parameters. For the experiments in Table 1, we use 5K source (MNIST) and
target (other *NIST datasets) samples. For both supervised and unsupervised flows, we use a flow step size of 1× 10−1 ,
1000 steps, and entropy regularization λ =1× 102 For the unsupervised flow, we permute the values of the pseudo-labels
obtained through clustering to match them to the indices of the target labels so as to allow accuracy computation.

All experiments were run on the same machine with an Intel Xeon 32-core 2.00GHz CPU with a single GeForce RTX 2080
Ti GPU. In this machine, the flows on synthetic datasets of Section 6 run at <0.2s per step, while the flows for the image
classification datasets of Sections 6 and 7.2 run at ∼ 5s per step for 2K particles, for a total flow runtime of less than 5
minutes. Information about all the datasets used, including references, are provided in Table 2.

https://pytorch.org/
https://www.kernel-operations.io/geomloss/
https://pythonot.github.io/

Dataset Dynamics via Gradient Flows in Probability Space

Algorithm 1 Gradient flow with feature-driven fixed-label (fd-fl) dynamics.

Input: Initial particle feature matrix X0 ∈ Rd×n and corresponding labels y ∈ {0, . . . , k}n.
requires gradient(X0)← True
for time t = 0 to T do
`← F (Xt,y)
Xt ← optim step(∇X `)
for every class j = 1 to k do
µjt ,Σ

j
t ← getstats({xit | yi = j})

end for
recompute label distances({µjt}, {Σjt}) {subroutine in OTDD §3.3}

end for

Algorithm 2 Gradient flow with joint-driven fixed-label (jd-fl) dynamics.

Input: Initial particle feature matrix X0 ∈ Rd×n and corresponding labels y ∈ {0, . . . , k}n.
requires gradient(X0,Σ

j
0, µ

j
0)← True

for time t = 0 to T do
`← F (Xt,y)
Xt ← optim step(∇X `)
for every class j = 1 to k do
µjt ← optim step(∇µj `)
Σjt ← optim step(∇Σj `)

end for
recompute label distances({µjt}, {Σjt}) {subroutine in OTDD §3.3}

end for

Algorithm 3 Gradient flow with joint-driven variable-label (jd-vl) dynamics.

Input: Initial particle feature matrix X0 ∈ Rd×n and corresponding labels y ∈ {0, . . . , k}n.
requires gradient(X0,Σ

j
0, µ

j
0)← True

for time t = 0 to T do
`← F (Xt,y)
Xt ← optim step(∇X `)
for every particle i = 1 to n do
µit ← optim step(∇µi `)
Σit ← optim step(∇Σi `)

end for
yt ← clustering method({µt}, {Σt}) {recompute discrete labels by clustering}
recompute label distances({µjt}, {Σjt}) {subroutine in OTDD §3.3}

end for

Table 2. Summary of datasets used. ∗: we rescale the USPS digits to 28 × 28 for comparison to the *NIST datasets, and the STL-10
and CAMELYON to 32× 32 for comparison to CIFAR-10.

Dataset Input Dimension Number of Classes Train Examples Test Examples Source

USPS 16× 16∗ 10 7291 2007 (Hull, 1994)
MNIST 28× 28 10 60K 10K (LeCun et al., 2010)

KMNIST 28× 28 10 60K 10K (Clanuwat et al., 2018)
FASHION-MNIST 28× 28 10 60K 10K (Xiao et al., 2017)

CAMELYON 128× 128∗ 2 262K 32K (Litjens et al., 2018)
CIFAR-10 32× 32 10 50K 10K (Krizhevsky & Hinton, 2009)

STL-10 96× 96∗ 10 5K 8K (Coates et al., 2011)

Dataset Dynamics via Gradient Flows in Probability Space

D. Additional Experimental Results on Gaussian Flows
For the simple synthetic dataset example of Section 6, we show a comparison of the three types of flow dynamics in
Figure 7, and experiments with various types of functionals in Figure 8.

(a) Feature-driven (fd) dynamics, ADAM optimizer.

(b) Joint-driven fixed-label (jd-fl) dynamics, ADAM optimizer.

(c) Joint-driven variable-label (jd-vl) dynamics, k-means clustering, ADAM optimizer.

(d) Joint-driven variable-label (jd-vl) dynamics, DBSCAN clustering, ADAM optimizer.

Figure 7. Gradient flows driven by functional Tβ(ρ) = OTDD(Dρ,Dβ) starting from dataset ρ0 (red) advecting towards β (blue) for
various dynamic schemes (§6).

Dataset Dynamics via Gradient Flows in Probability Space

(a) Functional: F (ρ) =
∫
(‖x− x0‖ − τ)+ dρ(z), SGD optimizer.

(b) Functional: F (ρ) = OTDD(Dρ,Dβ) + λ
∫
(‖x− x0‖ − τ)+ dρ(z), SGD optimizer.

(c) Functional: F (ρ) =
∫∫
−||x− x′‖21y 6=y′ dρ(z) dρ(z′), SGD optimizer.

(d) Functional: F (ρ) = OTDD(Dρ,Dβ) + λ
∫∫
−||x− x′‖21y 6=y′ dρ(z) dρ(z′), SGD optimizer.

Figure 8. Gradient flows starting from dataset ρ0 (red) advecting towards β (blue) driven by different functionals, using SGD+jd-vl
dynamics in all cases.

Dataset Dynamics via Gradient Flows in Probability Space

E. Additional Experimental Results on *NIST Flows
In Figure 9 we show the effect of the transformation hθ parametrized as a neural network and learnt from data to mimic
the effect of the flow mapping hflow : x0 7→ xT .

Figure 9. Left: initial particles x0 taken from USPS. Center: intermediate state of particles xt after gradient flow driven by similarity-
seeking functional Tβ(ρ) = OTDD(Dρ,Dβ) for Dβ :MNIST. Right: particles mapped by using a parametric approximation of hflow

learnt from data.

As described in Section 7.2, we use gradient flows to approach to problem of transfer learning. Figure 10 shows results
on the 5- and 10-shot tasks on the NIST datasets. Notably, the results follow a similar trend as Figure 3e, although, as
expected by the smaller target datasets, the classification errors are higher.

M→U U→M M→K K→M M→F F→M
0

10

20

30

40

50

60

70

T
ar

ge
t

T
es

t
E

rr
or

(%
)

Dβ Dβ ∪ z0 Dβ ∪ h(z0) Dβ ∪ zT Dβ ∪ z1:T Dβ ∪ z1:T ∪ h(z0)

M→U U→M M→K K→M M→F F→M
0

10

20

30

40

50

60

70

T
ar

ge
t

T
es

t
E

rr
or

(%
)

Dβ Dβ ∪ z0 Dβ ∪ h(z0) Dβ ∪ zT Dβ ∪ z1:T Dβ ∪ z1:T ∪ h(z0)

Figure 10. Transfer learning results on image datasets for 5-shot (top) and 10-shot (bottom) tasks. See Section 7.2 for symbol key.

Dataset Dynamics via Gradient Flows in Probability Space

F. Additional Miscellaneous Experimental Results

Figure 11. Qualitative evaluation of flows: for the same setting as in Figure 6, we plot here the flow objective against the accuracy.
The strong correlation between these quantities shows that the OTDD functional provides a good proxy for dataset transfer quality. The
relation between these quantities is mostly linear and monotonic, except in configurations with an over-regularized OTDD objective, as
shown for the λ = 50 curve in the first plot.

Figure 12. Shaping datasets via flows: our framework allows for simple and principled transformation of classification datasets by
following the gradient flow of a functional objective, such as: similarity to a reference dataset (shown here as OTDD(·, ρ∗)), a function
enforcing collapse along a given dimension (shown here as V(ρ)), or a combination thereof. In the bottom row we show the flow
obtained with a vanilla (feature-only) optimal transport distance functional, which unsurpisingly misses the important class structure of
the dataset.

