
Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

A. Missing Proofs from the Main Part of
Section 3

Last Part of the Proof of Lemma 4. In this part we ad-
dress how to repeatedly apply the conditional expectation
to obtain the desired global inequality, i.e.,

E [f(S)] ≥ τ(1− ε)2E [c(S)] .

In the main text we have already argued how the algorithm
induces an ordering on the elements it adds to the solution,
so that they can be pictured as being added one after the
other. To avoid complication in the analysis we suppose
that after the algorithm stops it keeps on adding dummy
elements of no cost and no value, so that in total it runs for
n time steps. Consider the filtration {Ft}nt=1 generated by
the stochastic process associated to the algorithm, where
Ft narrates what happens up to the point when element st
is considered. So that F1 is empty and Fn contains all the
story of the algorithm except for the last—possibly dummy—
added element. From the proof in the main text we know
that for each time t ∈ {1, . . . , n} and any possible story Ft
of the algorithm it holds

E [f(st |St) | Ft] ≥ τ(1− ε)2E [c(st) | Ft] , (8)

where recall that, for each {Ft}nt=1, St denotes the set of
all elements added to the solution before st. Note that this
claim holds also if one considers the dummy elements after
the actual termination of the algorithm.

E [f(S)] = E

[
n∑
t=1

f(st |St)
]

=

n∑
t=1

E [f(st |St)] (9)

=

n∑
t=1

E [E [f(st |St) | Ft]] (10)

= E

[
n∑
t=1

E [f(st |St) | Ft]
]

(11)

≥ τ(1− ε)2E

[
n∑
t=1

E [c(st) | Ft]
]

(12)

= τ(1− ε)2E

[
n∑
t=1

c(st)

]
(13)

= τ(1− ε)2E [c(S)] .

Equations (9) and (11) hold by linearity of expectation,
Equations (10) and (13) by the law of total expectation
and finally Equation (12) follows from monotonicity of the
conditional expectation and Equation (8).

Proof of Lemma 6. Let E be the event {c(S) ≥ B
2 }, then

(1− ε)B
2
> E [c(S)] ≥ E [c(S) | E]P (E) ≥ P (E)

B

2
.

Hence P
(
EC
)
> ε > 0, so repeating the experiment

1
ε log(1

ε) independent times is enough to have a probability
at least 1− ε of observing at least once EC .

B. Adapting PARKNAPSACK to Use Binary
Search

As already pointed out in the main text, the value condition
in THRESHSEQ may exhibit a multi-modal behaviour along
a single iteration of the while loop. In order to enable binary
search for k∗, we want to tweak the value condition so that
if it is triggered for a certain prefix Ai, it remains activated
for all Aj for j ≥ i in the specific while loop iteration.

So, fix an arbitrary iteration of the while loop. Call S the
initial solution and A the sequence drawn by SAMPLESEQ,
{Xi}i the sequence of the sets of elements still fitting into
the budget relative to each prefix Ai and with Gi and Ei
the subsets of Xi containing the good, i.e., marginal den-
sity greater than τ , and bad, i.e., negative marginal density,
elements, respectively. First, note that the cost condition
is clearly unimodal: the {Xi}i is a decreasing sequence of
sets and hence c(Xi) is a non-increasing sequence of costs,
while c(X) stays fixed: as soon as the cost of Xi drops
below (1− ε)c(X) it stays there for all the prefixes longer
than Ai.

For the value condition we need a bit more work; if for some
j it holds that

ε
∑
x∈Gj

f(x |S ∪Aj) ≤
∑
x∈Ej

|f(x |S ∪Aj)| ,

it may be the case that the inequality switches direction later
in the same iteration of the while loop. Notice that it can
happen for one of two reasons: either elements with negative
marginals are added to the solution or they are thrown away
due to budget constraint. We want a modification which is
robust to these corner cases. To this end, we add to the value
condition the absolute contribution of two sets of items.

First, we redefine the set Ei to contain also all the bad
elements considered in that while loop, regardless of the
budget condition, i.e.,

Ei ← {a ∈ X : f(a |S ∪Ai) < 0} .

Moreover for each prefix Ai, we define Ei as the set of all
the items in the prefix Ai which added negative marginal
when inserted in the solution, i.e.,

Ei = {at ∈ Ai : f(at |S ∪At−1) < 0} .

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

The new value condition then says that∑
x∈Gi

εf(x |S ∪Ai) is upper bounded by∑
x∈Ei

|f(x |S ∪Ai)|+
∑
aj∈Ei

|f(aj |S ∪Aj)| .

Notice that now everything works out just fine: the left
hand side of the condition is monotonically decreasing in
i, while the right hand side is monotonically increasing,
by submodularity and the fact that now {Et ∪ Et}t is an
increasing set sequence.

Algorithm 4 THRESHBIN(X, τ, ε, `, B) - Variant of
THRESHSEQ that utilises binary search

1: Input: set X of elements, threshold τ > 0, precision
ε ∈ (0, 1), parameter ` and budget B

2: S ← ∅; ctr← 0; flag← 0
3: X ← {x ∈ X : f(x) ≥ τc(x)}
4: while X 6= ∅ and ctr < ` do
5: [a1, a2, . . . , ad]← SAMPLESEQ(S,X,B)
6: bl ← 1, br ← d
7: while bl < br do
8: i = b(br + bl)/2c
9: Ai ← {a1, a2, . . . , ai}

10: Xi ← {a ∈ X \Ai : c(a) + c(S ∪Ai) ≤ B}
11: Gi ← {a ∈ Xi : f(a | S ∪Ai) ≥ τ · c(a)}
12: Ei ← {a ∈ X : f(a |S ∪Ai) < 0}
13: Ei ← {as ∈ Ai : f(as |S ∪As) < 0}
14: c1 ← c(Gi) ≤ (1− ε)c(X)

15: c2 ←
∑
x∈Gi

εf(x |S∪Ai) ≤
∑
x∈Ei

|f(x |S∪Ai)|+∑
aj∈Ei

|f(aj |S ∪Aj)|

16: if c1 or c2 then
17: br ← i
18: else
19: bl ← i+ 1
20: if c2 and not c1 then
21: flag← 1
22: else
23: flag← 0
24: k∗ = br
25: S ← S ∪Ak∗
26: X ← Gk∗

27: ctr← ctr + flag
28: Suppose S = {s1, s2, . . . , s|S|}, where the indices im-

ply the total ordering from the proof of Lemma 4
29: S̄ ← ∅
30: for t = 1, . . . , |S| do
31: if f(st | {s1, . . . , st−1}) > 0 then
32: S̄ ← S̄ ∪ {st}
33: return S̄

Given the new algorithm, THRESHBIN, we need to show

that it retains the right properties of THRESHSEQ and argue
about its adaptive and query complexity.

Lemma 7. Consider a run of THRESHBIN and denote
with S and S̄ the preliminary and final solution as in the
algorithm. Then the following properties hold:

• c(S̄) ≤ c(S) ≤ B

• f(S̄) ≥ f(S)

• E [f(S)] ≥ τ(1− ε)2E [c(S)]

• CallG the set of elements still fitting in the budget after
S, whose marginal density with respect to S is greater
than τ . Then f(S̄) ≥ ε`∑x∈G f(x |S).

THRESHBIN needs O
(

log n
(

lognκ(X)
ε + `

))
adaptive

rounds and O
(
n log n

(
lognκ(X)

ε + `
))

value queries.

Proof. The proof of this Lemma is quite similar to the one
for THRESHSEQ, so we just highlight the differences.

First, the new value condition is stricter than the old one,
so the E[f(st |St) | Ft] ≥ τ(1 − ε)2E [c(st) | Ft] inequal-
ity holds as well, where St and Ft are as in the proof of
Lemma 4. This implies that

E [f(S)] ≥ τ(1− ε)2E [c(S)] .

The bounds on adaptivity and query complexity follow eas-
ily from the binary search and the analysis of Lemma 3.
Further, the first and second bullets follow directly from
S̄ ⊆ S and the fact that we only filter out from S elements
with negative contribution.

Consider now the last remaining statement to prove (the
analog of Lemma 5). For all real numbers a we denote
with a+ = max{a, 0} its positive part and with a− =
max{−a, 0} the negative one. Clearly a = a+ − a−.

f(S) =

T∑
t=1

(f(st |St)+ − f(st |St)−)

≤
T∑
t=1

f(st |St)+ ≤
∑
st∈S̄

f(st | S̄t) = f(S̄) ,

where in the last inequality we used submodularity.

Similarly to the proof for THRESHSEQ, consider t1, . . . , t`,
E(1), . . . , E(`), G(1), . . . , G(`), and E(1), . . . , E(`). Notice
that they are all disjoint. Like before, for si ∈ S, Si denotes
{s1, . . . , si−1}, but we slightly abuse the notation and have
Stj denote the set S at the end of the iteration of the outer

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

while loop where ctr is increased for the `th time. We have

0 ≤ f
(
St` ∪

⋃̀
j=1

E(j)

)
≤ f(St`) + f

(⋃̀
j=1

E(j) |St`
)

≤
∑
si∈St`

(f(si |Si)+ − f(si |Si)−) +
∑̀
j=1

f(E(j) |Stj)

≤
∑
si∈St`

(f(si |Si)+ − f(si |Si)−)

+
∑̀
j=1

∑
x∈E(j)

f(x |Stj) .

Rearranging terms, and using the value condition, we get

f(S̄) ≥
∑
si∈St`

f(si |Si)+

≥
∑
si∈St`

f(si |Si)− +
∑̀
j=1

∑
x∈E(j)

|f(x |Stj)|

≥
∑̀
j=1

 ∑
x∈E(j)

|f(x |Stj)|+
∑

si∈E(j)

|f(si |Si)|


≥ ε

∑̀
j=1

 ∑
x∈G(j)

f(x |Stj)


≥ `ε

∑
x∈G(`)

f(x |St`) .

Observing that St` = S concludes the proof.

Theorem 5. For ε ∈ (0, 1/3), it is possible to achieve a
(9.465 + ε)-approximation in O(1

ε log2 n) adaptive rounds
and O(nε3 log3 n log 1

ε) queries.

Proof. A large part of this proof is very similar to the proof
of Theorem 1. Hence, we only highlight the differences,
while retaining the same notation. Note that now S is no
more the output of the algorithm, but the non-filtered output
of THRESHBIN (the filtered version being S̄). The two cases
in the analysis are similar.

If E [c(S)] ≥ (1− ε)B2 , then we have a result analogous to
Equation (6) in the main text:

ALG ≥ E
[
f(S̄)

]
≥ E [f(S)]

≥ τ(1− ε)2E [c(S)]

≥ 1

2
α(1− ε)4f(O) .

Otherwise, we can repeat the algorithm 1
ε log(1

ε) times to
be sure that, with probability at least 1 − ε, we observe
B
2 > c(S) > c(S̄). From this we can infer that at most one

element is contained in G̃∩OH . Notice however a difference
here: G and G̃ are the elements with good marginal with
respect to S, not with respect to S̄.

f(S ∪OH) ≤ f(S) + 1E · f(x̃ |S)

+
∑
x∈G

f(x |S) +
∑

x∈OH\(G∪G̃)

f(x |S)

≤f(S̄)(1 + ε̂) + 1E · (f(x̃ |S)− τc(x̃)) + τc(OH)

≤f(S̄)(1 + ε̂) + 1E · (f(x∗)− τ B2) + τc(OH) ,

where E is the event that G̃ ∩ OH is not empty given that
c(S) < B

2 . Proceeding as in the proof of Theorem 1 and
noting that f(S) ≤ f(S̄) ≤ ALG we arrive at the same
inequality as in Equation (7) of the main text:

f(O) ≤ (1 + q + ε̂)[
p(1− p)− αp+ αq

2 − 2ε̂
]ALG .

The rest of the proof is essentially the same with the proof
of Theorem 1.

C. Monotone Objectives and a Knapsack
Constraint

For monotone objectives we can improve the approximation
factor by slightly modifying the main algorithm. Notice,
moreover, that in THRESHSEQ the only relevant condition
is the cost condition since no element can have a negative
marginal value.

Lemma 8. For any set X , threshold τ , precision ε ∈ (0, 1),
parameter ` and budget B, the random set S output by
THRESHSEQ is such that

E [f(S)] ≥ τ(1− ε)E [c(S)] .

The random set S is always a feasible solution and if
c(S) < B, then all the elements in X \ S have either
marginal density with respect to S smaller than τ or there is
no room for them in the budget. Finally, the adaptivity is up-
perbounded by 1

ε log (nκ(X)), while the query complexity
by n2

ε log (nκ(X)).

Proof. Again the proof is similar to the one for the non-
monotone case in the main text. There are three main dif-
ferences. First, the adaptive complexity is given only by the
number of times the cost condition is triggered, hence an
upper bound is given by 1

ε log (nκ(X)). The query com-
plexity is simply obtained multiplying that by a n2 factor as
in the proof of Theorem 1.

Second, the algorithm can now only stop if the budget is
exhausted or there are no good elements fitting within the
budget; the while loop terminates only in those two cases.

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

Finally, the main chain of inequalities is simply

E[f(st |St) | Ft] =
∑
x∈X

pxf(x |St)

≥ τ
∑
x∈G

pxc(x)

≥ τ(1− ε)
∑
x∈X

pxc(x)

= (1− ε)τE [c(st) | Ft] ,

where in the second inequality we used the fact that the cost
condition is not triggered. Taking the expectation on the
whole process and reasoning as in appendix A, we conclude
the proof.

We are ready to present the full algorithm for the monotone
case. There are two main differences to the non-monotone
case. First, there is no need to sample a subset H and use
the Sampling Lemma, since f(S) ≤ f(S ∪ O). Second,
if one defines the small elements to be the ones with cost
smaller than εBn it is possible to account for them by simply
adding all of them to the solution at the cost of filling an ε
fraction of the budget. Notice that this can be done while
keeping κ(N+) linear in n. The remaining (1− ε) fraction
of the budget is then filled via THRESHSEQ on the large
elements. The pseudocode is given in Algorithm 5 below.

Algorithm 5 PARKNAPSACKMONOTONE - Full algorithm
for monotone and a knapsack constraint

1: Input: Ground set N , monotone submodular function
f , budget B, precision ε ∈ (0, 1) and par. α ∈ (0, 1)

2: N− ← {x ∈ N : c(x) < εBn }
3: N+ ← N \N−
4: x∗ ← maxx∈N f(x), τ̂ ← αn f(x∗)

B
5: ε̂← 1

10ε, k ← 1
ε̂ log(n)

6: for i = 0, . . . , k in parallel do
7: τi ← τ̂ · (1− ε̂)i
8: for j = 1, . . . , 1

ε̂ log(1
ε̂) in parallel do

9: Sij ←THRESHSEQ(N+, τi, ε̂, (1− ε̂)B)

10: T ij ← Sij ∪N−
11: T ← arg max{f(T ji), f(x∗)}
12: Return T

Theorem 6. For ε ∈ (0, 1) it is possible to achieve
a 3 + ε approximation in O(1

ε log n) adaptive rounds
and O(n

2

ε3 log2 n log 1
ε) queries or in O(1

ε log2 n) adaptive
rounds and O(nε3 log3 n log 1

ε) queries.

Proof. We show that PARKNAPSACKMONOTONE with pa-
rameters α = 2

3 and any ε ∈ (0, 1) satisfies the statement of
the theorem. We start by noting that the adaptivity bound is
given by combining Lemma 8, the fact that the thresholds

are guessed in parallel, and the fact that κ(N+) ∈ O(nε).
We remark that now, since the cost condition is unimodal,
binary search in THRESHSEQ works without any major
adjustment.

LetO∗ be the optimal solution and let τ∗ = α f(O∗)
B . By the

parallel guesses we have that there exists a τ = τi such that
(1− ε̂)τ∗ ≤ τ < τ∗. As in the non-monotone case, this is
because f(x∗) ≥ f(O∗) ≥ f(x∗). Let S be the random set
outputted by THRESHSEQfor that τ . Also, let T = S ∪N−
and notice that c(S ∪N−) ≤ B.

We can distinguish two cases. First, if E [c(S)] ≥ B
2 (1 −

2ε̂)(1− ε̂), then we apply Lemma 8 and we have

f(O∗) ≤ 2

α(1− ε̂)3(1− 2ε̂)
f(S)

≤ 2

α(1− ε̂)3(1− 2ε̂)
f(T) . (14)

Let’s now address the other case. We can argue as we did in
the monotone case: if we run 1

ε̂ log(1
ε̂) independent times

the algorithm, at least one of them respects c(S) < B(1
2−ε̂),

with probability at least (1 − ε̂) (the proof of this fact is
practically the same as the one of Lemma 6). Let’s call G
that event, similarly to what we have done in the main text.
Focus on that run and call E the event that in that run there is
a good element with respect to the solution not fitting in the
budget. Clearly there may be at most one such item which
belongs to the optimal solution O∗; we call such element x̃.
If x̃ exists, then c(x̃) ≥ B

2 . This is because in the budget
of THRESHSEQ, i.e., B(1− ε̂), at least B2 budget is empty,
under G.

f(O∗) ≤ f(S ∪O∗) = f(T ∪ (O∗ \ N−))

≤ f(T) + 1Ef(x̃ |T) +
∑

x∈O∗\{x̃}

f(x |T)

≤ f(T) + 1Ef(x∗) +
∑

x∈O∗\{x̃}

f(x |S)

≤ f(T) + 1E(f(x∗)− α f(O∗)
2) + αf(O∗) .

Passing to the expectation and calling q the conditioned
probability of the event E given G we have, similarly to the
main text:

f(O∗)

≤ E [f(O∗ ∪ S)]

= E [f(O∗ ∪ S) | G]P (G) + E
[
f(O∗ ∪ S) | GC

]
P
(
GC
)

≤ E [f(O∗ ∪ S) | G] (1− ε̂) + ε̂2f(O∗)

≤ (1 + q)(1− ε̂)ALG+ (2ε̂+ α(1− ε̂)(1− q
2))f(O) .

Notice we used the bound f(S ∪ O∗) ≤ 2f(O∗) which is
universal as long as c(S) ≤ B. Rearranging the terms we

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

have

f(O∗) ≤ (1 + q)(1− ε̂)
1− 2ε̂− α(1− ε̂)(1− q

2)
ALG . (15)

Putting together Equations (14) and (15) of this appendix
and setting α = 2

3 , we have

OPT ≤ (3 + 10ε̂)ALG ,

for any value of q. Rescaling ε̂ by a factor of 10 one yields
the desired result.

D. Non-Monotone Objectives and a
Cardinality Constraint

In presence of cardinality constraints, there is no need to
address separately small and large elements. Moreover,
when bounding the elements of the solution whose marginal
density is greater than τ but do not fit in the budget, we just
need to consider the case E [c(S)] > (1 − ε̂)k instead of
considering half of the “budget”.

If E [|S|] ≥ (1 − ε̂)k we have immediately a good bound
in expectation. Otherwise, if we run it at least 1

ε̂ log(1
ε̂)

independent times, we have that, with probability at least
(1− ε̂) the cardinality constraint k is not met, meaning that
all the good elements belong to the set G, as defined in the
main text. The full algorithm, PARCARDINAL, is presented
in Algorithm 6 below.

Algorithm 6 PARCARDINAL - Full algorithm for non-
monotone and a cardinality constraint

1: Input: Ground set N ,submodular function f , cardinal-
ity k, precision ε ∈ (0, 1), parameter α ∈ (0, 1) and
sampling probability p

2: x∗ ← maxx∈N f(x), τ̂ ← αn f(x∗)
k

3: ε̂← 1
70ε, `← 1

ε̂2 , k ← 1
ε̂ log(n)

4: H ← sample each element in N independently at ran-
dom with probability p

5: for i = 0, . . . , k in parallel do
6: τi ← τ̂ · (1− ε̂)i
7: for j = 1, . . . , 1

ε̂ log(1
ε̂) in parallel do

8: Sij ←THRESHSEQ(H, τi, ε̂, `, k)

9: T ← arg max{f(Sji), f(x∗)}
10: Return T

Theorem 7. For ε ∈ (0, 2/5) it is possible to achieve a
5.83 + ε approximation, in O(1

ε log n) adaptive rounds
and O(nkε3 log n log k log 1

ε) queries, or in O(1
ε log n log k)

adaptive rounds and O(nε3 log n log2 k log(1
ε)) queries.

Proof. PARCARDINAL with parameters α = 3 − 2
√

2,
p = (1 − α)/2 and ε ∈ (0, 2

5) does the job. The adaptive

and query complexity are as in the knapsack case. The only
difference is that now each sequence drawn from SAMPLE-
SEQ has at most length k. For the approximation guarantees,
we consider two cases, this time depending on the relative
ordering of E [|S|] and (1− ε̂)k.

If E [|S|] ≥ (1 − ε̂)k, then, by Lemma 4 of the main text,
we have

f(O∗) ≤ 1

α(1− ε̂)4
E [f(S)] . (16)

Otherwise, with probability at least ε, each run of the al-
gorithm does not fill all the cardinality constraint, meaning
that with 1

ε̂ log(1
ε̂) independent rounds one has that |S| < k

in at least one round with probability at least 1− ε̂; as usual
we call G that event. Focus on that round and recall the defi-
nition of G from Lemma 5: G contains the good elements
still fitting in the cardinality constraint. We have

f(S ∪OH)

≤ f(S) +
∑
x∈G

f(x |S) +
∑

x∈OH\(S∪G)

f(x |S)

≤ f(S)(1 + ε̂) + τc(OH) .

Passing to the conditional expectation with respect to G and
using f(S ∪OH) ≤ 2f(O∗) we have

p(1− p)f(O∗) ≤ E [f(S ∪OH)]

≤ E [f(S ∪OH) | G] (1− ε̂) + 2ε̂f(O∗)

≤ E [f(S)] (1 + ε̂)(1− ε̂)
+ αp(1− ε̂)f(O∗) + 2ε̂f(O∗) .

By rearranging the terms, we get

f(O∗) ≤ (1 + ε̂)(1− ε̂)
p(1− p− (1− ε̂)α− 2 ε̂p)

E [f(S)] , (17)

Plugging α = 3 − 2
√

2 and p = 1−α
2 in Equations (16)

and (17) of this appendix one gets

OPT ≤ (3 + 2
√

2 + 70ε̂)ALG .

If we rescale ε̂ = ε
70 , we have the desired result.

E. Experiments
The code of all the experiments is available at Apart from
GREEDY, all other algorithms need some constant param-
eters as part of the input, in addition to the submodu-
lar instance. The choice of ε for the ENV algorithm is
discussed in the main text. For SAMPLEGREEDY and
PARKNAPSACK, we set p = 0.9, without further optimiz-
ing it for each problem. Although this is not the theoretical
optimal, the instances in question come from real-world
datasets, which typically are not arbitrarily non-monotone.

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

As a result the algorithm can afford to discard elements at a
lower rate, as it is less likely that these will hurt the objective
in the long run. Moreover, we set ε = 1/8 for FANTOM
and ε = 1/8, α = 2 −

√
3 for PARKNAPSACK balancing

performance and running time. Each experiment on the top
row was repeated 3 times, to gain an estimate of the variance.
In total, the whole array of tests ran on four t2.micro
instances on the Amazon Elastic Compute Cloud (EC2),
which is part of Amazon Web Services (AWS).

Movie Recommendation. We outline how the weights
wij are created, given the MovieLens dataset. Each movie i
is associated with a tag vector ti ∈ [0, 1]1128, which encodes
how much each tag applies to it. The tags are user generated.
For example, a movie like “Titanic” could have a score
of 0.9 for “ships”, 0.8 for “romance” and 0 for “talking
animals”. These tag vectors are not normalized. Given
those, we compute the similarities as:

wij =

√√√√1128∑
k=1

(
min{tik, t

j
k}
)2

. (18)

This approach ensures that movies with tag vectors that are
close appear more similar. There are various trade-offs in
the selection of the similarity metric. For instance, if one
defined wij = ti · tj , then a movie with all tags set to 1
would appear more similar to any other movie, even when
comparing a movie with itself! Going to the other extreme,
if wij = ti · tj/(|ti||tj |) this issue would be avoided, but
some information would be lost as every movie would have
a normalised tag vector, even though having a high score on
one tag should not impact the score on other tags. Ultimately,
using (18) appears to be a reasonable compromise between
the two. We stress that our experimental findings about
the performance of each algorithm remain qualitatively the
same for any sensible choice of wij .

