Submodular Maximization Subject to a Knapsack Constraint:
Combinatorial Algorithms with Near-Optimal Adaptive Complexity

Georgios Amanatidis' Federico Fusco? Philip Lazos?> Stefano Leonardi?
Alberto Marchetti-Spaccamela’ Rebecca Reiffenhiiuser 2

Abstract

The growing need to deal with massive instances
motivates the design of algorithms balancing the
quality of the solution with applicability. For the
latter, an important measure is the adaptive com-
plexity, capturing the number of sequential rounds
of parallel computation needed. In this work we
obtain the first constant factor approximation al-
gorithm for non-monotone submodular maximiza-
tion subject to a knapsack constraint with near-
optimal O(log n) adaptive complexity. Low adap-
tivity by itself, however, is not enough: one needs
to account for the total number of function evalu-
ations (or value queries) as well. Our algorithm
asks O(n2) value queries, but can be modified
to run with only O(n) instead, while retaining a
low adaptive complexity of O(log® n). Besides
the above improvement in adaptivity, this is also
the first combinatorial approach with sublinear
adaptive complexity for the problem and yields
algorithms comparable to the state-of-the-art even
for the special cases of cardinality constraints or
monotone objectives. Finally, we showcase our
algorithms’ applicability on real-world datasets.

1. Introduction

Submodular optimization is a very popular topic that is
relevant to various research areas as it captures the natu-
ral notion of diminishing returns. Its numerous applica-
tions include viral marketing (Hartline et al., 2008; Kempe
et al., 2015), data summarization (Tschiatschek et al., 2014,
Mirzasoleiman et al., 2016; Badanidiyuru et al., 2020), fea-
ture selection (Das & Kempe, 2008; 2018; Mirzasoleiman
et al., 2020), and clustering (Mirzasoleiman et al., 2013).
Prominent examples from combinatorial optimization are

"University of Essex, United Kingdom. >Sapienza Univer-
sity of Rome, Italy. Correspondence to: Federico Fusco <fus-
cof @diag.uniromal.it>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

cut functions in graphs and coverage functions.

Submodularity is often implicitly associated with mono-
tonicity, and many results rely on that assumption. However,
non-monotone submodular functions do naturally arise in
applications, either directly or from combining monotone
submodular objectives and modular penalization or regu-
larization terms (Hartline et al., 2008; Tschiatschek et al.,
2014; Mirzasoleiman et al., 2016; Breuer et al., 2020; Ama-
natidis et al., 2020). Additional constraints, like cardinality,
matroid, knapsack, covering, and packing constraints, are
prevalent in applications and have been extensively studied.
In this list, knapsack constraints are among the most natural,
as they capture limitations on budget, time, or size of the ele-
ments. Like matroid constraints, they generalize cardinality
constraints, yet they are not captured by the former.

The main computational bottleneck in submodular optimiza-
tion comes from the necessity to repeatedly evaluate the
objective function for various candidate sets. These so-
called value queries are often notoriously heavy to compute,
e.g., for exemplar-based clustering (Dueck & Frey, 2007),
log-determinant of submatrices (Kazemi et al., 2018), and
accuracy of ML models (Das & Kempe, 2008; Khanna et al.,
2017). With real-world instances of these problems growing
to enormous sizes, simply reducing the number of queries
is not always sufficient and parallelisation has become an
increasingly central paradigm. However, classic results in
the area, often based on the greedy method, are inherently
sequential: the intuitive approach of building a solution
element-by-element contradicts the requirement of running
independent computations on many machines in parallel.
The degree to which an algorithm can be parallelized is mea-
sured by the notion of adaptive complexity, or adaptivity,
introduced in Balkanski et al. (2018). It is defined as the
number of sequential rounds of parallel computation needed
to terminate. In each of these rounds, polynomially many
value queries may be asked, but they can only depend on
the answers to queries issued in past rounds.

Contribution. We design the first combinatorial random-
ized algorithms for maximizing a (possibly) non-monotone
submodular function subject to a knapsack constraint that
combine constant approximation, low adaptive complexity,

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

and a small number of queries. In particular, we obtain

e a 9.465-approximation algorithm, PARKNAPSACK, that
has O(logn) adaptivity and uses O(n?log?n) value
queries. This is the first constant factor approximation
to the problem with optimal adaptive complexity up to a
O(loglogn) factor (Theorem 1).

e a variant of our algorithm with the same approxima-
tion, near-optimal O(n 1og3 n) query complexity, and
O(log® n) adaptivity (Theorem 2). This is the first con-
stant factor approximation algorithm that uses only O(n)
queries and has sublinear adaptivity.

e 3-approximation algorithms for momnotone objectives
that combine O(logn) adaptivity with O(n?log® n) to-
tal queries, and O(log® n) adaptivity with O(n log®n)
queries, respectively (Theorem 3). Even in the monotone
setting, the latter is the first O(1)-approximation algo-
rithm combining O(n) queries and sublinear adaptivity.

e 5.83-approximation algorithms for cardinality con-
straints that match or surpass the state-of-the-art when it
comes to the combination of approximation, adaptivity
and total queries (Theorem 4).

See Table 1 for an overview of our results.

Technical Challenges. Like existing work for cardinality
or matroid constraints, (e.g., Balkanski et al., 2019b; Breuer
et al., 2020), in order to reduce the adaptive complexity
we iteratively sample sequences of feasible elements and
add large chunks of them to our solution. However, knap-
sack constraints do not allow for the elegant counting argu-
ments used in the case of cardinality or matroid constraints.
The reason is that while the latter can be interpreted as a
1-independence system, a knapsack constraint induces a
©(n)-independence system, leading to poor results when
naively adjusting existing approaches. A natural and very
successful way of circumventing the resulting difficulties is
to turn towards a continuous version of the problem. This,
however requires evaluating the objective function also for
fractional sets, i.e., such algorithms require access to an
oracle for the multilinear relaxation and its gradient. Typ-
ically, these values are estimated by sampling, requiring
é(nQ) samples, see e.g. Chekuri & Quanrud (2019a). Our
choice to avoid the resulting increase in query complexity
and deal directly with the discreteness of the problem calls
for specifically tailored algorithmic approaches. Most cru-
cially, our main subroutine THRESHSEQ needs to balance a
suitable definition of good quality candidates with a way to
also reduce the size (not simply by cardinality, but a combi-
nation of overall cost and absolute marginal values) of the
candidate set by a constant factor in each adaptive round.

Both these goals are further hindered by our second main
challenge, non-monotonicity. In presence of elements with
negative marginals, not only is it harder to maintain a good
quality of our solution, but size measures like the over-

all absolute marginals of our candidate sets are no longer
inclusion-monotone. In fact, even one such element can
arbitrarily deteriorate intuitive quality measures like the
overall marginal density of the candidate set, causing a new
adaptive round. Our approach combines carefully designed
stopping times in THRESHSEQ with a separate handling of
the elements responsible for most of the above mentioned
discreteness issues, i.e., elements with cost less than 1/n of
the budget and elements of maximum value.

Related Work. Submodular maximization has been stud-
ied extensively since the seminal work of Nemhauser et al.
(1978). For monotone submodular objectives subject to a
knapsack constraint the —“;-approximation algorithm of
Sviridenko (2004) is best-possible, unless P = NP (Feige,
1998). For the non-monotone case, a number of continuous
greedy approaches (Feldman et al., 2011; Kulik et al., 2013;
Chekauri et al., 2014) led to the current best factor of e when
a knapsack, or any downward closed, constraint is involved.
Combinatorial approaches (Gupta et al., 2010; Amanatidis
et al., 2020) achieve somewhat worse approximation, but
are often significantly faster and thus relevant in practice.

While the notion of adaptivity has been explored in the con-
text of parallel algorithms and communication complexity
for a long time, (e.g., Valiant, 1975; Duris et al., 1987), the
adaptive complexity for submodular maximization was first
studied by Balkanski & Singer (2018). In that work, for
monotone objectives and a cardinality constraint, the au-
thors achieved an O(1) approximation with O(log n) adap-
tivity, along with an almost matching lower bound: to get
an o(log n) approximation, adaptivity must be € lolg‘_’lgo o).
This result has been then improved (Balkanski et al., 2019a;
Ene & Nguyen, 2019; Fahrbach et al., 2019a) and recently
Breuer et al. (2020) achieved an optimal 5 -approximation
in O(log n log? log k) adaptive rounds and O(n loglog k)
query complexity, where k is the cardinality constraint.

The study of adaptivity for non-monotone objectives was
initiated by Balkanski et al. (2018) again for a cardinality
constraint, showing a constant approximation in O(log2 n)
adaptive rounds, later improved by (Fahrbach et al., 2019b;
Ene & Nguyen, 2020; Kuhnle, 2021). Non-monotone max-
imization is also interesting in the unconstrained scenario.
Recently, Ene et al. (2018) and Chen et al. (2019) achieved
a 2 + ¢ approximation with constant adaptivity depending
only on . Note that the algorithm of Chen et al. (2019)
needs only O(n) value queries, where the O hides terms
poly-logarithmic in ¢! and n.

Richer constraints, e.g., matroids and multiple packing con-
straints, have also been studied (Balkanski et al., 2019b;
Ene et al., 2019; Chekuri & Quanrud, 2019a;b). For knap-
sack constraints (as a special case of packing constraints)
Ene et al. (2019) and Chekuri & Quanrud (2019a) provide
low adaptivity results—O(log® n) for non-monotone and

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

Reference Objective Constraint Approx. Adaptive Complexity Queries

Ene et al. (2019) General ~ Knapsack e+e O(log® n) O(n?)
Theorems 1 and 2 (this work) General Knapsack 9.465+¢ O(logn) || O(log®n) O(n?) || O(n)
Ene et al. (2019) Monotone Knapsack 25 +e O(logn) O(n?)

Chekuri & Quanrud (2019a) Monotone Knapsack 25 +€ O(logn) O(n?)
Theorem 3 (this work) Monotone Knapsack 3+¢ O(logn) || O(log®n) O(n?) || O(n)
Ene & Nguyen (2020) General k-Cardinality e+ ¢ O(logn) O(nk?)
Kuhnle (2021) General k-Cardinality 6+ ¢ O(logn) O(n)

Kuhnle (2021) General k-Cardinality 5.18 +¢ O(log”n) O(n)
Theorem 4 (this work) General k-Cardinality 5.83+¢ O(logn) | O(lognlogk) O(nk) | O(n)

Table 1: Our results—main result highlighted—compared to the state-of-the-art for low-adaptivity. Some lines present two
algorithms: in each entry where the two differ, the first term refers to one algorithm, the second to the other, consistently.
Bold indicates the best result(s) in each setting. In the last two columns the dependence on ¢ is omitted; in the last column

only the leading terms are stated.

O(logn) for monotone—via continuous approaches (see
Table 1; notice that the query complexity of these algorithms
is stated with respect to queries to f and not to its multi-
linear extension). Chekuri & Quanrud (2019a) also pro-
vide two combinatorial algorithms for the monotone case:
one with optimal approximation and adaptivity but O(n*)
value queries, and one with linear query complexity, opti-
mal adaptivity but an approximation factor parameterized
by maz,cpnc(x) which can be arbitrarily bad.

2. Preliminaries

Let f : 2V — R be a set function over a ground set A of
n elements. For S, T C N, f(S|T) denotes the marginal
value of S with respect to T', i.e., f(SUT) — f(T). To
ease notation, we write f(x | T') instead of f({z}|T'). The
function f is non-negative if f(S) > 0,¥S C N, monotone
if £(S) < f(T),VS,T C N, and submodular if f(z|T) <
f(xz]S),VS, T CNwithSCTandz ¢ T.

We study non-negative, possibly non-monotone, submodular
maximization under a knapsack constraint. Formally, we are
given a budget B > 0, a non-negative submodular function
f and a non-negative additive cost function ¢ : 2V — R.
The goal is to find O* € argmaxypcyr..(ry<p f(T). Let
OPT = f(O*) denote the value of such an optimal set.
Given a (randomized) algorithm for the problem, let ALG
denote the expected value of its output. We say that the
algorithm is a S-approximation algorithm if ALG - 5 >
OPT. Throughout this work we assume, without loss of
generality, that max,cn c(z) < B.

We assume access to f through value queries, i.e., for each
S C N, an oracle returns f(S) in constant time. Given
such an oracle for f, the adaptive complexity or adaptivity
of an algorithm is the minimum number of rounds in which

the algorithm makes O(poly(n)) independent queries to the
evaluation oracle. In each adaptive round the queries may
only depend on the answers to queries from past rounds.
With respect to the same oracle, the query complexity of an
algorithm is the total number of value queries it makes.

We finally state some widely known properties of submodu-
lar functions that are extensively used in the rest of the paper.
The first lemma summarizes two equivalent definitions of
submodular functions shown by Nemhauser et al. (1978).

Lemma 1. Let f : 2V — R be a submodular function
and S,T,U be any subsets of N, with S C T. Then

) fUIT) < fULS), @) fF(SIT) <3 pes f@|T).

The second lemma, Lemma 2.2 of Buchbinder et al. (2014),
is an important tool for tackling non-monotonicity.

Lemma 2 (Sampling Lemma). Let f : 2V — R be a
submodular function, X C N and X, be a random subset
of X, where each element of X is contained with probability
at most p. Then E [f(X,)] > (1 —p) f(0).

Finally, we assume access to SUBMODMAX, an uncon-
strained submodular maximization oracle. For instance,
this can be implemented via the combinatorial algorithm of
Chen et al. (2019), which outputs a (2+¢)-approximation of
maxycy f(T) for a given precision £ in O(1 log 1) adap-
tive rounds and linear query complexity. For our experi-
ments, we use the much simpler 4-approximation of Feige
et al. (2011), which has adaptive complexity of 1.

3. Non-Monotone Submodular Maximization

To achieve sublinear adaptivity we need to add large chunks
of elements to the solution without using intermediate value
queries. The sequence of elements that are candidates to be
added to the current solution is randomly drawn in SAM-

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

PLESEQ. This subroutine receives as input a partial solution
S, a set of feasible elements X and a budget, and outputs a
sequence A each element of which is sequentially drawn uni-
formly at random among the remaining elements of X that
do not cause S U A to exceed the budget. We do, however,
need to restrict ourselves to only adding a suitable prefix of
A; with each element added, the original “good” quality of
the leftover candidates in X can quickly deteriorate.

Algorithm 1 SAMPLESEQ(S, X, B)

1: Input: current solution S, set X of remaining elements
and budget B > 0
A—]] i1
while X # () do
Draw a; uniformly at random from X
A« [ala v 7ai717ai]
X+ {zeX\{a;}:c(z)+c(A)+¢S) < B}
1 1+1
return A = [a;,az, ..., a4

The selection of the prefix of the sequence A = [ay, . .., a4]
to be added to the current solution S is then done by
THRESHSEQ. Given a threshold 7, we add to S a pre-
fix A; = [a1,...,q;] such that for all j < i the average
contribution to S U A; of the elements in X \ A; is com-
parable to 7. Then the expected value of f(A;|S) should
be comparable to 7IE [¢(A;)]. In order to compute A; in one
single parallel round, one can a posteriori compute for each
prefix A; of A the a priori (with respect to the uniform
samples) expected marginal value of a;4.1; with a;41 drawn
uniformly at random from the elements in X \ A; still fitting
the budget, this means simply averaging over their marginal
densities. Since all the value queries depend only on S and
A, finding the prefix needs only a single adaptive round.

The crucial difficulty lies in the fact that limiting the ex-
pected marginal density is insufficient to bound the number
of adaptive steps. In the worst case, a single very negative
element could trigger this condition. We circumvent the
resulting adaptive complexity of up to n by imposing two
different stopping conditions. The cost condition, i.e. v* in
THRESHSEQ, is triggered once an e-fraction of all remain-
ing candidates’ cost is due to elements that are no longer
good, i.e., they now have marginal density below 7. The
value condition, corresponding to j* in THRESHSEQ, is
triggered at most ¢ times, which happens whenever the ele-
ments with negative marginal value make up an e-fraction
of the entire leftover marginal value. Now, in each adap-
tive step, either the overall cost or the summed-up marginal
contributions of the candidate set decrease by a factor of
(1 — €). These observations are formalized below.

Lemma 3. Ler x(X) = max,yex c(x)/c(y). Then
THRESHSEQ runs in O (Llog(nk(X))+ () adaptive
rounds and issues O (n2 (é lognk(X) + f)) value queries.

Algorithm 2 THRESHSEQ(X, 7, ¢, ¢, B)

1: Input: set X of elements, threshold 7 > 0, precision
e € (0,1), parameter ¢ and budget B
S« @, ctr <0
X+ {zeX: f(x)>rc(x)}
while X = () and ctr < ¢ do
[a1,as,...,a4) < SAMPLESEQ(S, X, B)
fori=1,...,ddo
A; {al,ag,...,ai}
X; {CLEX\AZ : c(a)—|—c(SUA,-) SB}
Gi+—{aeX;,: fla|]SUA;) >7-cla)}
EZ%{GGXZ]C(G,‘SUAZ) <0}
i* + min{i : ¢(G;) < (1 —¢e)e(X)}
J* e mingj Y ef(@lSUA) < Y |f(]SUA)I)
z€G; z€E;
13: k* < min{i*, j*}
14: S+ SU A+

— =
s N B A AR A i

»

15: X +— Gy~

16: if j* < * then
17: ctr < ctr+1
18: return S

Proof. The adaptive rounds correspond to iterations of the
while loop. In fact, once a new sequence is drawn by SAM-
PLESEQ, all the value queries needed are deterministically
induced by it and hence can be assigned to different in-
dependent machines. Gathering this information we can
determine £* and start another iteration of the while loop.
Bounding the number of such iterations where the value
condition is triggered is easy, since it is forced to be at most
£. For the cost condition we use the geometric decrease
in the total cost of X: every time it is triggered, the total
cost of the feasible elements X is decreased by at least a
(1 — &) factor. At the beginning of the algorithm, that cost
is at most Cn, with C' = max,cx ¢(z), and it needs to
decrease below ¢ = ming¢cx ¢(z) to ensure that X = ().
Call 7 the number of such rounds. In the worst case we
need Cn(1l — ¢)" < ¢, meaning that the adaptivity is upper
bounded by 1 log (n(X))-+/. Finally, notice that the query
complexity is just a n? factor greater than the adaptivity:
each adaptive round contains O(n?) value queries, since
the length of the sequence output by SAMPLESEQ may be
linear in n and for each prefix the value of the marginals of
all the remaining elements has to be considered. O

Having settled the adaptive and query complexity of
THRESHSEQ, we move to proving that our conditions ensure
good expected marginal density.

Lemmad4. Forany X, 7, ¢ € (0,1), £ and b, the random
set S output by THRESHSEQ is such that ¢(S) < B and
E[f(S)] = (1 —€)*TE[c(S)].

Proof. We first note that ¢(S) < B with probability 1 since

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

SAMPLESEQ always returns feasible sequences. The al-
gorithm adds a chunk of elements to the solution in each
iteration of the while loop. This, along with the fact that
each of these chunks is an ordered prefix of a sequence
output by SAMPLESEQ, induces a total ordering on the ele-
ments in S. To facilitate the presentation of this proof, we
imagine that the elements of S are added one after the other,
according to this total order. Let us call the ¢-th such element
s¢, and let F; denote the filtration capturing the randomness
of the algorithm up to, but excluding, the adding of s; to its
chunk’s random sequence. We show that whenever any s;
is added, its expected marginal density is at least (1 — £)?7.
Fix some s; and consider the iteration of the while loop in
which it is added to the solution. We denote with S,;4 the
partial solution at the beginning of that while loop, with X
the candidate set {x € N : f(z| Sowa) > 7 - c(x),c(x) +
¢(So1a) < B} at that point, and with A the sequence drawn
in that iteration by SAMPLESEQ. Let A(;) be the prefix of
A up to, and excluding, s;. Then Sy = S,1q U Ay is the
set of all elements added to the solution before s;. Note
that, given F, the sets X, S,;4 and A(t) are deterministic,
while the rest of A is random. Recall that s; is drawn
uniformly at random from X,y = {z € X \ Ay)|c(S) +
c(z) < B}. We need to show that E[f(s;|S:) | Fi] >
(1—&)%7E [c(s¢) | F¢], where the randomness is with respect
to the uniform sampling in X).

If s, is the first element in A, this holds since all the elements
in X exhibit a marginal density greater that 7. If s, is not the
first element, it means that the value and cost condition were
not triggered for the previous one. Call G and F the sets
of the good and negative elements with respect to Sy, i.e.,
G={r e Xy : f(x|S)>7c(r)fand B = {z € X :
f(z|S;) < 0}, which are also deterministically defined
by F;. Finally, let p, be P (s; = x| F;) which is equal to
| X ()| ! forall z € X ;) and zero otherwise, then

E[f(se|Se) | Fe] - (1 —5)2 E[(s¢) |ft] =
reX r€X
> > pef@]S) = (1-2)7 Y pac(a
reEGUE zeX
=ed pof@]S) =Y pelf(x]S)| (1)
zeG zeE
(1—¢e)r {sz —(1-9) pxC(x)} 2)
zeG zeX
(1—2¢) Zpg;[(x]Ss) — Te(x)}20. (3)
zeG

Expressions (1) and (2) are nonnegative since the value
and cost conditions were not triggered before adding s;.
Expression (3) is nonnegative by definition of G. We have
shown for all £ and F, the expected marginal density of the

t-th element (if any) added by our algorithm is large enough.
A careful recursive application of conditional expectation is
then enough to get the desired bound. We refer the interested
reader to the supplementary materials for the details. [

Having established that S has expected density compara-
ble to our threshold 7, we move on to showing that when
THRESHSEQ terminates, either a large portion of the budget
is used up in expectation, or we can bound the value of good
candidates that are left outside the solution.

Lemma 5. When THRESHSEQ ferminates we have f(S) >
el cq f(x|S), where G = {x € X\ S : f(z|S) >
Te(x), c(x) + ¢(5) < B}

Proof. THRESHSEQ terminates in one of two cases. Either
X is empty, meaning that there are no elements still fitting in
the budget whose marginal density is greater than 7—and in
that case the inequality we want to prove trivially holds—or
the value condition has been triggered ¢ times.

For the latter, suppose that the value condition was triggered
for the ¢th time during iteration ¢; of the while loop. Denote
by S;, the solution at the end of that iteration. We are inter-
ested in the sets X -, G-, E/j» of that particular iteration of
the while loop. In order to be consistent across iterations,
we use X(;), G(;), and E(;) to denote these sets for iteration
t;. Since the value condition was triggered during ¢;, we
have e Y, e £(2150) < Soep, [F(]S0)]
G (¢) is what we denoted by G in the statement and S, is S.
Also notice that E(;y N E,y = 0 for j # k.

Now, by non-negativity of f and Lemma 1, we have

0< /(S U UE(,))<fSt,Z +Z 3 flS)

1= lmeE()

Rearranging the terms and using the value condition, we get

J4)4
FSe) 2> > 1f@|Se) =Y e Y fl@]Sk)

i=1 z€E(; i=1 zeG,)

> le Z f(@]S,).

LEEG(g)

The last inequality follows from the submodularity of f and
the fact that that G(l) D) G(Q) D...D G(g). O

Lemma 5 still leaves a gap: how can we account for the
elements which have marginal density greater than 7 but
are not considered due to the budget constraint? It can be
the case that due to some poor random choices we initially
filled the solution with low quality elements, preventing the
algorithm at later stages to consider good elements with
large costs. To handle this, we need the following simple
lemma; we defer its proof to the supplementary material.

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

Lemma 6. Suppose that E [c(S)] < 2(1 — €). Then, run-
ning THRESHSEQ % 1og(%) times, with probability at least
(1 — &), there is at least one run where c(S) < £.

We can now present the full parallel algorithm PARKNAP-
SACK for the non-monotone case. It considers separately
the set N_ of “small” elements, each with cost smaller than
B/n, and the set of “large” elements N’y = A\ N_. The
set NV_ is fed to the low adaptive complexity unconstrained
maximization routine SUBMODMAX as discussed in Sec-
tion 2. For the large elements, PARKNAPSACK samples
each element of N, with probability p to get a random sub-
set H, and then it runs THRESHSEQ a logarithmic number
of times on H, in parallel, for different guesses of the “right”
threshold. The partition between N and NV_ is critical in
bounding the adaptivity of THRESHSEQ, as k(N) < n.

Algorithm 3 PARKNAPSACK(N, f, ¢, a, p, B)

1: Input: Ground set N, submodular function f, budget

B, precision ¢, parameter « and sampling probability p

N {zeN:clz) < B} Ny« N\N

¥ maxgen, f(r); T4 an@

€< ¢/125; L+ é72; k<« éllog(n)

S_ < SUBMODMAX(N_, &)

: H < sample each element in Ay independently at
random with probability p

: fori=0,1,...,kin parallel do

9: forj=1,2,...,6 'log(¢7!) in parallel do

10 S? < THRESHSEQ(H, 7;,€,(, B)

11: return T € argmaxi7j{f(5’;), flx*), f(S2)}

SRR

[c BN

Theorem 1. For a =2-3, p = FTQ and € < % PARK-
NAPSACK is a (9.465 + ¢)-approximation algorithm with
O(% logn) adaptivity and O(Z—; log®n logé) total queries.

Proof. Excluding the call to SUBMODMAX, the claim
on the adaptivity follows directly from Lemma 3 with
¢ = O(£72), and the observation that k(N ;) < n. The
adaptivity is indeed only due to THRESHSEQ, since the
guessing of the threshold, as well as the multiple runs of
THRESHSEQ, happen independently in parallel. Relative to
the query complexity, we have the bound in Lemma 3 mul-
tiplied by an extra O(IOE# log %) factor caused by the two
for loops. SUBMODMAX does not affect these asymptotics
since it has adaptivity bounded by O(%) and linear query
complexity.

Consider now the approximation guarantee. Call O* the
optimal solution, and O, O~ its intersections with ;. and
N_ respectively. We can upper bound f(O~) with the un-
constrained max on N_, since there are at most n elements
in N_ whose cost is at most % Using the combinatorial

algorithm of Chen et al. (2019), we get
flOT)<(2+46) - f(5-)<(2+8) - ALG. 4

Let O € argmax{f(T) : T C Ny, ¢(T) < B}, ie., O
is an optimal solution in Ny. Clearly f(O™) < f(O), so
we will upper bound the latter. Let Oy = O N H. By
submodularity and monotonicity of f(- N O), we have
pf(O) <E[f(Opg)]. Outside O, the function may be non-
monotone, so we need Lemma 2. In particular, we apply
it on the submodular function g(-) = f(- U O). Since
elements belong to H with probability p, for S C H we get

p(1=p)f(O) < (1 -p)E[f(On)] (5)
<E[E[f(SUOH)|Ox]|
=E[f(SUOH)] .

Let 7" = a.f(O)/B. By the parallel guesses we have that
there exists 7 = 7; such that (1 —&)7* <7 < 7*. This
directly follows from the definitions of 7* and 7 and the
fact that nf(z*) > f(O) > f(«*). We focus only on this
particular 7 and consider two cases, depending on E [¢(.5)],
where S is the set outputted by THRESHSEQ for 7. If
E[c(S)] > (1 —£)Z, then, from Lemma 4 we have

ALG > E[f(5)] > (1 - &)*7E[¢(S)] (6)
> (1-— é)%zf(O)L [Clgsﬂ >(1- é)“%f(O) -

IfE [¢(S)] < (1—&)Z we need a more careful analysis, via

Lemmata 5 and 6. Consider the multiple runs of THRESH-
SEQ corresponding to 7. Let G be the event that at least
one of those runs outputs S with ¢(S5) < g and consider
that solution; recall that P (G) > (1 — €) from Lemma 6.
What we want to bound is the total value of the elements of
Opg which are not in S. The ones retaining a good marginal
density with respect to .S can be divided into two categories,
depending on the reason why they were not added to S:

G={zxeH: f(x|S)>7c(x),c(z)+c(S) < B},
G={zeH:f(x|S)>rc(x), c(x)+c(S) > B}.
The total contribution of the elements in G can be bounded
applying Lemma 5. For G N Oy we know that it contains
at most one element z, since we are conditioning on G and
thus, if such Z exists, ¢(Z) > £. Moreover, f(Z) < f(z*).
Finally, we know that the marginal density of all the other

elements in Oy \ S is at most 7. Let £ be the event that
G N Oyp # B given G and q its probability. We have

f(SU0n) < f(5) +1e - f(2]5)

+Y f@ls)+ Y

zeG z€0H\(GUR)
<fS)A+8) +1e- (f(2|9) = 7e(Z)) + 7¢(On)
<FO)(L+8) +1e - (f(z*) —75) +7¢(On) -

f(=]S)

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

Keeping fixed H, let’s apply the expectation on the random-
ness in THRESHSEQ, conditioning on G and recalling that
both f(S) and f(«*) are upper bounded by ALG:

E[f(SUOR)|G] < (1 + €+ q)ALG + 7¢(On) — g7 2.

Now move on to the expectation with respect to H. Note
that by submodularity f(S U Opg) < 2f(0). We have

E[f(SUOm)]=E[f(SUOH)|G]IP(G)
+E[f(SUOR)|G°]P(GY)
<E[f(SUOR)|G] + 2:f(0).

Putting together the last two inequalities and recalling that
E [¢(Og)] = pc(O) < pB, we have

E[f(SUOn)] < (26+a—q5)f(O)+(1+Eé+q)ALG.
Combining that with Equation (5), we finally obtain

(1+q+¢)

(1_p)_ap+%_2é}ALG. 7)

f(0) <
[p

At this point we need to optimize the constants in Equa-
tions (4), (5) and (7), also using that OPT < f(O%) +
J(07) < J(0) + f(O7). Setting p = 1(V3 — 1),
a = 2—+/3and rescaling € = %5 we get, for small
enough £ and for any value of ¢ € (0, 1) the desired bound:
OPT < (2(3+V/3) +¢)ALG. O

3.1. Variants and Implications

As mentioned already, an interesting feature of our approach
is that—with few modifications—yields a number of algo-
rithms that match or improve the state-of-the-art. Due to
space constraints we only sketch these modifications here
and we defer the details to the supplementary material.

We begin with a discussion on the possible trade-offs be-
tween adaptivity and query complexity. THRESHSEQ can
be adapted to spare @(@) value queries at the cost of
O(logn) extra adaptive rounds. The idea is to use binary
search to locate k* in the while loop of THRESHSEQ. Only
a logarithmic number of prefixes needs to be sequentially
considered, instead of all of them in parallel. To be able to
binary search k*, though, a carefully modified version of
the value condition is implemented, since the one used in
THRESHSEQ exhibits a multi-modal behaviour.

Theorem 2. For e € (0,1/3), it is possible to achieve a
(9.465 + ¢)-approximation in O(% log? n) adaptive rounds
and O(Z log® nlog 1) queries.

Monotone Submodular Functions. For monotone objec-
tives, the approximation ratio of PARKNAPSACK can be
significantly improved. In particular, in THRESHSEQ, we

do not need to address the value condition any more. More-
over, the small elements can be accounted for without any
extra loss in the approximation. As in the case of Theorems
1 and 2, it is possible to trade a logarithmic loss in adaptivity
for an almost linear gain in query complexity.

Theorem 3. For ¢ € (0,1) it is possible to achieve
a 3 + € approximation in O(%log n) adaptive rounds
2
n

and O (%5 log® nlog 1) queries or in O(% log? n) adaptive

g3
rounds and O (25 log® nlog %) queries.

Note that the variant using O(n) queries is the first O(1)-
approximation algorithm for the problem combining this
few queries with sublinear adaptivity.

Cardinality Constraints. PARKNAPSACK can be di-
rectly applied to cardinality constraints for (possibly) non-
monotone objectives. Again with some simple modifica-
tions, it is possible to achieve a much better approximation.

Theorem 4. For ¢ € (0,2/5) it is possible to achieve a
5.83 + € approximation, in O(%logn) adaptive rounds
and O(2% log nlog klog 1) queries, or in O(% lognlog k)
adaptive rounds and O(Z; logn log?® k log(%)) queries.

Although we do not heavily adjust our algorithms to car-
dinality constraints, Theorem 4 is directly comparable to
the very recent results of Ene & Nguyen (2020) and Kuhnle
(2021) which are tailored for the problem.

Finally, it is natural to compare our PARKNAPSACK and
the ADAPTIVE SEQUENCING of Balkanski et al. (2019b)
for cardinality constraints and monotone objectives. While
the corresponding versions of our SAMPLESEQ and their
RANDOM SEQUENCE coincide, the full algorithms do not.
The reason is that the different thresholds in ADAPTIVE
SEQUENCING are used for the same solution, and thus the
algorithm cannot be parallelized to the extent that PARK-
NAPSACK can. Each call to our THRESHSEQ uses a single
threshold and so all of them can run in parallel. The result is
that PARKNAPSACK is O(log n)-adaptive while ADAPTIVE
SEQUENCING is O(log n log k)-adaptive.

4. Experiments

We evaluate the performance of PARKNAPSACK on real
datasets and real-world applications, as is often the case in
the related literature (Mirzasoleiman et al., 2016; Fahrbach
et al., 2019b; Amanatidis et al., 2020; Breuer et al., 2020;
Kuhnle, 2021). All three objectives we use are non-
monotone submodular. In our first set of experiments (Fig-
ure 1), we compare against the state-of-the-art of fast al-
gorithms for non-monotone submodular maximization sub-
ject to a knapsack constraint, in order to demonstrate that
PARKNAPSACK produces almost equally good solutions
with an exponential improvement on the adaptivity. We

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

x10° x 10"

x10°

95{ —— Fantom 30{ —t— Fantom
—— SampleGreedy —— SampleGreedy
20 PARKNAPSACK // >
—— Greedy —— Greedy

\\

Objective Function
Objective Function

3.0
25

PARKNAPSACK

/ -

—t+— Fantom
—— SampleGreedy

PARKNAPSACK

—— Greedy

Objective Function

0.02 0.04 0.06

Budget
(a) Movie Recommendation

0.08 0.01 0.02 0.03

x10° x10°

(b) Revenue Maximization

0.04
Budget

0.05 0.06 0 1000 2000

Number of Vertices

(c) Graph Cut on G(n,0.1)

x10*

3000 1000 5000

S

-

Fantom

—— Fantom
—— SampleGreedy
PARKNAPSACK

Objective Function
Objective Function

SampleGreedy
PARKNAPSACK
—— Greedy

o] f———

]

Greedy

5 50
Adaptive Steps

0.0

e

Fantom

SampleGreedy

=

PARKNAPSACK
Greedy

T

Bl o
Adaptive Steps

] 100
Adaptive Steps

0 2500 5000 7500 10000 12500 15000 17500 20000 0 5000 10000

Adaptive Steps

(d) Movie Recommendation

Adaptive Steps

(e) Revenue Maximization

T
15000 20000 25000 30000 0 2000 1000

Adaptive Steps

(f) Graph Cut on G(n,0.1)

6000 8000

Figure 1: Each of the columns contains two plots, corresponding to the same submodular problem. The top row contains
the objective function value for different budget or instance sizes. The bottom row focuses on one vertical slice of the top
one: for a specific budget and instance size, the objective value is presented as a function of the number of adaptive rounds,
indicating that if we required to stop after a small number of rounds all other algorithms would perform extremely poorly. In
all cases, the results are consistent: PARKNAPSACK has comparable performance, with drastically improved adaptivity.

provide two kinds of figures: objective versus budget (or in-
stance size) and objective versus adaptive steps, for a given
instance, as in Balkanski et al. (2018) and Fahrbach et al.
(2019b). We refer to the supplementary material for the
exact setup and implementation details, but we note that
we use the version of PARKNAPSACK from Theorem 2 to
ensure O(n) query complexity. The benchmarks we use
are plain GREEDY, FANTOM of Mirzasoleiman et al. (2016)
and SAMPLEGREEDY of Amanatidis et al. (2020). The
last two have the state-of-the-art performance in terms of
objective value for knapsack constraints among algorithms
with practical running times, i.e., among algorithms with
subquadratic query complexity. On the other hand, these
algorithms are not designed for low adaptivity but, the only
alternative, i.e., continuous methods, are impractical for
the instance sizes we consider. The GREEDY algorithm
builds a solution step by step by adding the element with
the highest marginal value, until the budget is exhausted.
While this naive approach has no theoretical guarantees, it is
very fast and often has acceptable performance in practice.
FANTOM builds on GREEDY and is robust for intersecting
p-systems and knapsack constraints providing a 10(1 + ¢)-
approximation for our setting. Finally, SAMPLEGREEDY
greedily selects elements according to their marginal value
per cost ratio, but only adds them to the solution with some
probability. This leads to a 5.83-approximation. These al-
gorithms need O(nlogn) queries and adaptive steps, when
implemented using with lazy evaluations (Minoux, 1978).

The obvious question here is how PARKNAPSACK performs

against the only other low-adaptivity algorithm for non-
monotone submodular objectives and a knapsack constraint,
namely Algorithm 3 of (Ene et al., 2019)—the ENV algo-
rithm for short. The main reason the ENV algorithm was not
included in the experiments of Figure 1 is that it is infeasible
to run it for instances of that size. Note that that the ENV
algorithm uses the multilinear extension F' of the objective
f and each evaluation of F" requires © (n?) evaluations of f.
So, in our second set of experiments (Figure 2), we focus on
smaller instances of Maximum Weighted Cut and directly
compare PARKNAPSACK and ENV with respect to their
adaptivity and the quality of their output. From the experi-
ments it results that PARKNAPSACKoutperforms ENV both
in terms of the adaptive complexity and the objective. We
use € < 0.1 for ENV, because its performance deteriorates
quickly as € grows, even after some tuning. The issue is
that, by design, the ENV algorithm does not perform much
better than its theoretical bound in terms of approximation,
even on well-behaved instances like we have here. Note that
the approximation ratio of ENV is 3.7 for ¢ = 0.1, but 29
fore = 1/3.

Movie Recommendation. Given a set of movies A, a list
of genres C; such that C; UCs U ... UC, = A and a
list of user generated keyword tags t;, and ratings 7,
where i € A and v is the id of a user, a movie recom-
mendation system aims to use this information to provide
a short list of diverse options that match certain prefer-
ences. The MovieLens dataset (Harper & Konstan, 2016)
provides a very large set of movies that include user gen-

https://grouplens.org/datasets/movielens/25m/

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

PARKNAPSACK X 10:;
—t+— ENV e=1/10 PARKNAPSACK

1000 —+ —— ENV e=1/20 —— ENV e=1/10
a —— ENV =1/30 o o] EW 120
‘;)B 3 21 e 1/30
2 g
5
a 500 @1
el [
< =

et
0 i ' 0
200 400 200 400

Number of Vertices Number of Vertices

Figure 2: The ENV algorithm actually finds a fractional
solution, which can be then rounded using some approx-
imation preserving scheme. We have chosen to omit this
rounding and report the performance of the fractional solu-
tion, to present a version of the algorithm that is as close to
the original as possible.

erated tags and ratings. We calculate the similarity be-
tween two movies (following the procedure of Amanatidis
et al. (2020); see also the supplementary material) and pro-
duce a weighted complete graph, where each vertex is a
movie. For i,j € A the weight w;; represents their simi-
larity. In addition, we use x;; to indicate if the two movies
share a genre. Putting everything together, the objective
function is: v(S) = a) cqmi + B e D jea Wis —
2ies 2jes(A + Xiju)wij) for Ay, B> 0 where 1;
represents the average rating of movie 4. This is a weighted
average of the ratings of the movies in S and a modified
maximal marginal relevance (Carbinell & Goldstein, 2017).
The second part is similar to a max cut (in fact it is a
max cut for A = 1 and p = 0), but allows the internal
edges to be penalized differently, depending on whether the
movies are similar or belong to the same genre. For the
experiments we consider a subset of 5000 movies and set
a =0 =0.5,A=3and u = 7. Each movie is assigned
a cost sampled uniformly from [0, 1] and the total budget
ranges from 0.01 to 0.1 of the total cost.

Revenue Maximization. Representing a social network
as a weighted graph, where each edge signifies how much
one user is influenced by another, our goal is to select a
subset S of users who are given a product to advertise,
in order to maximize the revenue from sales. We use the
YouTube Network (Yang & Leskovec, 2015), and consider
the subgraph induced by selecting its Top 5000 communities,
which has 39841 vertices and 224235 edges. We assign
edge weights w;; sampled uniformly in [0, 1] and each user
1 € V has a suggestibility parameter o; drawn from a Pareto
Type 1I distribution with A = 1, « = 2. The objective to

maximize is: v(S) = >_,cyn g @iy /Do jes Wij- Each user

is assigned a cost proportional to their incident edges, with
the budget ranging from 0.01 to 0.1 of the total cost.

Maximum Weighted Cut. Given an Erdés—Rényi graph
G(n, p) where n is the number of vertices and p the prob-
ability of including each edge, the objective is to find a
cut of maximum weight. Fixing p = 0.1, we let n €
{30,...,5000} (with an exponential step) and assign ran-
dom edge weights and costs sampled uniformly from [0, 1],
while the budget is fixed at 15% of the total cost.

5. Conclusions

In this paper we close the gap for the adaptive complexity of
non-monotone submodular maximization subject to a knap-
sack constraint, up to a O(log logn) factor. Our algorithm,
PARKNAPSACK, is combinatorial and can be modified to
achieve trade-offs between adaptivity and query complexity.
In particular, it may use nearly linear queries, while achiev-
ing an exponential improvement on adaptivity compared to
existing algorithms with subquadratic query complexity.

Acknowledgment

This work was supported by the ERC Advanced Grant
788893 AMDROMA “Algorithmic and Mechanism Design
Research in Online Markets”, the MIUR PRIN project AL-
GADIMAR “Algorithms, Games, and Digital Markets”, and
the NWO Veni project No. VI.Veni.192.153.

References

Amanatidis, G., Fusco, F., Lazos, P.,, Leonardi, S., and Reif-
fenhiuser, R. Fast adaptive non-monotone submodular
maximization subject to a knapsack constraint. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

Badanidiyuru, A., Karbasi, A., Kazemi, E., and Vondrék,
J. Submodular maximization through barrier functions.
In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Balkanski, E. and Singer, Y. The adaptive complexity of
maximizing a submodular function. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pp. 1138-1151. ACM, 2018.

Balkanski, E., Breuer, A., and Singer, Y. Non-monotone
submodular maximization in exponentially fewer itera-
tions. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information

https://snap.stanford.edu/data/com-Youtube.html

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pp. 2359-2370, 2018.

Balkanski, E., Rubinstein, A., and Singer, Y. An exponential
speedup in parallel running time for submodular maxi-
mization without loss in approximation. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pp. 283-302. STIAM, 2019a.

Balkanski, E., Rubinstein, A., and Singer, Y. An optimal
approximation for submodular maximization under a ma-
troid constraint in the adaptive complexity model. In
Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pp. 66-77. ACM, 2019b.

Breuer, A., Balkanski, E., and Singer, Y. The FAST al-
gorithm for submodular maximization. In Proceedings
of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp.
1134-1143. PMLR, 2020.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R.
Submodular maximization with cardinality constraints.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Port-
land, Oregon, USA, January 5-7, 2014, pp. 1433—-1452.
SIAM, 2014.

Carbinell, J. and Goldstein, J. The use of MMR, diversity-
based reranking for reordering documents and producing
summaries. SIGIR Forum, 51(2):209-210, 2017.

Chekuri, C. and Quanrud, K. Submodular function max-
imization in parallel via the multilinear relaxation. In
Proceedings of the Thirtieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pp. 303-322. SIAM,
2019a.

Chekuri, C. and Quanrud, K. Parallelizing greedy for
submodular set function maximization in matroids and
beyond. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pp. 78-89.
ACM, 2019b.

Chekuri, C., Vondrak, J., and Zenklusen, R. Submodular
function maximization via the multilinear relaxation and
contention resolution schemes. SIAM J. Comput., 43(6):
1831-1879, 2014.

Chen, L., Feldman, M., and Karbasi, A. Unconstrained sub-
modular maximization with constant adaptive complexity.

In Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pp. 102-113. ACM, 2019.

Das, A. and Kempe, D. Algorithms for subset selection in
linear regression. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pp. 45-54. ACM,
2008.

Das, A. and Kempe, D. Approximate submodularity and its
applications: Subset selection, sparse approximation and
dictionary selection. J. Mach. Learn. Res., 19:3:1-3:34,
2018.

Dueck, D. and Frey, B. J. Non-metric affinity propagation
for unsupervised image categorization. In IEEE 11th In-
ternational Conference on Computer Vision, ICCV 2007,
Rio de Janeiro, Brazil, October 14-20, 2007, pp. 1-8.
IEEE Computer Society, 2007.

Duris, P., Galil, Z., and Schnitger, G. Lower bounds on
communication complexity. Inf. Comput., 73(1):1-22,
1987.

Ene, A. and Nguyen, H. L. Submodular maximization with
nearly-optimal approximation and adaptivity in nearly-
linear time. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019,
San Diego, California, USA, January 6-9, 2019, pp. 274-
282. SIAM, 2019.

Ene, A. and Nguyen, H. L. Parallel algorithm for non-
monotone DR-submodular maximization. In Proceedings
of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp.
2902-2911. PMLR, 2020.

Ene, A., Nguyen, H. L., and Vladu, A. A parallel double
greedy algorithm for submodular maximization. CoRR,
abs/1812.01591, 2018.

Ene, A., Nguyen, H. L., and Vladu, A. Submodular maxi-
mization with matroid and packing constraints in parallel.
In Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pp. 90-101. ACM, 2019.

Fahrbach, M., Mirrokni, V. S., and Zadimoghaddam, M.
Submodular maximization with nearly optimal approxi-
mation, adaptivity and query complexity. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pp. 255-273. SIAM, 2019a.

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

Fahrbach, M., Mirrokni, V. S., and Zadimoghaddam, M.
Non-monotone submodular maximization with nearly op-
timal adaptivity and query complexity. In Proceedings of
the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning
Research, pp. 1833-1842. PMLR, 2019b.

Feige, U. A threshold of In n for approximating set cover. J.
ACM, 45(4):634-652, 1998.

Feige, U., Mirrokni, V. S., and Vondrak, J. Maximizing
non-monotone submodular functions. SIAM J. Comput.,
40(4):1133-1153, 2011.

Feldman, M., Naor, J., and Schwartz, R. A unified continu-
ous greedy algorithm for submodular maximization. In
IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, Oc-
tober 22-25, 2011, pp. 570-579. IEEE Computer Society,
2011.

Gupta, A., Roth, A., Schoenebeck, G., and Talwar, K. Con-
strained non-monotone submodular maximization: Of-
fline and secretary algorithms. In Internet and Network
Economics - 6th International Workshop, WINE 2010,
Stanford, CA, USA, December 13-17, 2010. Proceedings,
volume 6484 of Lecture Notes in Computer Science, pp.
246-257. Springer, 2010.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4):19:1-19:19, 2016.

Hartline, J. D., Mirrokni, V. S., and Sundararajan, M. Op-
timal marketing strategies over social networks. In Pro-
ceedings of the 17th International Conference on World
Wide Web, WWW 2008, Beijing, China, April 21-25, 2008,
pp- 189-198. ACM, 2008.

Kazemi, E., Zadimoghaddam, M., and Karbasi, A. Scalable
deletion-robust submodular maximization: Data summa-
rization with privacy and fairness constraints. In Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmdssan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 2549-2558. PMLR,
2018.

Kempe, D., Kleinberg, J. M., and Tardos, E. Maximizing
the spread of influence through a social network. Theory
Comput., 11:105-147, 2015.

Khanna, R., Elenberg, E. R., Dimakis, A. G., Negahban,
S. N., and Ghosh, J. Scalable greedy feature selection via
weak submodularity. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics,

AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL,
USA, volume 54 of Proceedings of Machine Learning
Research, pp. 1560-1568. PMLR, 2017.

Kuhnle, A. Nearly linear-time, parallelizable algorithms for
non-monotone submodular maximization. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pp. 8200-8208.
AAAI Press, 2021.

Kulik, A., Shachnai, H., and Tamir, T. Approximations for
monotone and nonmonotone submodular maximization
with knapsack constraints. Math. Oper. Res., 38(4):729—
739, 2013.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization Techniques,
pp- 234-243, Berlin, Heidelberg, 1978. Springer Berlin
Heidelberg.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause,
A. Distributed submodular maximization: Identifying
representative elements in massive data. In Advances in
Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pp. 2049-2057, 2013.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A. Fast
constrained submodular maximization: Personalized data
summarization. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pp. 1358—1367.
JMLR.org, 2016.

Mirzasoleiman, B., Bilmes, J. A., and Leskovec, J. Coresets
for data-efficient training of machine learning models.
In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pp. 6950-6960. PMLR, 2020.

Nembhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions - I. Math. Program., 14(1):265-294, 1978.

Sviridenko, M. A note on maximizing a submodular set
function subject to a knapsack constraint. Oper: Res. Lett.,
32(1):41-43, 2004.

Tschiatschek, S., Iyer, R. K., Wei, H., and Bilmes, J. A.
Learning mixtures of submodular functions for image
collection summarization. In Advances in Neural Infor-
mation Processing Systems 27: Annual Conference on

Near-Optimal Adaptive Complexity for Submodular Maximization Subject to a Knapsack Constraint

Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pp. 1413-1421,
2014.

Valiant, L. G. Parallelism in comparison problems. SIAM J.
Comput., 4(3):348-355, 1975.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181-213, 2015.

