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Abstract

Safety in reinforcement learning has become in-
creasingly important in recent years. Yet, exist-
ing solutions either fail to strictly avoid choos-
ing unsafe actions, which may lead to catas-
trophic results in safety-critical systems, or fail
to provide regret guarantees for settings where
safety constraints need to be learned. In this pa-
per, we address both problems by first model-
ing safety as an unknown linear cost function
of states and actions, which must always fall
below a certain threshold. We then present al-
gorithms, termed SLUCB-QVI and RSLUCB-
QVI, for finite-horizon Markov decision pro-
cesses (MDPs) with linear function approxima-
tion. We show that SLUCB-QVI and RSLUCB-
QVI, while with no safety violation, achieve a
Õ
(
κ
√
d3H3T

)
regret, nearly matching that of

state-of-the-art unsafe algorithms, where H is the
duration of each episode, d is the dimension of the
feature mapping, κ is a constant characterizing
the safety constraints, and T is the total number
of action played. We further present numerical
simulations that corroborate our theoretical find-
ings.

1. Introduction
Reinforcement Learning (RL) is the study of an agent trying
to maximize its expected cumulative reward by interacting
with an unknown environment over time (Sutton and Barto,
2018). In most classical RL algorithms, agents aim to max-
imize a long term gain by exploring all possible actions.
However, freely exploring all actions may be harmful in
many real-world systems where playing even one unsafe
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action may lead to catastrophic results. Thus, safety in RL
has become a serious issue that restricts the applicability of
RL algorithms to many real-world systems. For example,
in a self-driving car, it is critical to explore those policies
that avoid crash and damage to the car, people and property.
Switching cost limitations in medical applications (Bai et al.,
2019) and legal restrictions in financial managements (Abe
et al., 2010) are other examples of safety-critical applica-
tions. All the aforementioned safety-critical environments
introduce the new challenge of balancing the goal of reward
maximization with the restriction of playing safe actions.

To address this major concern, the learning algorithm needs
to guarantee that it does not violate certain safety constraints.
From a bandit optimization point of view, (Amani et al.,
2019; Pacchiano et al., 2020; Amani and Thrampoulidis,
2021; Moradipari et al., 2019) study a linear bandit problem,
in which, at each round, a linear cost constraint needs to be
satisfied with high probability. For this problem, they pro-
pose no-regret algorithms that with high probability never
violate the constraints. There has been a surge of research
activity to address the issue of safe exploration in RL when
the environment is modeled via the more challenging and
complex setting of an unknown MDP. Many of existing algo-
rithms model the safety in RL via Constrained Markov Deci-
sion Process (CMDP), that extends the classical MDP to set-
tings with extra constraints on the total expected cost over a
horizon. To address the safety requirements in CMDPs, dif-
ferent approaches such as Primal-Dual Policy Optimization
(Paternain et al., 2019b;a; Stooke et al., 2020), Constrained
Policy Optimization (Achiam et al., 2017; Yang et al., 2020),
and Reward Constrained Policy Optimization (Tessler et al.,
2018) have been proposed. These algorithms come with
either no theoretical guarantees or asymptotic convergence
guarantee in the batch offline setting. In another line of
work studying CMDP in online settings, (Efroni et al., 2020;
Turchetta et al., 2020; Garcelon et al., 2020; Zheng and
Ratliff, 2020; Ding et al., 2020a; Qiu et al., 2020; Ding
et al., 2020b; Xu et al., 2020; Kalagarla et al., 2020) propose
algorithms coming with sub-linear bounds on the number
of constraint violation. Additionally, the safety constraint
considered in the aforementioned papers is defined by the
cumulative expected cost over a horizon falling below a
certain threshold.

In this paper, we propose an upper confidence bound (UCB)-
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based algorithm – termed Safe Linear UCB Q/V Iteration
(SLUCB-QVI) – with the focus on deterministic policy se-
lection respecting a more restrictive notion of safety require-
ments that must be satisfied at each time-step an action is
played with high probability. We also present Randomized
SLUCB-QVI (RSLUCB-QVI), a safe algorithm focusing
on randomized policy selection without any constraint vi-
olation. For both algorithms, we assume the underlying
MDP has linear structure and prove a regret bound that is
order-wise comparable to those of its unsafe counter-parts.

Our main technical contributions allowing us to guarantee
sub-linear regret bound while the safety constraints are never
violated, include: 1) conservatively selecting actions from
properly defined subsets of the unknown safe sets; and 2)
exploiting careful algorithmic designs to ensure optimism
in the face of safety constraints, i.e., the value function of
our proposed algorithms are greater than the optimal value
functions. See Sections 2,3, and 4 for details.

Notation. We start by introducing a set of notations that
are used throughout the paper. We use lower-case letters
for scalars, lower-case bold letters for vectors, and upper-
case bold letters for matrices. The Euclidean-norm of x is
denoted by‖x‖2. We denote the transpose of any column
vector x by x>. For any vectors x and y, we use 〈x,y〉
to denote their inner product. Let A be a positive definite
d× d matrix and ν ∈ Rd. The weighted 2-norm of ν with
respect to A is defined by‖ν‖A =

√
ν>Aν. For positive

integer n, [n] denotes the {1, 2, . . . , n}. We use ei to denote
the i-th standard basis vector. Finally, we use standard Õ
notation for big-O notation that ignores logarithmic factors.

1.1. Problem formulation

Finite-horizon Markov decision process. We consider
a finite-horizon Markov decision process (MDP) denoted
by M = (S,A, H,P, r, c), where S is the state set, A is
the action set, H is the length of each episode (horizon),
P = {Ph}Hh=1 are the transition probabilities, r = {rh}Hh=1

are the reward functions, and c = {ch}Hh=1 are the safety
measures. For each time-step h ∈ [H], Ph(s′|s, a) de-
notes the probability of transitioning to state s′ upon play-
ing action a at state s, and rh : S × A → [0, 1] and
ch : S×A → [0, 1] are reward and constraint functions. We
consider the learning problem where S and A are known,
while the transition probabilities Ph, rewards rh and safety
measures ch are unknown to the agent and must be learned
online. The agent interacts with its unknown environment
described by M in episodes. In particular, at each episode k
and time-step h ∈ [H], the agent observes the state skh, plays
an action akh ∈ A, and observes a reward rkh := rh(skh, a

k
h)

and a noise-perturbed safety measure zkh := ch(skh, a
k
h)+εkh,

where εkh is a random additive noise.

Safety Constraint. We assume that the underlying system

is safety-critical and the learning environment is subject to
a side constraint that restricts the choice of actions. At each
episode k and time-step h ∈ [H], when being in state skh,
the agent must select a safe action akh such that

ch(skh, a
k
h) ≤ τ (1)

with high probability, where τ is a known constant. We
accordingly define the unknown safe action sets as

Asafe
h (s) := {a ∈ A : ch(s, a) ≤ τ}, ∀(s, h) ∈ S × [H].

Thus, after observing state skh at episode k and time-step h ∈
[H], the agent’s choice of action must belong to Asafe

h (skh)
with high probability. As a motivating example, consider a
self-driving car. On the one hand, the agent (car) is rewarded
for getting from point one to point two as fast as possible.
On the other hand, the driving behavior must be constrained
to respect traffic safety standards.

Goal. A safe deterministic policy is a function π : S ×
[H] → A, such that π(s, h) ∈ Asafe

h (s) is the safe action
the policy π suggests the agent to play at time-step h ∈ [H]
and state s ∈ S. Thus, we define the set of safe policies by

Πsafe :=
{
π : π(s, h) ∈ Asafe

h (s), ∀(s, h) ∈ S × [H]
}
.

For each h ∈ [H], the cumulative expected reward obtained
under a safe policy π ∈ Πsafe during and after time-step h,
known as the value function V πh : S → R, is defined by

V πh (s) := E

 H∑
h′=h

rh′
(
sh′ , π(sh′ , h

′)
)∣∣∣∣∣∣ sh = s

 , (2)

where the expectation is over the environment. We also
define the state-action value action Qπh : S ×Asafe

h (.)→ R
for a safe policy π ∈ Πsafe at time-step h ∈ [H] by

Qπh(s, a) := E

 H∑
h′=h+1

rh′
(
sh′ , π(sh′ , h

′)
)∣∣∣∣∣∣ sh = s, ah = a

 .
(3)

To simplify the notation, for any function f , we de-
note [Phf ](s, a) := Es′∼Ph(.|s,a)f(s′). Let π∗ be the
optimal safe policy such that V π∗h (s) := V ∗h (s) =
supπ∈Πsafe V πh (s) for all (s, h) ∈ S × [H]. Thus, for all
(s, h) ∈ S × [H] and a ∈ Asafe

h (s), the Bellman equations
for an arbitrary safe policy π ∈ Πsafe and the optimal safe
policy are:

Qπh(s, a) = rh(s, a) + [PhV πh+1](s, a),

V πh (s) = Qπh(s, π(s, h)), (4)
Q∗h(s, a) = rh(s, a) + [PhV ∗h+1](s, a),

V ∗h (s) = max
a∈Asafe

h (s)
Q∗h(s, a), (5)
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where V πH+1(s) = V ∗H+1(s) = 0. Note that in classical RL
without safety constraints, the Bellman optimality equation
implies that there exists at least one optimal policy that is
deterministic (see (Bertsekas et al., 2000; Szepesvári, 2010;
Sutton and Barto, 2018)). When considering solving the
Bellman equation for the optimal policy, the presence of
safety constraints is equivalent to solving it for an MDP
without constraints but with different action sets for each
(s, h) ∈ S × [H], i.e., Asafe

h (s).

Let K be the total number of episodes, sk1 be the initial state
at the beginning of episode k ∈ [K] and πk be the high
probability safe policy chosen by the agent during episode
k ∈ [K]. Then the cumulative pseudo-regret is defined by

RK :=

K∑
k=1

V ∗1 (sk1)− V πk1 (sk1). (6)

The agent’s goal is to keep RK as small as possible
(RK/K → 0 as K grows large) without violating the safety
constraint in the process, i.e., πk ∈ Πsafe for all k ∈ [K]
with high probability.

Linear Function Approximation. We focus on MDPs
with linear transition kernels, reward, and cost functions
that are encapsulated in the following assumption.

Assumption 1 (Linear MDP (Bradtke and Barto, 1996;
Yang and Wang, 2019; Jin et al., 2020)). M =
(S,A, H,P, r, c) is a linear MDP with feature map φ :
S×A → Rd, if for any h ∈ [H], there exist d unknown mea-
sures µ∗h := [µ∗h

(1), . . . , µ∗h
(d)]> over S , and unknown vec-

tors θ∗h,γ
∗
h ∈ Rd such that Ph(.|s, a) =

〈
µ∗h(.),φ(s, a)

〉
,

rh(s, a) =
〈
θ∗h,φ(s, a)

〉
, and ch(s, a) =

〈
γ∗h,φ(s, a)

〉
.

This assumption highlights the definition of linear MDP, in
which the Markov transition model, the reward functions,
and the cost functions are linear in a feature mapping φ.

1.2. Related works

Safe RL with randomized policies: The problem of Safe
RL formulated with Constrained Markov Decision Process
(CMDP) with a focus on unknown dynamics and random-
ized policies is studied in (Efroni et al., 2020; Turchetta
et al., 2020; Garcelon et al., 2020; Zheng and Ratliff, 2020;
Ding et al., 2020a; Qiu et al., 2020; Ding et al., 2020b; Xu
et al., 2020; Kalagarla et al., 2020). In the above-mentioned
papers, the goal is to find the optimal randomized policy that
maximizes the reward value function V πr (s) (expected total
reward) while ensuring the cost value function V πc (s) (ex-
pected total cost) does not exceed a certain threshold. This
safety requirement is defined over a horizon, in expectation
with respect to the environment and the randomization of
the policy, and consequently is less strict than the safety re-
quirement considered in this paper, which must be satisfied

at each time-step an action is played. In addition to their
different problem formulations, the theoretical guarantees
of these works fundamentally differ from the ones provided
in our paper. The recent closely-related work of (Ding
et al., 2020a) studies constrained finite-horizon MDPs with
a linear structure as considered in our paper via a primal-
dual-type policy optimization algorithm that achieves a
O(dH2.5

√
T ) regret and constraint violation and can only

be applied to settings with finite action setA. The algorithm
of (Efroni et al., 2020) obtains a O(|S|H2

√
|S||A|T ) re-

gret and constraint violation in the episodic finite-horizon
tabular setting via linear program and primal-dual policy
optimization. In (Qiu et al., 2020), the authors study an ad-
versarial stochastic shortest path problem under constraints
withO(|S|H

√
|A|T ) regret and constraint violation. (Ding

et al., 2020b) proposes a primal-dual algorithm for solving
discounted infinite horizon CMDPs that achieves a global
convergence with rate O(1/

√
T ) regarding both the opti-

mality gap and the constraint violation. In contrast to the
aforementioned works which can only guarantee bounds
on the number of constraint violation, our algorithms never
violate the safety constraint during the learning process.

Besides primal-dual methods, in (Chow et al., 2018) Lya-
punov functions are leveraged to handle the constraints. (Yu
et al., 2019) proposes a constrained policy gradient algo-
rithm with convergence guarantee. Both above-stated works
focus on solving CMDPs with known transition model and
constraint function without providing regret guarantees.

Safe RL with GPs and deterministic transition model
and policies: In another line of work, (Turchetta et al.,
2016; Berkenkamp et al., 2017; Wachi et al., 2018; Wachi
and Sui, 2020) use Gaussian processes to model the dynam-
ics with deterministic transitions and/or the value function
in order to be able to estimate the constraints and guarantee
safe learning. Despite the fact that some of these algorithms
are approximately safe, analysing the convergence is chal-
lenging and the regret analysis is lacking.

2. Safe Linear UCB Q/V Iteration
In this section, we present Safe Linear Upper Confidence
Bound Q/V Iteration (SLUCB-QVI) summarized in Algo-
rithm 1, which is followed by a high-level description of its
performance in Section 2. First, we introduce the following
necessary assumption and set of notations used in describing
Algorithm 1 and its analysis in the next sections.

Assumption 2 (Non-empty safe sets). For all s ∈
S, there exists a known safe action a0(s) such that
a0(s) ∈ Asafe

h (s) with known safety measure τh(s) :=〈
φ
(
s, a0 (s)

)
,γ∗h

〉
< τ for all h ∈ [H] .

Knowing safe actions a0(s) is necessary for solving the safe
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linear MDP setting studied in this paper, which requires
the constraint (1) to be satisfied from the very first round.
This assumption is also realistic in many practical examples,
where the known safe action could be the one suggested by
the current strategy of the company or a very cost-neutral
action that does not necessarily have high reward but its
cost is far from the threshold. It is possible to relax the
assumption of knowing the cost of the safe actions τh(s). In
this case, the agent starts by playing a0(s) for Th(s) rounds
at time-steps h in order to construct a conservative estimator
for the gap τ − τh(s). Th(s) is selected in an adaptive way
and in Appendix A.4, we show that 16 log(K)

(τ−τh(s))2 ≤ Th(s) ≤
64 log(K)

(τ−τh(s))2 . After Th(s) rounds, the agent relies on these
estimates of τh(s) in the computation of estimated safe set
of policies (discussed shortly).

Notations. For any vector x ∈ Rd, define the normal-
ized vector x̃ := x

‖x‖2
. We define the span of the safe

feature φ
(
s, a0 (s)

)
as Vs = span

(
φ
(
s, a0 (s)

))
:={

αφ
(
s, a0 (s)

)
: α ∈ R

}
and the orthogonal complement

of Vs as V⊥s := {y ∈ Rd : 〈y,x〉 = 0, ∀x ∈
Vs}. For any x ∈ Rd, denote by Φ0(s,x) :=〈
x, φ̃

(
s, a0 (s)

)〉
φ̃
(
s, a0 (s)

)
its projection on Vs, and,

by Φ⊥0 (s,x) := x − Φ0(s,x) its projection onto the or-
thogonal subspace V⊥s . Moreover, for ease of notation, let
φkh := φ(skh, a

k
h).

Algorithm 1 SLUCB-QVI

1: Input:A, λ, δ, H , K, τ , κh(s)
2: A1

h = λI , A1
h,s =

λ

(
I − φ̃

(
s, a0 (s)

)
φ̃
> (
s, a0 (s)

))
b1
h = r1

h,s =

0, ∀(s, h) ∈ S × [H], QkH+1(., .) = 0, ∀k ∈ [K]
3: for episodes k = 1 to K do
4: Observe the initial state sk1 .
5: for time-steps h = H to 1 do
6: Compute Akh(s) as in (9) ∀s ∈ S .
7: Compute Qkh(s, a) as in (10) ∀(s, a) ∈ S ×Akh(.).
8: end for
9: for time-steps h = 1 to H do

10: Play akh = arg maxa∈Akh(skh)Q
k
h(skh, a) and ob-

serve skh+1, rkh and zkh.
11: end for
12: end for

2.1. Overview

From a high-level point of view, our algorithm is the safe
version of LSVI-UCB proposed by (Jin et al., 2020). In
particular, each episode consists of two loops over all time-

steps. The first loop (Lines 5-8) updates the quantities Akh,
estimated safe sets, and Qkh, action-value function, that are
used to execute the upper confidence bound policy akh =
arg maxa∈Akh(skh)Q

k
h(skh, a) in the second loop (Lines 9-

11). The key difference between SLUCB-QVI and LSVI-
UCB is the requirement that chosen actions akh must always
belong to unknown safe sets Asafe

h (skh). To this end, at each
episode k ∈ [K], in an extra step in the first loop (Line 6),
the agent computes a set Akh(s) for all s ∈ S, which we
will show is guaranteed to be a subset of the unknown safe
set Asafe

h (s), and therefore, is a good candidate to select
action akh from in the second loop (Line 10). Construction
of Akh(s) depends on an appropriate confidence set around
the unknown parameter γ∗h used in the definition of safety
constraints (see Assumption 1). Since the agent has knowl-
edge of τh(s) :=

〈
φ
(
s, a0 (s)

)
,γ∗h

〉
(see Assumption

2), it can compute zkh,s :=

〈
Φ⊥0

(
s,φkh

)
,Φ⊥0

(
s,γ∗h

)〉
+

εkh = zkh −

〈
φk

h,
˜φ(s,a0(s))

〉
∥∥∥φ(s,a0(s))

∥∥∥
2

τh(s), i.e., the cost incurred

by akh along the subspace V⊥s , which is orthogonal to
φ
(
s, a0 (s)

)
. Thus, the agent does not need to build con-

fidence sets around γ∗h along the normalized safe feature
vector, φ̃

(
s, a0 (s)

)
. Instead, it only builds the following

confidence sets around Φ⊥0
(
s,γ∗h

)
which is along the or-

thogonal direction of φ̃
(
s, a0 (s)

)
:

Ckh(s) :=

{
ν ∈ Rd :

∥∥∥ν − γkh,s

∥∥∥
Ak
h,s

≤ β

}
, (7)

where γkh,s :=
(
Ak
h,s

)−1

rkh,s is the regu-

larized least-squares estimator of Φ⊥0
(
s,γ∗h

)
computed by the inverse of Gram matrix

Ak
h,s := λ

(
I − φ̃

(
s, a0 (s)

)
φ̃
> (
s, a0 (s)

))
+∑k−1

j=1 Φ⊥0

(
s,φjh

)
Φ⊥,>0

(
s,φjh

)
and rkh,s :=∑k−1

j=1 z
j
h,sΦ

⊥
0

(
s,φjh

)
. The exploration factor β

will be defined shortly in Theorem 1 such that it guarantees
that the event

E1 :=
{

Φ⊥0 (s,γ∗h) ∈ Ckh(s), ∀(s, h, k) ∈ S × [H]× [K]
}

(8)

i.e., Φ⊥0
(
s,γ∗h

)
belongs to the confidence sets Ckh(s), holds

with high probability. In the implementations, we treat β as
a tuning parameter. Conditioned on event E1, the agent is
ready to compute the following inner approximations of the
true unknown safe sets Asafe

h for all s ∈ S:
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Akh(s) =

a ∈ A :

〈
Φ0

(
s,φ(s, a)

)
, φ̃
(
s, a0 (s)

)〉∥∥∥φ (s, a0 (s)
)∥∥∥

2

τh(s)

+
〈
γkh,s,Φ

⊥
0

(
s,φ(s, a)

)〉
+ β

∥∥∥Φ⊥0
(
s,φ(s, a)

)∥∥∥(
Ak
h,s

)−1 ≤ τ

}
.

(9)

Note that

〈
Φ0

(
s,φ(s,a)

)
,
˜φ(s,a0(s))

〉
∥∥∥φ(s,a0(s))

∥∥∥
2

τh(s) is the

known cost of action a at state s along direction
φ̃
(
s, a0 (s)

)
and maxν∈Ckh(s)

〈
Φ⊥0
(
s,φ(s, a)

)
,ν
〉

=〈
γkh,s,Φ

⊥
0

(
s,φ(s, a)

)〉
+ β

∥∥∥Φ⊥0
(
s,φ(s, a)

)∥∥∥(
Ak
h,s

)−1

is its maximum possible cost in the orthogonal

space V⊥s . Thus,

〈
Φ0

(
s,φ(s,a)

)
,
˜φ(s,a0(s))

〉
∥∥∥φ(s,a0(s))

∥∥∥
2

τh(s) +〈
γkh,s,Φ

⊥
0

(
s,φ(s, a)

)〉
+β
∥∥∥Φ⊥0

(
s,φ(s, a)

)∥∥∥(
Ak
h,s

)−1 is

a high probability upper bound on the true unknown cost
〈φ(s, a),γ∗h〉, which implies that Akh(s) ⊂ Asafe

h (s).

Proposition 1. Conditioned on E1 in (8), for all (s, h, k) ∈
S×[H]×[K], it holds that

〈
φ(s, a),γ∗h

〉
≤ τ, ∀a ∈ Akh(s).

Thus, conditioned on E1, the decision rule akh :=
arg maxa∈Akh(skh)Q

k
h(skh, a) in Line 10 of Algorithm 1 sug-

gests that akh does not violate the safety constraint. Note
that Akh(s) is always non-empty, since as a consequence of
Assumption 2, the safe action a0(s) is always in Akh(s).

Now that the estimated safe sets Akh(s) are constructed, we
describe how the action-value functions Qkh are computed
to be used in the UCB decision rule, selecting the action
akh in the second loop of the algorithm. The linear structure
of the MDP allows us to parametrize Q∗h(s, a) by a linear
form 〈w∗h,φ(s, a)〉, where w∗h := θ∗h+

∫
S V
∗
h+1(s′)dµ(s′).

Thus, a natural idea to estimate Q∗h(s, a) is to solve least-
squares problem for w∗h. In fact, for all (s, a) ∈ S ×Akh(.),
the agent computes Qkh(s, a) defined as

Qkh(s, a) = min

{〈
wk
h,φ(s, a)

〉
+κh(s)β

∥∥φ(s, a)
∥∥
(Ak

h)
−1 , H

}
, (10)

where wk
h :=

(
Ak
h

)−1
bkh is the regularized least-

squares estimator of w∗h computed by the inverse of

Gram matrix Ak
h := λI +

∑k−1
j=1 φjhφ

j
h

>
and bkh :=∑k−1

j=1 φjh

[
rjh + maxa∈Akh+1(sjh+1)Q

k
h+1(sjh+1, a)

]
. Here,

κh(s)β
∥∥φ(s, a)

∥∥
(Ak

h)
−1 is an exploration bonus that is

characterized by: 1) β that encourages enough exploration
regarding the uncertainty about r and P; and 2) κh(s) > 1
that encourages enough exploration regarding the uncer-
tainty about c. While we make use of standard analysis
of unsafe bandits and MDPs (Abbasi-Yadkori et al., 2011)
and (Jin et al., 2020) to define β, appropriately quantifying
κh(s) is the main challenge the presence of safety con-
straints brings to the analysis of SLUCB-QVI compared to
the unsafe LSVI-UCB and it is stated in Lemma 1.

3. Theoretical guarantees of SLUCB-QVI
In this section, we discuss the technical challenges the pres-
ence of safety constraints brings to our analysis and provide
a regret bound for SLUCB-QVI. Before these, we make the
remaining necessary assumptions under which our proposed
algorithm operates and achieves good regret bound.

Assumption 3 (Subgaussian Noise). For all (h, k) ∈ [H]×
[K], εkh is a zero-mean σ-subGaussian random variable.

Assumption 4 (Boundedness). Without loss of general-
ity,

∥∥φ(s, a)
∥∥

2
≤ 1 for all (s, a) ∈ S × A, and

max
(∥∥µ∗h(S)

∥∥
2
,
∥∥θ∗h∥∥2

,
∥∥γ∗h∥∥2

)
≤
√
d for all h ∈ [H].

Assumption 5 (Star convex sets). For all s ∈ S, the set
D(s) :=

{
φ(s, a) : a ∈ A

}
is a star convex set around

the safe feature φ
(
s, a0 (s)

)
, i.e., for all x ∈ D(s) and

α ∈ [0, 1], αx + (1− α)φ
(
s, a0 (s)

)
∈ D(s).

Assumptions 3 and 4 are standard in linear MDP and
bandit literature (Jin et al., 2020; Pacchiano et al., 2020;
Amani et al., 2019). Assumption 5 is necessary to ensure
that the agent has the opportunity to explore the feature
space around the given safe feature vector φ

(
s, a0 (s)

)
.

For example, consider a simple setting where S =
{s1},A = {a1, a2}, H = 1,µ∗(s1) = (1, 1),θ∗ =
(0, 1),γ∗ = (0, 1), τ = 2, a0(s1) = a2, and D(s1) =
{φ(s1, a1),φ(s1, a2)} = {(0, 1), (1, 0)}, which is not a
star convex set. Here, both actions a1 and a2 are safe. The
optimal safe policy always plays a1, which gives the highest
reward. However, if D(s1) does not contain the whole line
connecting (1, 0) and (0, 1), the agent keeps playing a2 and
will not be able to explore other safe action and identify
that the optimal policy would always select a1. Also, it is
worth mentioning that the star convexity of the setsD(s) is a
milder assumption than convexity assumption considered in
existing safe algorithms of (Amani et al., 2019; Moradipari
et al., 2019).

Given these assumptions, we are now ready to present the
formal guarantees of SLUCB-QVI in the following theorem.

Theorem 1 (Regret of SLUCB-QVI). Under Assumptions
1, 2, 3, 4, and 5, there exists an absolute constant cβ > 0
such that for any fixed δ ∈ (0, 0.5), if we set β :=
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max

σ√d log

(
2+ 2T

λ

δ

)
+
√
λd, cβdH

√
log(dTδ )

,

and κh(s) := 2H
τ−τh(s) + 1, then with prob-

ability at least 1 − 2δ, it holds that RK ≤

2H
√
T log(dTδ ) + (1 + κ)β

√
2dHT log

(
1 + K

dλ

)
,

where κ := max(s,h)∈S×[H] κh(s)

Here, T = KH is the total number of action plays. We
observe that the regret bound is of the same order as that of
state-of-the-art unsafe algorithms, such as LSVI-UCB (Jin
et al., 2020), with only an additional factor κ in its second
term. The complete proof is reported in the Appendix A.3.
In the following section, we give a sketch of the proof.

3.1. Proof sketch of Theorem 1

First, we state the following theorem borrowed from
(Abbasi-Yadkori et al., 2011; Jin et al., 2020).

Theorem 2 (Thm. 2 in (Abbasi-Yadkori et al., 2011) and
Lemma B.4 in (Jin et al., 2020)). For any fixed policy π,
define V kh (s) := maxa∈Akh(s,a)Q

k
h(s, a), and the event

E2 :=

{∣∣∣〈wk
h,φ(s, a)〉 −Qπh(s, a) + [Ph(V πh+1 − V kh+1)](s, a)

∣∣∣
≤ β

∥∥φ(s, a)
∥∥

(Ak
h)
−1 ,∀(a, s, h, k) ∈ A× S × [H]× [K]

}
,

and recall the definition of E1 in (8). Then, under Assump-
tions 1, 2, 3, 4, and the definition of β in Theorem 1, there
exists an absolute constant cβ > 0, such that for any fixed
δ ∈ (0, 0.5), with probability at least 1 − δ, the event
E := E2 ∩ E1 holds.

As our main technical contribution, in Lemma 1, we prove
that when κh(s) := 2H

τ−τh(s) + 1, then optimism in the face
of safety constraint, i.e., Q∗h(s, a) ≤ Qkh(s, a) is guaranteed.
Intuitively, this is required because the maximization in
Line 10 of Algorithm 1 is not over the entire Asafe

h (skh), but
only a subset of it. Thus, larger values of κh(s) (compared
to κh(s) = 1 in unsafe algorithm LSVI-UCB) are needed
to provide enough exploration to the algorithm so that the
selected actions in Akh(skh) are -often enough- optimistic,
i.e., Q∗h(s, a) ≤ Qkh(s, a).

Lemma 1 (Optimism in the face of safety constraint in
SLUCB-QVI). Let κh(s) := 2H

τ−τh(s) + 1 and Assump-
tions 1,2,3,4,5 hold. Then, conditioned on E , it holds that
V ∗h (s) ≤ V kh (s),∀(s, h, k) ∈ S × [H]× [K].

We report the proof in Appendix A.2. As a direct conclusion

of Lemma 1 and on event E2 defined in Theorem 2, we have

Q∗h(s, a) ≤
〈
wk
h,φ(s, a)

〉
+ β

∥∥φ(s, a)
∥∥

(Ak
h)
−1 + [PhV ∗h+1 − V kh+1](s, a)

(Event E2)

≤ Qkh(s, a). (Lemma 1)

This is encapsulated in the following corollary.

Corollary 1 (UCB). Let κh(s) := 2H
τ−τh(s) + 1 and Let

Assumptions 1,2,3,4,5 hold. Then, conditioned on E , it
holds that Q∗h(s, a) ≤ Qkh(s, a),∀(a, s, h, k) ∈ A × S ×
[H]× [K].

After proving UCB nature of SLUCB-QVI using Lemma
1, we are ready to exploit the standard analysis of classical
unsafe LSVI-UCB (Jin et al., 2020) to complete the analysis
and establish the final regret bound of SLUCB-QVI.

4. Extension to randomized policy selection
SLUCB-QVI presented in Section 2 can only output a de-
terministic policy. In this section, we show that our results
can be extended to the setting of randomized policy selec-
tion, which might be desirable in practice. A randomized
policy π : S × [H] → ∆A maps states and time-steps to
distributions over actions such that a ∼ π(s, h) is the action
the policy π suggests the agent to play at time-step h ∈ [H]
when being at state s ∈ S . At each episode k and time-step
h ∈ [H], when being in state skh, the agent must draw its
action akh from a safe policy πk(skh, h) such that

Eakh∼πk(skh,h)ch(skh, a
k
h) ≤ τ (11)

with high probability. We accordingly define the unknown
set of safe policies by

Π̃safe :=
{
π : π(s, h) ∈ Γsafe

h (s), ∀(s, h) ∈ S × [H]
}
,

where Γsafe
h (s) :=

{
θ ∈ ∆A : Ea∼θch(s, a) ≤ τ

}
. Thus,

after observing state skh at time-step h ∈ [H] in episode k,
the agent’s choice of policy must belong to Γsafe

h (skh) with
high probability. In this formulation, the expectation in the
definition of (action-) value functions for a policy π is over
both the environment and the randomness of policy π. We
denote them by Ṽ πh and Q̃πh to distinguish them from V πh
and Qπh defined in (2) and (3) for a deterministic policy
π. Let π∗ be the optimal safe policy such that Ṽ π∗h (s) :=

Ṽ ∗h (s) = supπ∈Π̃safe Ṽ πh (s) for all (s, h) ∈ S × [H]. Thus,
for all (a, s, h) ∈ A× S × [H], the Bellman equations for
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a safe policy π ∈ Π̃safe and the optimal safe policy are

Q̃πh(s, a) = rh(s, a) + [PhṼ πh+1](s, a),

Ṽ πh (s) = Ea∼π(s,h)

[
Q̃πh(s, a)

]
, (12)

Q̃∗h(s, a) = rh(s, a) + [PhṼ ∗h+1](s, a),

Ṽ ∗h (s) = max
θ∈Γsafe

h (s)
Ea∈θ

[
Q̃∗h(s, a)

]
, (13)

where Ṽ πH+1(s) = Ṽ ∗H+1(s) = 0, and the cumulative regret
is defined as RK :=

∑K
k=1 Ṽ

∗
1 (sk1)− Ṽ πk1 (sk1). This defini-

tion of safety constraint in (11) frees us from star-convexity
assumption on the sets D(s) :=

{
φ(s, a) : a ∈ A

}
(As-

sumption 5), which is necessary for the deterministic policy
selection approach. We propose a modification of SLUCB-
QVI which is tailored to this new formulation and termed
Randomized SLUCB-QVI (RSLUCB-QVI). This new algo-
rithm also achieves a sub-linear regret with the same order
as that of SLUCB-QVI, i.e., Õ

(
κ
√
d3H3T

)
.

While RSLUCB-QVI respects a milder definition of the
safety constraint (cf. (11)) compared to that considered in
SLUCB-QVI (cf. (1)), it still possesses significant superi-
orities over other existing algorithms solving CMDP with
randomized policy selection (Efroni et al., 2020; Turchetta
et al., 2020; Garcelon et al., 2020; Zheng and Ratliff, 2020;
Ding et al., 2020a; Qiu et al., 2020; Ding et al., 2020b;
Xu et al., 2020; Kalagarla et al., 2020). First, the safety
constraint considered in these algorithms is defined by the
cumulative expected cost over a horizon falling below a
certain threshold, while RSLUCB-QVI guarantees that the
expected cost incurred at each time-step an action is played
(not over a horizon) is less than a threshold. Second, even
for this looser definition of safety constraint, the best these
algorithms can guarantee in terms of constraint satisfaction
is a sub-linear bound on the number of constraint violation,
whereas RSLUCB-QVI ensures no constraint violation.

4.1. Randomized SLUCB-QVI

We now describe RSLUCB-QVI summarized in Algo-
rithm 2. Let φθ(s) := Ea∼θφ(s, a). At each episode
k ∈ [K], in the first loop, the agent computes the estimated
set of true unknown set Γsafe

h (s) for all s ∈ S as follows:

Γkh(s) :=θ ∈ ∆A : Ea∼θ


〈

Φ0

(
s,φ(s, a)

)
, φ̃
(
s, a0 (s)

)〉∥∥∥φ (s, a0 (s)
)∥∥∥

2

τh(s)


+ max

ν∈Ckh(s)

〈
Φ⊥0

(
s,Ea∼θ

[
φ(s, a)

])
,ν

〉
≤ τ

}

=

θ ∈ ∆A :

〈
Φ0

(
s,φθ(s)

)
, φ̃
(
s, a0 (s)

)〉
∥∥∥φ (s, a0 (s)

)∥∥∥
2

τh(s)

+

〈
γkh,s,Φ

⊥
0

(
s,φθ(s)

)〉
+ β

∥∥∥∥Φ⊥0

(
s,φθ(s)

)∥∥∥∥(
Ak
h,s

)−1
≤ τ

 .

(14)

Note that due to the linear structure of the MDP, we can
again parametrize Q̃∗h(s, a) by a linear form 〈w̃∗h,φ(s, a)〉,
where w̃∗h := θ∗h +

∫
S Ṽ
∗
h+1(s′)dµ(s′). In the next step, for

all (s, a) ∈ S ×A, the agent computes

Q̃kh(s, a) =
〈
w̃k
h,φ(s, a)

〉
+ κh(s)β

∥∥φ(s, a)
∥∥

(Ak
h)
−1 ,

(15)

where w̃k
h :=

(
Ak
h

)−1
b̃kh is the regularized

least-squares estimator of w̃∗h computed by the
Gram matrix Ak

h and b̃kh :=
∑k−1
j=1 φjh[rjh +

min{maxθ∈Γkh+1(sjh+1) Ea∼θ[Q̃
k
h+1(sjh+1, a)] , H}]. After

these computations in the first loop, the agent draws actions
akh from distribution Γkh(skh) in the second loop. Define

Ṽ kh (s) := min

{
maxθ∈Γkh(s) Ea∼θ

[
Q̃kh(s, a)

]
, H

}
, and

E3 :=

{∣∣∣〈w̃k
h,φ(s, a)〉 − Q̃πh(s, a) + [PhṼ πh+1 − Ṽ kh+1](s, a)

∣∣∣
≤ β

∥∥φ(s, a)
∥∥

(Ak
h)
−1 ,∀(a, s, h, k) ∈ A× S × [H]× [K]

}
.

It can be easily shown that the results stated in Theorem 2
hold for the settings focusing on randomized policies, i.e.,
under Assumptions 1, 2, 3, and 4, and by the definition of
β in Theorem 1, with probability at least 1− 2δ, the event
Ẽ := E1 ∩ E3 holds. Therefore, as a direct conclusion of
Proposition 1, it is guaranteed that conditioned on E1, all the
policies inside Γkh(s) are safe, i.e., Γkh(s) ⊂ Γsafe

h (s). Now,
in the following lemma, we quantify κh(s).
Lemma 2 (Optimism in the face of safety constraint in
RSLUCB-QVI). Let κh(s) := 2H

τ−τh(s)+1 and Assumptions

1,2,3,4 hold. Then, conditioned on event Ẽ , it holds that
Ṽ ∗h (s) ≤ Ṽ kh (s),∀(s, h, k) ∈ S × [H]× [K].

The proof is included in Appendix B.1. Using Lemma 2, we
show that Q̃∗h(s, a) ≤ Q̃kh(s, a),∀(a, s, h, k) ∈ A × S ×
[H] × [K]. This highlights the UCB nature of RSLUCB-
QVI, allowing us to exploit the standard analysis of unsafe
LSVI-UCB (Jin et al., 2020) to establish the regret bound.
Theorem 3 (Regret of RSLUCB-QVI). Under Assump-
tions 1, 2, 3, and 4, there exists an absolute constant
cβ > 0 such that for any fixed δ ∈ (0, 1/3), and the defi-
nition of β in Theorem 1, if we set κh(s) := 2H

τ−τh(s) + 1,
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Algorithm 2 RSLUCB-QVI

1: Input: A, λ, δ, H , K, τ , κh(s)
2: A1

h = λI , A1
h,s =

λ

(
I − φ̃

(
s, a0 (s)

)
φ̃
> (
s, a0 (s)

))
b̃1
h = r1

h,s =

0, ∀(s, h) ∈ S × [H], Q̃kH+1(., .) = 0, ∀k ∈ [K]
3: for episodes k = 1 to K do
4: Observe the initial state sk1 .
5: for time-steps h = H to 1 do
6: Compute Γkh(s) as in (14) ∀s ∈ S.
7: Compute Q̃kh(s, a) as in (15) ∀(s, a) ∈ S ×A.
8: end for
9: for time-steps h = 1 to H do

10: Play akh ∼ arg maxθ∈Γkh(skh) Ea∼θ
[
Q̃kh(skh, a)

]
and observe skh+1, rkh and zkh.

11: end for
12: end for

Pe
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Figure 1. Comparison of SLUCB-QVI to the unsafe state-of-the-
art verifying that: 1) when LSVI-UCB (Jin et al., 2020) has knowl-
edge of γ∗h, it outperforms SLUCB-QVI (without knowledge of
γ∗h) as expected; 2) when LSVI-UCB does not know γ∗h (as is the
case for SLUCB-QVI) and its goal is to maximize r − λ′c instead
of r, larger λ′ leads to smaller per-episode reward and number of
constraint violations while the number of constraint violations for
SLUCB-QVI is zero.

then with probability at least 1 − 3δ, it holds that RK ≤

2H
√
T log(dTδ )+2(1+κ)β

√
2dHT log

(
1 + K

dλ

)
, where

κ := max(s,h)∈S×[H] κh(s).

See Appendix B.2 for the proof.

5. Experiments
In this section, we present numerical simulations to comple-
ment and confirm our theoretical findings. We evaluate the
performance of SLUCB-QVI on synthetic environments and
implement RSLUCB-QVI on the Frozen Lake environment

from OpenAI Gym (Brockman et al., 2016).

5.1. SLUCB-QVI on synthetic environments

The results shown in Figure 1 depict averages over 20 re-
alizations, for which we have chosen δ = 0.01, σ = 0.01,
λ = 1, d = 5, τ = 0.5,H = 3 andK = 10000. The param-
eters {θ∗h}h∈[H] and {γ∗h}h∈[H] are drawn from N (0, Id).
In order to tune parameters {µ∗h(.)}h∈[H] and the feature
map φ such that they are compatible with Assumption 1, we
consider that the feature space {φ(s, a) : (s, a) ∈ S ×A}
is a subset of the d-dimensional simplex and e>i µ

∗
h(.) is an

arbitrary probability measure over S for all i ∈ [d]. This
guarantees that Assumption 1 holds.

Computing safe sets Akh(s) in the first loop of SLUCB-
QVI (Line 6), is followed by selecting an action that maxi-
mizes a linear function (in feature map φ) over the feature
space Dkh(skh) :=

{
φ(skh, a) : a ∈ Akh(skh)

}
in its second

loop (Line 10). Unfortunately, even if the feature space
{φ(s, a) : (s, a) ∈ S × A} is convex, the set Dkh(skh) can
have a form over which maximizing the linear function is
intractable. In our experiments, we define map φ such that
the sets D(s) are star convex and finite around φ

(
s, a0 (s)

)
with N = 100 (see Definition 1) and therefore, we can
show that the optimization problem in Line 10 of SLUCB-
QVI can be solved efficiently (see Appendix C for a proof).

Definition 1 (Finite star convex set). A star convex set D
around x0 ∈ Rd is finite, if there exist finitely many vectors
{xi}Ni=1 such that D = ∪Ni=1[x0,xi], where [x0,xi] is the
line connecting x0 and xi.

Figure 1 depicts the average per-episode reward of SLUCB-
QVI and compares it to that of baseline and emphasizes the
value of SLUCB-QVI in terms of respecting the safety con-
straints at all time-steps. Specifically, we compare SLUCB-
QVI with 1) LSVI-UCB (Jin et al., 2020) when it has knowl-
edge of safety constraints, i.e., γ∗h; and 2) LSVI-UCB, when
it does not know γ∗h (as is the case for SLUCB-QVI) and
its goal is to maximize the function r − λ′c, with the con-
straint being pushed into the objective function, for differ-
ent values of λ′ = 0.8, 0.85, 0.9 and 0.95. Thus, playing
costly actions is discouraged via low rewards. The plot
verifies that LSVI-UCB with knowledge of γ∗h outperforms
SLUCB-QVI without knowledge of γ∗h as expected. Also,
larger λ′ leads to smaller per-episode reward and number of
constraint violations when LSVI-UCB seeks to maximize
r − λ′c (without knowledge of γ∗h) while the number of
constraint violations for SLUCB-QVI is zero.

5.2. RSLUCB-QVI on Frozen Lake environment

We evaluate the performance of RSLUCB-QVI in the
Frozen Lake environment. The agent seeks to reach a goal
in a 10 × 10 2D map (Figure 2a) while avoiding dangers.
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Figure 2. Comparison of RSLUCB-QVI and CISR (Turchetta et al., 2020) in Frozen Lake environment.

At each time step, the agent can move in four directions,
i.e., A = {a1 : left, a2 : right, a3 : down, a4 : up}. With
probability 0.9 it moves in the desired direction and with
probability 0.05 it moves in either of the orthogonal di-
rections. We set H = 1000, K = 10, d = |S|= 100,
and µ∗(s) ∼ N (0, Id) for all s ∈ S = {s1, . . . , s100}.
We then properly specified the feature map φ(s, a) for all
(s, a) ∈ S ×A by solving a set of linear equations such that
the transition specifics of the environment explained above
are respected. In order to interpret the requirement of avoid-
ing dangers as a constraint of form (11), we tuned γ∗ and τ
as follows: the cost of playing action a ∈ A at state s ∈ S
is the probability of the agent moving to one of the danger
states. Therefore a safe policy insures that the expected
value of probability of moving to a danger state is a small
value. To this end, we set γ∗ =

∑
s∈Danger states µ

∗(s) and
τ = 0.1. Also, for each state s ∈ S a safe action, playing
which leads to one of the danger states with small proba-
bility (τ = 0.1) is given to the agent. We solve a set of
linear equations to tune θ∗ such that at each state s ∈ S,
the direction which leads to a state that is closest to the goal
state gives the agent a reward 1, while playing other three
directions gives it a reward 0.01. This model persuades the
agent to move towards to the goal.

After specifying the feature map φ and tuning all parameters,
we implemented RSLUCB-QVI for 10 interaction units
(episodes) i.e, K = 10) each consisting of 1000 time-steps
(horizon), i.e., H = 1000). During each interaction unit
(episode) and after each move, the agent can end up in one
of three kinds of states: 1) goal, resulting in a successful
termination of the interaction unit; 2) danger, resulting in
a failure and the consequent termination of the interaction
unit; 3) safe. The agent receives a return of 6 for reaching
the goal and 0.01 otherwise.

In Figure 2, we report the average of success rate and re-
turn over 20 agents for each of which we implemented
RSLUCB-QVI 10 times and compare our results with that
of CISR proposed by (Turchetta et al., 2020) in which a
teacher helps the agent in selecting safe actions by making

interventions. While the performances of both approaches,
RSLUCB-QVI and CISR, are fairly comparable, an impor-
tant point to consider is that each interaction unit (episode)
in CISR consists of 10000 time-steps whereas this num-
ber is 1000 in RSLUCB-QVI. Notably, the learning rate of
RSLUCB-QVI is faster than that of CISR. Also it is note-
worthy that we comparedRSLUCB-QVI with CISR when it
uses the optimized intervention, which gives the best results
compared to other types of intervention.

6. Conclusion
In this paper, we developed SLUCB-QVI and RSLUCB-
QVI, two safe RL algorithms in the setting of finite-horizon
linear MDP. For these algorithms, we provided sub-linear
regret bounds Õ

(
κ
√
d3H3T

)
, where H is the duration of

each episode, d is the dimension of the feature mapping,
κ is a constant characterizing the safety constraints, and
T = KH is the total number of action plays. We proved that
with high probability, they never violate the unknown safety
constraints. Finally, we implemented SLUCB-QVI and
RSLUCB-QVI on synthetic and Frozen Lake environments,
respectively, which confirms that our algorithms have per-
formances comparable to that of state-of-the-art that either
have knowledge of the safety constraint or take advantage
of a teacher’s advice helping the agent avoid unsafe actions.
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