
Supplementary Information
Automatic Variational Inference with Cascading

Flows

A Experiments
The experiments where implemented in Python 3.8 using the packages PyTorch,
Numpy and Matplotlib. The implementation code is contained in the "modules"
folder. The probabilistic program objects are defined in the file "models.py" and
the deep architectures are in "networks.py". The experiments can be run from
the files "timeseries experiment.py", "collider linear experiments.py", "collider
tanh experiments.py" and "amortized experiments.py" in the "experiments"
folder.

B Models
In the experiments, we use the following dynamical models.

B.1 Brownian motion (BR)

Dimensionality: J = 1
Drift: µ(x) = x
Diffusion: σ2(x) = 1
Initial density: p(x0) = N (0, 1)
Time horizon: T = 40
Time step: dt = 1
Regression noise: σlk = 1
Classification gain: k = 2

1



B.2 Lorentz system (LZ)

Dimensionality: J = 3
Drift: µ(x1, x2, x3) = (10(x2 − x1), x1(28− x3)− x2, x1x2 − 8/3x3)
Diffusion: σ2(x) = 22

Initial density: p(x0) = N (3, 202)
Time horizon: T = 40
Time step: dt = 1
Regression noise: σlk = 3
Classification gain: k = 2

B.3 Population dynamics (PD)

Dimensionality: J = 2
Drift: µ(x1, x2, x3) = (ReLu(0.2x1 − 0.02x1x2),ReLu(0.1x1x2 − 0.1x2))
Diffusion: σ2(x) = 2
Initial density: p(x0) = N (0, 1)
Time horizon: T = 100
Time step: dt = 0.02
Regression noise: σlk = 3
Classification gain: k = 2

Note: The ReLu activation was added to avoid instabilities arising from negative
values.

B.4 Recurrent neural network (RNN)

Dimensionality: J = 3
Drift: µ(x) = tanh(W3 tanh(W2 tanh(W1x+ b1) + b2))
Diffusion: σ2(x) = 0.12

Initial density: p(x0) = N (0, 1)
Time horizon: T = 40
Time step: dt = 0.02
Regression noise: σlk = 1
Classification gain: k = 2

Note: W1 is a 2 × 5 matrix, W2 is a 5 × 5 matrix, W3 is a 5 × 2 matrix,
b1 is a 2D vector and b2 is a 5D vector. All the entries of these quantities are
sampled from normal distributions with mean 0 and standard deviation (SD) 1.
These parameters we re-sampled for every repetition of the experiment.

C Collider dependencies
We tested performance under collider dependencies using a Gaussian binary tree
model where the mean of a scalar variable xdj in the d-th layer is a function of
two variables in the d− 1-th layer:

xdj ∼ N
(
link(πd−1

j1 , πd−1
j2 ), σ2

)
2



where πd−1
j1 and πd−1

j2 are the two parents of xdj . In the linear experiment the link
was link(πd−1

j1 , πd−1
j2 ) = πd−1

j1 −π
d−1
j2 The SD σ was 0.15 and the initial SD was 0.2.

In non-linear experiment the link was link(πd−1
j1 , πd−1

j2 ) = tanhπd−1
j1 − tanhπd−1

j2 .
The SD σ was 0.05 and the initial SD was 0.1.

D Amortized experiments
The amortized experiments had the same details and parameters as the corre-
sponding timeseries experiment. We use the following inference network for the
MF and GF baselines (PyTorch code):

In the case of GF, the network provided means and scales of the pre-transformation
normal variables.

3


	Experiments
	Models
	Brownian motion (BR)
	Lorentz system (LZ)
	Population dynamics (PD)
	Recurrent neural network (RNN)

	Collider dependencies
	Amortized experiments

