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1. Overview
Statements and Proofs We provide the proofs of the results in the paper, including new technical results which might
find application in the analysis of related algorithms. In particular, Section A first reviews past results on the optimality of
the backward algorithm and proceeds to present technical results that are necessary for the remainder. Section B contains the
statements and proofs regarding SBL and RMP and Section C contains the main results and proofs for Stepwise Regression.

Code and Experiments In Section D, we add information about our experiments, include another numerical study of
the theoretical results, and show how to incorporate the estimation of the noise variance into RMP, one of the advantages
of the probabilistic framework over traditional compressed sensing and feature selection technologies. We highlight the
CompressedSensing.jl package, which contains our implementations of all algorithms and we hope will serve as a
platform for sparsity-inducing algorithms, and the IMCL2021 folder, which contains the experimental setup and results.
Associated with each experiment is also an H5-file which holds all the data that is necessary to verify our results, generate
the plots of the paper, and rerun the experiments.
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A. Preliminaries
In the following, Φ denotes a matrix, and y = Φx, where x is a vector with the appropriate dimension. We will refer to
ε as a perturbation, and assume the input of the greedy algorithms is y + ε. ‖ · ‖ denotes the norm of a linear space, and
d(x,y) = ‖x− y‖ is the associated metric. We define the distance of a vector x to a subset S as

d(x,S)
def
= min

s∈S
d(x, s).

PS is the least-squares projection onto a subspace S. If Φ is a basis for S, PS = ΦΦ+. For ease of notation, we define
PA = Pcol(ΦA) for a set of indices A, where col(Φ) is the column space of Φ. Given a subset A of columns of Φ, the
associated least-squares residual is rA = (I−PA)(y + ε). For any vector x, x̂ = x/‖x‖.

A.1. Prior Work on Backward Elimination

We begin by reviewing the most relevant results on the optimality of the backward algorithm in (Couvreur and Bresler,
2000). First, we define the bisector of two subspaces as the set of equidistant vectors, which is central to the existing theory.

Definition A.1 (Bisector). Let A and B be two subspaces of a linear space L. Their bisector is

H(A,B)
def
= {x ∈ L|d(x,A) = d(x,B)}.

To facilitate notation, we define
Hij(Φ)

def
= H(col(Φ\i), col(Φ\j)).

Using the bisector, (Couvreur and Bresler, 2000) proved the following one-step guarantee for the backward algorithm.
Essentially, the proof views the bisectors Hij(Φ) as decision boundaries of the algorithm. If the boundaries cannot be
crossed due to the magnitude of the perturbation, the algorithm is guaranteed to succeed.

Lemma A.2 ((Couvreur and Bresler, 2000)). Let x be a k-sparse vector with support set S, and A ⊃ S,

δ = min
i∈S,j 6∈S

d(y,Hij(ΦA)),

and suppose ‖ε‖2 < δ. Then the backward greedy algorithm successfully eliminates an feature that is not in the true support
set in the following iteration. That is,

arg min
i∈A
‖rA\i‖ 6∈ S.

Proof. The proof is due to (Couvreur and Bresler, 2000).

Using Lemma A.2, as a building block, the authors provided the following main result on the backward algorithm.

Theorem A.3 ((Couvreur and Bresler, 2000)). Let x be a k-sparse vector with support set S,

δ = min
k<r≤n

min
|A|=r

min
i∈S,j 6∈S

d(y,Hij(ΦA)), (A.1)

and suppose ‖ε‖2 < δ. Then the backward greedy algorithm selects the correct support set S of x in m− k iterations and
the estimate x∗ = Φ+

Sy satisfies ‖x∗ − x‖ ≤ δ/σmin(ΦS).

Proof. See Theorem 1 in (Couvreur and Bresler, 2000).

Theorem A.3 assumes that there is an underlying sparse vector to be recovered, which corresponds to the assumptions of the
sparse recovery problem. The sparse approximation or the subset selection problem does not assume such an underlying
sparse vector, but concerns the best possible approximation of a generally non-sparse vector by a sparse vector. Guarantees
for the latter are generally weaker. For example, there are approximation guarantees but no conditional optimality guarantees
for Forward Selection for the subset selection problem. The following corollary of the previous theorem provides such an
optimality guarantee for Backward Elimination.
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Corollary A.4 ((Couvreur and Bresler, 2000)). Let xk be the solution to the subset selection problem with sparsity k. That
is, xk is the k-sparse vector that whose associated residual rk

def
= y −Φxk has the minimum norm among all vectors with

at most k non-zero elements. If rk satisfies the bound in Theorem A.3 in place of ε, the backward algorithm solves the subset
selection problem to optimality.

Proof. See Corollary 2 in (Couvreur and Bresler, 2000).

However, the authors posit that the expression in equation (A.1) is NP-hard to compute and thus cannot guide a practitioner
and confirm whether or not the result of the algorithm is optimal in practice.

A.2. Preliminary Linear Algebraic Results

In the following sections, we present technical results that are necessary to prove the main results, and might be of
independent interest for the analysis of related algorithms. We first provide linear algebraic results, followed by two
subsections with preliminary results targeted at the forward and backward algorithms, respectively, and finish the section
with probabilistic results for Gaussian noise.

Lemma A.5 ((Tropp, 2004)). Let Φ have l2-normalized columns. The squared singular values σ2 of a submatrix of Φ with
at most k columns satisfy |1− σ2| ≤ µ1(k − 1), where µ1 is the Babel function of Φ.

Proof. This is essentially due to (Tropp, 2004), Lemma 2.3.

Lemma A.6. LetA be a set of column indices of a matrix Φ, andAc be the complement ofA in the set of all column indices
of Φ, and PAc = ΦAcΦ

+
Ac . Then the eigenvalues of Φ∗A(I−PAc)ΦA are bounded above and below by the minimum and

maximum eigenvalue of Φ∗Φ, respectively.

Proof. See also Lemma 5 in (Cai and Wang, 2011). Note that up to permutation

Φ∗Φ =

[
Φ∗AΦA Φ∗AΦAc

Φ∗AcΦA Φ∗AcΦAc .

]
According to a standard result on the block matrix inverse, the lower right block of (Φ∗Φ)−1 is Φ∗A(I−PAc)ΦA. Therefore,
the eigenvalues of the latter matrix are bounded above and below by the extremal eigenvalues of (Φ∗Φ)−1.

Lemma A.7. Given a matrix Φ with columns {ϕi}i, and an index set A of size k, let ψi
def
= (I−PA)ϕi and i 6∈ A. Then

σmin(ΦA∪i) ≤ ‖ψi‖2 ≤ ‖ϕi‖2.

Proof. Since i 6∈ A, we get using Lemma A.6,

‖ψi‖22 = ‖(I−PA)ϕi‖22 = ϕ∗i (I−PA)ϕi ≥ σ2
min(ΦA∪i),

since {i} is the complement of A in A ∪ {i}. The upper bound is a consequence of (I−PA) being a projection, so that
‖ψi‖ = ‖(I−PA)ϕi‖2 ≤ ‖ϕi‖2.

Lemma A.8. Let A be a set of k indices into Φ’s columns and ψi = (I−PA)ϕi. Then for i, j 6∈ A and i 6= j,

|〈ψ̂i, ψ̂j〉| ≤ 1− σmin

(
ΦA∪{i,j}

)2
.

Proof. Define M = Φ∗{i,j}(I − PA)Φ{i,j}, D = diag(‖ψi‖, ‖ψj‖), and M̃ = D−1MD−1. Then by definition of the
determinant, and the determinant of a matrix being the product of its eigenvalues,

1− |〈ψ̂i, ψ̂j〉|2 = det
(
M̃
)

= λmin

(
M̃
)
λmax

(
M̃
)

= λmin

(
M̃
) [

2− λmin

(
M̃
)]
,
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where the last equality follows from the trace identity tr(M̃) =
∑
k λk(M̃) = 2. Rearranging and taking square roots yields

1− |〈ψ̂i, ψ̂j〉| = λmin(M̃). Further, the smallest eigenvalue of the product of two matrices is bounded below by the product
of the smallest eigenvalues of the individual matrices. Therefore,

λmin

(
M̃
)
≥ λmin

(
D−1

)
λmin (M)λmin

(
D−1

)
≥ σmin

(
ΦA∪{i,j}

)2
/max{‖ψi‖2, ‖ψj‖2}.

The last inequality is due to Lemma A.6 and λmin(M) = σmin(ΦA∪{i,j})
2. Noting that max{‖ψi‖2, ‖ψj‖2} < 1 finishes

the proof.

The next lemma is almost identical to Lemma A.8 in its assumptions. The crucial difference is that the vectors ψi are
projected into the column space of ΦA\i, instead of ΦA. Surprisingly, the same result as in Lemma A.8 holds. Lemma
A.8 and A.9 will be instrumental in providing a tight bound on the tolerable perturbation magnitude for the forward and
backward algorithm, respectively.

Lemma A.9. Let A be a set of k indices into columns of Φ and ψi = (I−PA\i)ϕi. Then for i 6= j,

|〈ψ̂i, ψ̂j〉| ≤ 1− σmin

(
ΦA∪{i,j}

)2
.

Proof. Let B = A\{i, j}, define ξi = (I−PB)ϕi, and note that PB⊥B∪i = ξ̂iξ̂
∗
i , so

ψi = (I−PA\i)ϕi

= (I− [PB + ξ̂j ξ̂
∗
j ])ϕi

= ξi − ξ̂j〈ξ̂j ,ϕi〉

= ξi − ξ̂j〈ξ̂j , ξi〉.

The last equality is due to the idempotence of the projection (I−PB). Thus,

〈ψi,ψj〉 = 〈ξi − ξ̂j〈ξ̂j , ξi〉, ξj − ξ̂i〈ξ̂i, ξj〉〉

= 〈ξi, ξj〉+ 〈ξ̂j , ξi〉〈ξ̂j , ξ̂i〉〈ξ̂i, ξj〉

− 〈ξi, ξ̂i〉〈ξ̂i, ξj〉 − 〈ξ̂j , ξj〉〈ξ̂j , ξi〉

= 〈ξi, ξj〉
(
〈ξ̂j , ξ̂i〉2 − 1

)
.

Noting that ‖ψi‖2 = ‖ξi‖2(1− 〈ξ̂j , ξ̂i〉2). Therefore,

|〈ψ̂i, ψ̂j〉| = |〈ξ̂i, ξ̂j〉|.

Applying Lemma A.8 on the right side, and noting that B∪{i, j} ⊂ A∪{i, j} implies σmin

(
ΦA∪{i,j}

)
≤ σmin

(
ΦB∪{i,j}

)
finishes the proof.

A.3. Preliminary Results for Forward Regression

We start this section by connecting separate existing results for OMP and FR in the noiseless and noisy regime. Critical to
the analysis of both OMP and FR are the following quantities. Letting ψi = (I−PA\i)ϕi, we define

ρFR(A,S)
def
=

maxj 6∈S |〈ψ̂j ,y〉|
maxi∈S |〈ψ̂i,y〉|

ρOMP(A,S)
def
=

maxj 6∈S |〈ψj ,y〉|
maxi∈S |〈ψi,y〉|

. (A.2)

Lemma A.10. Suppose the support set S is of size k, ρ be either ρFR or ρOMP defined above, andA ⊆ B ⊆ S . If ρ(∅,S) < 1,
then ρ is a monotonically decreasing set function of its first argument. That is,

ρ(B,S) ≤ ρ(A,S).
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Proof. The proof is due to (Soussen et al., 2013), Lemma 2.

This result allows us to jointly analyze OMP and FR, since both succeed in recovering the support of a sparse signal if
ρ(∅,S) < 1. The following result is a universal upper bound as a function of the Babel function values µ1(k) and µ1(k− 1)
of the matrix (see the definition of µ1 in the main text).
Lemma A.11. Let ρ stand for either ρOMP or ρFR, let µ1 be the Babel function of a matrix Φ with l2-normalized columns,
A ⊂ S and k = |S|. Then

ρ(∅,S) ≤ µ1(k)

1− µ1(k − 1)
.

Proof. See the proof of Theorem 3.5 in (Tropp, 2004).

Lemma A.12. Let {ϕi} be columns of a matrix Φ, and µ their coherence. Then for any vector ε, and two indices i, j,

|〈ϕi, ε〉|+ |〈ϕj , ε〉| ≤
√

2(1 + µ) ‖ε‖2.

Proof. First, note that |〈ϕi, ε〉|+ |〈ϕj , ε〉| = max {|〈ϕi ±ϕj , ε〉|} . By the Cauchy-Schwartz inequality, |〈ϕi ±ϕj , ε〉| ≤
‖ϕi ± ϕj‖‖ε‖. The result follows by bounding ‖ϕi ± ϕj‖. To this end, note that ‖ϕi ± ϕj‖2 ≤ 2 (1 + |〈ϕi,ϕj〉|) ≤
2(1 + µ), where the last inequality is due to the definition of the coherence µ.

Lemma A.13. Suppose y = Φx where x is k-sparse with support S. Further, let A ⊂ S and rA = (I−PA)y. Then

max
i∈S
|〈ϕi, rA〉| ≥ σmin(ΦS)2 min

i∈S
|xi|.

Proof. Suppose |A| = t and A ⊂ S .

max
i∈S
|〈ϕi, rA〉| = ‖Φ∗S(I−PA)y‖∞

= ‖Φ∗S\A(I−PA)ΦS\AxS\A‖∞

≥ 1√
|S\A|

‖Φ∗S\A(I−PA)ΦS\AxS\A‖2

≥ σmin(ΦS)2√
k − t

‖xS\A‖2

≥ σmin(ΦS)2 min
i∈S
|xi|.

The second equality comes from the fact that (I − PA)ϕi = 0 for all i in A. The last inequality is due to ‖xS\A‖22 =∑
i∈S\A |xi|2 ≥ (k − t) mini∈S |xi|2.

Lemma A.14. Orthogonal Matching Pursuit recovers the support set S of a k-sparse vector x provided ρOMP(A,S) in
Lemma A.10 and the perturbation ε of the target y satisfy

[1− ρOMP(A,S)] σmin(ΦS)2 min
i∈S
|xi| > max

i∈S
|〈ϕi, ε〉|+ max

j 6∈S
|〈ϕj , ε〉|.

Proof. Let ỹ = y + ε, and A be the current active set. In order for OMP to select a column from the support S in the
next iteration, we need to have maxi∈S |〈ϕi, ỹ〉| > maxj 6∈S |〈ϕj , ỹ〉|. Noting that |〈ϕi,y〉| − |〈ϕi, ε〉| ≤ |〈ϕi, ỹ〉| ≤
|〈ϕi,y〉|+ |〈ϕi, ε〉|, we get the sufficient condition

max
i∈S
|〈ϕi,y〉| −max

j 6∈S
|〈ϕj ,y〉| > max

i∈S
|〈ϕi, ε〉|+ max

j 6∈S
|〈ϕj , ε〉|.

We now focus on lower bounding the left side from below. By transitivity, ensuring this lower bound is larger than the right
side of the above equation is a sufficient condition for the success of the algorithm in the next iteration. By definition of
ρ(A,S) in equation (A.2),

max
i∈S
|〈ϕi,y〉| −max

j 6∈S
|〈ϕj ,y〉| = [1− ρ(A,S)] max

i∈S
|〈ϕi,y〉|.

Applying the inequality in Lemma A.13 to the previous equation finishes the proof.
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Lemma A.15. Forward Selection recovers the support set S of a k-sparse vector x provided ρFR(A,S) in equation (A.2)
and the perturbation ε of y satisfy

[1− ρFR(A,S)] σmin(ΦS)2 min
i∈S
|xi| > max

i∈S
|〈ψ̂i, ε〉|+ max

j 6∈S
|〈ψ̂j , ε〉|.

Proof. Let ỹ = y + ε, and A be the current active set. Using Lemma B.5, we can apply similar reasoning as for OMP in
Theorem A.14 to get a sufficient condition for FR to choose one of the columns in S in the next iteration, namely

[1− ρ(A,S)] max
i∈S
|〈ψ̂i,y〉| > max

i∈S
|〈ψ̂i, ε〉|+ max

j 6∈S
|〈ψ̂j , ε〉|.

where ρ(A,S) is as in equation (A.2). We now bound the left side from below by observing that |〈ψ̂i,y〉| =
|〈ϕi, rA〉|/‖ψi‖ ≥ |〈ϕi, rA〉|, where rA = (I − PA)y. Applying the inequality of Lemma A.13 lower bounds the
left side of the sufficient condition and finishes the proof.

Lemma A.16. Let A be a set of k indices into Φ and ψi be either ψi = (I−PA)ϕi or ψi = (I−PA\i)ϕi. Then for any
vector ε, and any two column indices i, j,

|〈ψ̂i, ε〉|+ |〈ψ̂j , ε〉| ≤
√

2
[
2− σmin(ΦA∪{i,j})2

]
‖ε‖2.

Proof. This proof is similar to the one of Lemma A.12. We repeat some of the same reasoning to make the proof
self contained. First, note that |〈ψ̂i, ε〉| + |〈ψ̂j , ε〉| = max

{
|〈ψ̂i ± ψ̂j , ε〉|

}
. By the Cauchy-Schwartz inequality,

|〈ψ̂i ± ψ̂j , ε〉| ≤ ‖ψ̂i ± ψ̂j‖‖ε‖. The result follows by bounding ‖ψ̂i ± ψ̂j‖. To this end, note that ‖ψ̂i ± ψ̂j‖2 ≤
2
(

1 + |〈ψ̂i, ψ̂j〉|
)
≤ 2(2− σmin(ΦA)2), where the last inequality is due to Lemma A.8 and A.9.

Note that Lemma A.16 improve on the trivial upper bound 2‖ε‖2 as long as ΦA∪{i,j} has linearly independent columns.

A.4. Preliminary Results for Backward Regression

Lemma A.17. Let Φ ∈ Cn×m be a matrix with full column rank, and let x be a k-sparse vector with support set S. Let
A ⊃ S be the set of active indices and ψi = ϕi − PA\iϕi. Then one iteration of the backward algorithm successfully
removes a column which does not belong to the true support set, provided

min
i∈S

∣∣∣xi‖ψi‖2 + 〈ψ̂i, ε〉
∣∣∣ > min

j 6∈S

∣∣∣〈ψ̂j , ε〉∣∣∣ . (A.3)

This is a necessary and sufficient condition.

Proof. A necessary and sufficient condition for the correctness of the next iteration of BE is

min
i∈S
‖rA\i‖2 > min

j 6∈S
‖rA\j‖2.

Noting that ‖rA\i‖22 = ‖ỹ‖22 − 〈ỹ,PA\iỹ〉, the fact that PA\i = PA − ψ̂iψ̂∗i , and with simple algebraic manipulations,
we arrive at the equivalent condition

min
i∈S
|〈ψ̂i, ỹ〉| > min

j 6∈S
|〈ψ̂j , ỹ〉|. (A.4)

Since ψi is orthogonal toR(ΦA\i), 〈ψ̂i,y〉 =
∑
k∈S〈ψ̂i,ϕk〉xk = xi‖ψi‖2. Thus,

〈ψ̂i, ỹ〉 = xi‖ψi‖+ 〈ψ̂i, ε〉.

Since ψj is orthogonal toR(ΦA\j) ⊇ R(ΦS), 〈ψ̂j ,y〉 = 0, so that 〈ψ̂j , ỹ〉 = 〈ψ̂j , ε〉. Therefore, (A.4) is equivalent to

min
i∈S

∣∣∣xi‖ψi‖+ 〈ψ̂i, ε〉
∣∣∣ > min

j∈S
|〈ψ̂j , ε〉|.

Since we have not made any approximations to any quantities, the condition is equivalent to the necessary and sufficient
condition at the beginning of the proof.
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A.5. Probabilistic Results

In the following, let erf(x) =
∫ x
−∞ e−y

2/2dy be the error function. The first result is due to a standard calculation. We
report it here to compare it with our improved bounds.

Lemma A.18. Let ε ∼ N (0, In), and Φ be an (n×m)-matrix with l2-normalized columns. Then

P (‖Φ∗ε‖∞ < δ) ≥ 1−m[1− erf(δ/
√

2)] ≥ 1−m
√

2

π

1

δ
e−δ

2/2.

Proof. See also (Cai and Wang, 2011). As ϕi is l2-normalized, 〈ϕi, ε〉 ∼ N (0, 1).

P (‖Φ∗ε‖∞ < δ) = 1− P

(
m⋃
i=1

{|〈ϕi, ε〉| ≥ δ}

)
≥ 1−

∑
P (|〈ϕi, ε〉| ≥ δ)

= 1− 2
∑

P (〈ϕi, ε〉 ≤ −δ)

= 1−m[1− erf(δ/
√

2)],

(A.5)

where the last equality is due to the cumulative distribution function of the standard normal distribution being [1 +

erf(x/
√

2)]/2, and erf(−x) = − erf(x). Applying the bound P (x > δ) ≤ e−δ
2/2/
√

2πδ for a normal random variable
x ∼ N (0, 1), to the last term in (A.5) and basic algebra finish the proof.

Remark A.19. Note that (Cai et al., 2009) and (Cai and Wang, 2011) provide a similar probabilistic bound for ‖Ψ∗ε‖∞ =
maxi |〈ψi, ε〉|. After checking the proof of Lemma 5.1 in (Cai et al., 2009), we noticed that the provided bound is missing a
factor of two and therefore instead bounds maxi〈ψi, ε〉. The reason for the appearance of the factor is the penultimate
equality in (A.5). As a consequence, some of the probabilistic results in (Cai and Wang, 2011) for OMP need to be adjusted
minorly for correctness.

The previous bound on the maximal absolute inner product of Φ with ε uses the subaddativity of the probability measure.
The following lemmas take into account more structure of the matrix Φ to improve on the previous result.

Lemma A.20. Let Φ be an (n× k) matrix with l2-normalized columns with finite condition number κ(Φ) < ∞. Given
ε ∼ N (0, In), it holds that

P (‖Φ∗ε‖∞ < δ) ≥ 1− κ(Φ)k
[
1− erf(δ/

√
2σmax(Φ))

]k
.

Proof. Note that Φ∗ε ∼ N (0,Σ), where Σ = Φ∗Φ. We will now bound the density of the distribution of Φ∗ε. To this
end, note that

exp

(
−x∗Σ−1x

2

)
≤ exp

(
− ‖x‖2

2λmax(Σ)

)
.

Further, the normalization constant of the Gaussian density can be bounded by

1√
(2π)k|det Σ|

≤ 1

[2πλmin(Σ)]k/2
.

Therefore, the density can be bounded above by one with a diagonal covariance,

P (x|Σ)
def
= (2π)−k/2|det Σ|−1/2 exp

(
−x∗Σ−1x/2

)
≤
(
λmax(Σ)

λmin(Σ)

)k/2
P (x|λmax(Σ)In)

= κ(Σ)k/2
∏
i

P (xi|λmax(Σ)),
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where κ(Σ) is the condition number of Σ. Assuming Φ has full column rank,

P (‖Φ∗ε‖∞ < δ) = 1− P

(
k⋃
i=1

{|〈ϕi, ε〉| ≥ δ}

)
≥ 1− κ(Σ)k/2

∏
i

P (σmax(Φ) · |〈ϕi, ε〉| > δ)

= 1− κ(Φ)k
∏
i

2P (〈ϕi, ε〉 < −δ/σmax(Φ))

= 1− κ(Φ)k
[
1− erf(δ/

√
2σmax(Φ))

]k
.

The penultimate equality is due to κ(Σ) = κ(Φ)2 and the symmetry of the standard normal distribution around zero.

Since for sparse recovery it is commonly assumed that submatrices of Φ are approximately isometric, we can use the last
result to attain a bound for restrictedly isometric Φ which can be much stronger than the one in Lemma A.18. This is the
idea behind the next result.

Lemma A.21. Let Φ be an (n×m)-matrix with l2-normalized columns with Babel function µ1 and d = dm/ke. Given
ε ∼ N (0, In),

P (‖Φ∗ε‖∞ < δ) ≥ 1− d

√
1 + µ1(k)

1− µ1(k)

k [
1− erf(δ/

√
2[1 + µ1(k)])

]k
.

Proof. We first divide the dictionary into d = dm/ke sets of k columns each, thereby accounting for (m mod k) columns
twice. Let the indices of the ith group be Si = {z mod m|(i− 1)k < z ≤ ik} for 1 ≤ i ≤ d.

P (‖Φ∗ε‖∞ < δ) = 1− P

(
k⋃
i=1

{
‖Φ∗Siε‖∞ ≥ δ

})
≥ 1−

∑
P
(
‖Φ∗Siε‖∞ ≥ δ

)
≥ 1− dκ(ΦSi)

k [1− erf(δ/σmax(ΦSi))]
k
.

The last inequality is an application of the previous lemma. Lemma A.5 implies σmax(Φ)2 ≤ 1 + µ1(k) which means
κ(Φ)2 ≤ (1 + µ1(k))/(1− µ1(k)). Plugging the bounds into Lemma A.20 finishes the proof.
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B. Results for Relevance Matching Pursuit
Recall from the main text that

L(γ)
def
= log

∫
p(y|x)p(x|γ)dx

= −y∗C−1y + log |C| − n log(2π)

(B.1)

is the logarithm of the marginal likelihood. Further, C = (σ2I + ΦΓΦ∗) is the covariance of the marginal distribution,
Γ = diag(γ) is the prior covariance of the weights x,A = {i|γi 6= 0} is the active set, si

def
= ϕiC

−1
A\iy and qi

def
= ϕiC

−1
A\iϕi.

B.1. Properties of the marginal likelihood

Given qi, si and keeping all other parameters constant, the optimal prior variance of the ith feature γi is given by

γi =
q2i − si
s2i

if q2i > si,

γi = 0 if q2i ≤ si.
(B.2)

According to (Tipping and Faul, 2003), the increase in the logarithm of the marginal likelihood upon adding an inactive ϕi
and setting its prior variance γi to its optimal value via (B.2) is

∆add(i)
def
=

(
q2i − si
si

+ log
si
q2i

)
/2. (B.3)

Similarly, setting a γi of an active ϕi to its optimal value changes the marginal likelihood by

∆update(i)
def
=

(
Q2
i − Si

Si + (γ̃i − γi)−1
− log

[
1 + Si (γ̃i − γi)−1

])
/2, (B.4)

where Si
def
= ϕiC

−1
A y and Qi

def
= ϕiC

−1
A ϕi, and γi and γ̃i are the current and optimal prior variances in (B.4), respectively.

∆update is used in the update step of RMP to pick the active feature with the maximal increase in the marginal likelihood.

B.2. Statements and proofs

Lemma B.1. The optimum of the marginal likelihood with respect to γi occurs at a non-zero value if and only if

|〈ϕ̃i|rA\i,σ〉| > σ,

where ϕ̃i
def
= ϕi/‖ϕi‖RA\i,σ , ‖ϕi‖RA\i,σ is the energetic norm (ϕ∗iRA\i,σϕi) of ϕi, and A is the active set.

Proof. First, note that via the Woodbury identity, we get

RA,σ
def
= σ2C = I−ΦA(σ2ΓA

−1 + ΦT
AΦA)−1ΦT

A = I−ΦA[σ−2ΣA]ΦT
A. (B.5)

Further, if the optimum of the likelihood with respect to γi occurs at a non-zero value, we must have 1 < q2i /si. Thus,

1 <
q2i
si

=
〈ϕi|CA\iy〉2

〈ϕi|CA\iϕi〉
=
〈ϕi|RA\i,σy〉2

σ2〈ϕi|RA\i,σϕi〉
=
〈ϕi|RA\i,σy〉2

σ2‖ϕi‖2RA\i,σ

=
1

σ2
〈ϕ̃i|rA\i,σ〉2, (B.6)

where ϕ̃i = ϕi/‖ϕi‖RA\i,σ , and rA,σ = y−ΦAµA,σ is the residual associated with the posterior mean of the coefficients
µA,σ under the SBL model. Taking square-roots and multiplying through by σ yields the result.

Lemma B.2. Let ∆add(i) be the change in the marginal likelihood upon setting an inactive feature’s prior variance γi to
its optimal value via equation (B.2). Then

arg max
i 6∈A

∆add(i) = arg max
i6∈A
|〈ϕ̃i|rA,σ〉|.

where ϕ̃i = ϕi/‖ϕi‖RA,σ , and A is the active set.
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Proof. The increase in the log marginal likelihood by adding an feature, and setting its prior variance to the optimal value is
given by equation (B.3). By rearranging, we can write

2∆add(i) =
q2i − si
si

+ log
si
q2i

=

(
q2i
si

)
− log

(
q2i
si

)
− 1. (B.7)

Evidently, the increase ∆add(i) is a univariate function of the fraction q2i /si only. The function is f(x) = x−log x−1, which
is strictly increasing for x > 1. Therefore, choosing the feature with the largest marginal likelihood increase corresponds to
choosing the feature with the largest q2i /si value above 1. If no ratio is above 1, no feature is added. According to Lemma
B.1, q2i /si = 〈ϕ̃i|rA\i,σ〉/σ2. Noting that i 6∈ A, implies A\i = A finishes the proof.

Lemma B.3. As δL → 0, the γ returned by RMPσ constitutes a local maximum of the marginal likelihood.

Proof. This is essentially due to Faul and Tipping (2002). To elaborate, note that RMP can only terminate if no update yields
an improvement above the threshold δL, nor can a feature be added or deleted without decreasing the marginal likelihood.
Indeed, after the second inner loop breaks, we are guaranteed to have ∆update(i) < δL for all i ∈ A. Further, the coordinate
ascent updates to γi do provably converge to a joint maximum, not merely a stationary point (Faul and Tipping, 2002). These
facts imply that as we move δL → 0+, the results of the algorithms converge to a local maximum of the marginal likelihood
at which ∆update(i) = 0 for all i ∈ A and no features can be added or deleted without decreasing the likelihood.

Lemma B.4. Assume the columns of ΦA, are linearly independent. Then

RA
def
= (I−ΦAΦ+

A) = lim
σ→0+

RA,σ.

Proof. Using a standard limit relation for the pseudoinverse (Golub and Van Loan, 2012),

lim
σ→0+

RA,σ = I− (ΦAΓ
1
2

A)(ΦAΓ
1
2

A)+. (B.8)

If further the columns ΦA of Φ for which the γi are non-zero are linearly independent, (ΦAΓ
1/2
A )+ = Γ

−1/2
A Φ+

A, so that
limσ→0+ RA,σ = I−ΦAΦ+

A.

Lemma B.5. Let rA be the least-squares residual associated with a feature set A. Then

‖rA‖22 − ‖rA∪i‖22 = |〈ϕi, rA〉|2/‖ϕi‖2RA
, and

‖rA\i‖22 − ‖rA‖22 = |〈ϕi, rA〉|2/‖ϕi‖2RA\i
.

(B.9)

Proof. We prove the first equality and note that the second equality can be proven similarly. Let ψi = RAϕi. Then the
projection into the orthogonal complement col(ΦA) in col(ΦA∪i) is equal to ψ̂iψ̂∗i . Therefore,

‖rA∪i‖2 = ‖(I−PA∪i)y‖2

= ‖(I− [PA + ψ̂iψ̂
∗
i ])y‖2

= ‖rA‖2 − |〈ψ̂i,y〉|2

= ‖rA‖2 − |〈ϕi,RAy〉|2/‖ϕ‖2RA
.
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C. Results For Stepwise Regression
C.1. Forward Regression

Theorem C.1. Suppose the columns of Φ are l2-normalized. Orthogonal Matching Pursuit and Forward Regression recover
the support S of a k-sparse vector in k iterations provided the Babel function µ1 of Φ and the perturbation ε of the target y
satisfy

1− 2µ1(k)√
2[1 + µ1(k)]

min
i∈S
|xi| ≥ ‖ε‖2.

Proof. Consider the left side of the inequality of Lemma A.14 and Lemma A.15. According to Lemma A.11, both ρOMP

and ρFR are upper bounded by µ1(k)
1−µ1(k−1) . Further, Lemma A.5 implies 1 − µ1(k) ≤ σmin(ΦS)2, and µ1 is increasing.

Therefore,

(1− ρ)σmin(ΦS)2 ≥
[
1− µ1(k)

1− µ1(k − 1)

]
(1− µ1(k − 1))

= 1− µ1(k − 1)− µ1(k)

≥ 1− 2µ1(k).

Regarding OMP, the right side of the inequality in Lemma A.14 is bounded by
√

2(1 + µ)‖ε‖, according to Lemma A.12.
Similarly, regarding FR, the right side of the inequality in Lemma A.15 is bounded by

√
2[1 + µ1(k)]‖ε‖, according Lemma

A.16. As the Babel function is increasing, the latter bound holds for both OMP and FR. This finishes the proof.

Theorem C.2. Suppose ε ∼ N (0, σ2), and let δ = [1/2 − µ1(k)] mini∈S |xi|/σ. Orthogonal Matching Pursuit and
Forward Regression recover the support of a k-sparse signal with probability exceeding

1−
⌈m
k

⌉( 1 + κ1(k)

1− µ1(2k)

)k/2 (
1− erf(δ/

√
2κ1(k))

)k
where κ1(k)

def
= (1 + µ1(2k))/(1− µ1(k)). Assuming µ1(2k) < 1/2, this holds with probability exceeding

1−
⌈m
k

⌉ [
2
√

2
(

1− erf
(
δ/
√

6
))]k

> 1−
⌈m
k

⌉ [ 4√
πδ
e−δ

2/6

]k
.

Proof. For OMP, the right side of the inequality in Lemma A.14 can be bounded by

max
i∈S
|〈ϕi, ε〉|+ max

j 6∈S
|〈ϕj , ε〉| ≤ 2‖Φ∗ε‖∞.

Noting that 〈ϕi, ε〉 has standard deviation σ, we can apply Lemma A.21 to the right hand side of the last inequality and get
a lower bound on the probability with which OMP recovers the correct support:

1−
⌈m
k

⌉(1 + µ1(k)

1− µ1(k)

)k/2 [
1− erf(δ/

√
2[1 + µ1(k)])

]k
.

Similarly for Forward Regression, the right side of the inequality in Lemma A.15 can be bounded by

max
i∈S
|〈ψ̂i, ε〉|+ max

j 6∈S
|〈ψ̂j , ε〉| ≤ 2‖Ψ̂∗Acε‖∞,

where, for any index set B, we define ΨB = (I−PA)ΦB and Ψ̂Ac is the result of normalizing the columns of ΨAc . In
order to use Lemma A.21 on the right hand side of the last inequality, we first need to bound the singular values of the
submatrices of Ψ̂Ac .

To this end, let B ⊂ Ac and |B| = |A| = k. Using Lemma A.6 and A.7,

σmin(Ψ̂B) ≥ σmin(ΨB)/max
i∈B
‖ψi‖ ≥ σmin((I−PA)ΦB) ≥ σmin(ΦA∪B) ≥ 1− µ1(2k).
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In a similar vain,

σmax(Ψ̂B) ≤ σmax(ΦA∪B)/σmin(ΦB) ≤ κ1(k)
def
=

1 + µ1(2k)

1− µ1(k)
.

Using these bounds on the extremal singular values in place of 1± µ1(k) in the proof of Lemma A.21, we attain the first
inequality of the result (Theorem C.2). As this inequality is slightly looser than the one derived above for OMP alone, it
holds for both algorithms. The second inequality of the result follows by substituting 1/2 for µ1(2k) into the expression
and by noting that µ1(k) ≤ µ1(2k), which follows from the known property that for all k ≥ 1, µ1(k) ≤ kµ. In that case,
κ1(k) = (1 + µ1(2k))/(1− µ1(k)) < (3/2)/(1/2) = 3 and thus

√
(1 + κ1(k))/(1− µ1(k)) < 2

√
2. The last inequality

of the second equation is due to the standard Gaussian tail bound already employed in Lemma A.18.

C.2. Backward Regression

Theorem C.3. Suppose Φ has full column rank. Then Backward Regression recovers the support S of a k-sparse m-
dimensional vector x in m− k steps if

σmin(Φ)√
2[2− σmin(Φ)2]

min
i∈S
|xi| > ‖ε‖2,

where σmin(Φ) is the smallest singular value of Φ.

Proof. The left side of equation (A.3) in Lemma A.17 can be bounded below by

min
i∈S

[
|xi|‖ψi‖ −

∣∣∣〈ψ̂i, ε〉∣∣∣] ≥ min
i∈S
|xi|‖ψi‖ −max

i∈S

∣∣∣〈ψ̂i, ε〉∣∣∣ .
A sufficient condition for the one-step success of the algorithm is then

min
i∈S
|xi|‖ψi‖ ≥ σmin(ΦA) min

i∈S
|xi|

>
√

2[2− σmin(ΦA)]‖ε‖2 ≥ max
i∈S

∣∣∣〈ψ̂i, ε〉∣∣∣+ min
j 6∈S

∣∣∣〈ψ̂j , ε〉∣∣∣ . (C.1)

The lower bound of ‖ψi‖ ≥ σmin(ΦA) is a direct consequence of Lemma A.7. The last upper bound is due to Lemma
A.16. The second inequality is forced to guarantee the one-step success of the algorithm. Since σmin(ΦA) ≥ σmin(Φ) for
all submatrices ΦA of Φ, every iteration is guaranteed to successfully remove an irrelevant feature if the inequality in the
statement of the theorem holds, until the correct support S is recovered.

Corollary C.4. Suppose ΦA has full column rank, |A| = k, and S ⊂ A. Then Backward Regression recovers the correct
support set in |A| − |S| iterations, provided√

1− µ1(k)

2[1 + µ1(k)]
min
i∈S
|xi| > ‖ε‖2.

Proof. First, Lemma A.5 implies σ2
min(ΦA) > 1− µ1(k − 1) for all index sets A of size k. Since µ1 is increasing, we can

bound
σmin(Φ)√

2[2− σmin(Φ)2]
≥

√
1− µ1(k)

2[1 + µ1(k)]
.

Corollary C.5. Let xk be the vector that achieves the smallest residual norm ‖y−Φx‖ among all vectors x with k or fewer
non-zero elements. If the associated residual rk

def
= y −Φxk satisfies the bound in Theorem C.3 in place of ε, Backward

Regression recovers xk, or equivalently, solves the subset selection problem to optimality.

Proof. The main idea is to reduce the problem to the sparse recovery problem. That is, letting ε← rk, the problem becomes
indistinguishable from sparse recovery with a k-sparse coefficient vector xk with support S. If the conditions of Theorem
C.3 hold, the result guarantees the recovery of the support S of xk. Since, by definition, xk attains the minimal residual
among all k-sparse vectors, and ΦSΦ

+
S (y +ε) reaches the minimal residual among all vectors with support S , the backward

algorithm returns precisely xk.
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D. Numerical Experiments
D.1. Implementation Details and Experimental Setup

We made all our implementations publicly available via the CompressedSensing.jl package by the publication date
of ICML 2021 to function as a platform for sparsity-inducing algorithms. The implementations are contained in the src
folder. OMP is in matchingpursuit.jl, FR is in forward.jl, BR is in backward.jl, RMP and FoBa are in stepwise.jl, the SBL
algorithms are in sbl.jl, and BP is in basispursuit.jl

For the sake of reproducibility, we additionally attached the folder ICML2021, which contains all code to run the experiments
and the results stored in H5 files.

D.2. Estimation of the noise variance

Here, we discuss a potential addition to RMP: the estimation of the noise variance σ2, which is one of the advantages of
the probabilistic framework over traditional compressed sensing and feature selection methodologies. To this end, setting
the derivative of the marginal likelihood with respect to σ2 to zero yields the update σ2 ← ‖y − Φµ‖2/(n +

∑
i γi),

where n is the number of rows of Φ (Tipping, 2001). This update can be applied at any point during the execution of
the algorithm, while maintaining the same local convergence guarantees. However, adding this update to the loop of any
coordinate-ascent algorithm for SBL requires the factorization of C = σ2I + ΦAΓΦ∗A from scratch every time σ2 is
changed. In contrast, coordinate-wise updates of Γ result in efficient low-rank updates to C. Thus, re-estimation of σ2

in the loop would increase the computational complexity per iteration from O(nk) to O(nk2) where k is the size of the
active set A. For this reason, we propose an algorithm that alternates the application of the σ-update and a run of RMP,
warm-started at the existing parameters and run to convergence. By running experiments with this algorithm, we noticed
that the success of the estimation depends on the sampling ratio n/m. Table 1 shows this dependence by reporting statistics
of the estimated value of σ2 after convergence of this procedure over 128 independently generated instances with m = 128
and k = 4 fixed. The observations were corrupted with Gaussian noise with σ2 = 1e−4. For low sampling fractions, i.e.
the domain of compressed sensing, neither mean nor median are close to the true value, indicating convergence to local
minima different from the ground truth, despite having initialized the variance very close to the ground truth at (2σ)2. For
high sampling fractions, the median estimate gets increasingly close to the ground truth, though the variance in the results
stays high. To stabilize the estimation, it is common to add an inverse gamma prior on the noise variance. We also ran
experiments using ranges of different prior values but found that, as long as the prior is just relatively vague, the variability
of the results remains high. If the noise variance really is completely unknown, one might have to resort to a fully Bayesian
approach using MCMC sampling to get representative values of the noise variance. However, such an approach is firmly
outside the scope of the current work. We also note that with the exception of SBL, none of the other sparsity-promoting
algorithms offer this feature.

Table 1: Statistics of σ2 estimation via marginal likelihood optimization computed over 128 independent instances with
m = 128 and k = 4 fixed. The ground truth is σ2 = 1e−4.

n/m 1/4 1/2 1 2 4 8

mean 5.18e−01 5.16e−01 3.96e−01 2.58e−01 2.34e−01 1.82e−01
median 3.72e−06 3.96e−06 4.19e−05 7.69e−05 9.07e−05 9.48e−05

std 1.31e+00 1.03e+00 1.19e+00 8.13e−01 8.80e−01 9.37e−01
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