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Abstract
Sparse Bayesian Learning (SBL) is a powerful
framework for attaining sparsity in probabilistic
models. Herein, we propose a coordinate ascent
algorithm for SBL termed Relevance Matching
Pursuit (RMP) and show that, as its noise variance
parameter goes to zero, RMP exhibits a surprising
connection to Stepwise Regression. Further, we
derive novel guarantees for Stepwise Regression
algorithms, which also shed light on RMP. Our
guarantees for Forward Regression improve on
deterministic and probabilistic results for Orthog-
onal Matching Pursuit with noise. Our analysis of
Backward Regression on determined systems cul-
minates in a bound on the residual of the optimal
solution to the subset selection problem that, if sat-
isfied, guarantees the optimality of the result. To
our knowledge, this bound is the first that can be
computed in polynomial time and depends chiefly
on the smallest singular value of the matrix. We
report numerical experiments using a variety of
feature selection algorithms. Notably, RMP and
its limiting variant are both efficient and maintain
strong performance with correlated features.

1. Introduction
Finding a sparse solution to underdetermined linear systems
is a fundamental problem in a diverse array of domains
and applications, like network systems (Haupt et al., 2008),
materials science (Szameit et al., 2012), medical imaging
(Lustig et al., 2007), and more. The problem can be formal-
ized as

min ‖x‖0 s.t. Φx = y, (1.1)

where Φ ∈ Rn×m is a matrix with potentially more columns
than rows, y is the observation we are trying to represent
using an unknown sparse vector x, and ‖x‖0 stands for the
number of non-zero elements in x. A column ϕi of Φ is
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variously referred to as a feature or an atom. This problem
has been studied extensively, resulting in myriad existing
methods and algorithms.

In the present work, we study two seemingly disparate
techniques for solving problem (1.1): Sparse Bayesian
Learning (SBL) and Stepwise Regression. SBL is based
on the Automatic Relevance Determination (ARD) frame-
work (MacKay, 1992a;b) and is concerned with a generative
model of the form

Φx = y + ε, (1.2)

where Φ is a deterministic matrix, εi ∼ N (0, σ) are inde-
pendent noise variables, and the prior distribution over the
coefficients is xi ∼ N (0, γi) (Tipping, 2001). Each coef-
ficient has an independent prior variance γi, the defining
characteristic of the ARD prior. Sparse Bayesian models are
usually trained via type-II maximum likelihood estimation,
which is the maximization of the marginal likelihood with
respect to γ. The logarithm of the marginal likelihood is

L(γ)
def
= log

∫
p(y|x)p(x|γ)dx

= −y∗C−1y − log |C| − n log(2π),

(1.3)

where C
def
= (σ2I + ΦΓΦ∗), and Γ

def
= diag(γ). Since ev-

ery coefficient has its own prior variance, the optimization
effectively prunes extraneous features of Φ if their prior
variances approache zero. Since this provably happens fre-
quently (Wipf and Rao, 2005), ARD and SBL are powerful
tools for promoting sparsity in a variety of applications.

Stepwise Regression, on the other hand, is a class of well-
known greedy algorithms that add and delete features from
a candidate solution based on two rules:

arg min
i 6∈A
‖rA∪i‖2, and arg min

i∈A
‖rA\i‖2, (1.4)

where rA is the least-squares residual using only features in-
dexed by A. The intuitive appeal and practical performance
of these greedy heuristics have led separate communities
to rediscover the same algorithms, leading to a bewildering
number of names. The algorithm that selects features based
on the left side of (1.4) is known as Forward Regression, For-
ward Selection (Miller, 2002), Order-Recursive Matching
Pursuit (ORMP) (Cotter et al., 1999), Optimized Orthogo-
nal Matching Pursuit (Rebollo-Neira and Lowe, 2002), and
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Orthogonal Least-Squares (Cotter et al., 1999). The algo-
rithm that eliminates features based on the right side of (1.4)
is known as Backward Regression, Backward Elimination
(Miller, 2002), and Backward Optimized Orthogonal Match-
ing Pursuit (Andrle et al., 2004). Unless otherwise noted,
we will refer to them simply as the forward and backward
algorithm, respectively.

Contributions We propose Relevance Matching Pursuit
(RMPσ), an algorithm which simultaneously maximizes
(1.3) locally, and exhibits a surprising relationship to Step-
wise Regression. Indeed, by analyzing RMPσ in the noise-
less limit in Section 3, we derive RMP0, a combination of
the well-known forward and backward algorithms. Having
established this connection, we derive novel theoretical guar-
antees for Stepwise Regression on noisy data in Section 4.
The guarantees for Forward Regression improve on exist-
ing deterministic and probabilistic results for Orthogonal
Matching Pursuit. The bounds of the tolerable perturba-
tion for Backward Regression are, to our knowledge, the
first that can be computed in polynomial time and provide
an important insight: the backward algorithm returns the
optimal solution to the subset selection problem on a deter-
mined linear system, as long as the residual of the solution
is bounded by a quantity that is proportional to the smallest
singular value of the matrix. We experimentally verify our
prediction that RMP0 exhibits comparable support recov-
ery performance to RMPσ and compare against some of
the most potent feature selection algorithms1 in Section 5.
The results demonstrate RMP’s combination of performance
and efficiency, corroborating our theoretical analysis. The
only method with a consistent performance advantage over
RMPσ and RMP0 is the ARD-based reweighted l1-norm
minimization of Wipf and Nagarajan (2008), though the
approach is computationally substantially more expensive.

2. Relevant Work
Given the vast amount of work on sparsity-inducing meth-
ods, we focus on the most relevant to ours. In the following,
we will use the bra-ket notation 〈·|·〉 to denote an inner
product. A feature that has been selected by an algorithm
is considered active and we refer to the set A of all active
features as the active set.

Basis Pursuit Basis Pursuit (BP) is a framework for solv-
ing (1.1) via the following convex relaxation:

min ‖x‖1 s.t. Φx = y. (2.1)

Under certain assumptions on the matrix Φ and the spar-
sity level k = ‖x‖0, (2.1) has the same global optimum
as (1.1) (Chen et al., 2001; Candès et al., 2006). An im-

1Code made available at CompressedSensing.jl.

portant modification to BP for noisy observations is Basis
Pursuit Denoising (BPDN) which replaces the equality con-
straint with ‖Φx− y‖ ≤ δ, where δ is an upper bound on
the perturbation of the signal (Chen et al., 2001; Donoho
and Elad, 2006). This is closely related to the least abso-
lute shrinkage and selection operator (LASSO) (Tibshirani,
1996; Zhao and Yu, 2007; Bach, 2008). Cawley et al. (2007)
studied this principle in the Bayesian framework, where
the l1-regularizer is equivalent to a Laplacian prior. Other
notable algorithms based on relaxations of (1.1) include FO-
CUSS, an iterative least-squares scheme (Gorodnitsky and
Rao, 1997), and a reweighted l1-norm minimization algo-
rithm proposed in (Candes et al., 2008), both approximating
an entropic regularization term. While algorithms based
on relaxations can offer strong sparse recovery guarantees
and performance, they can be computationally expensive
for large problems. Efficient greedy algorithms have been
developed for this reason.

Matching Pursuit An important family of greedy algo-
rithms for (1.1) are Matching Pursuit (MP) and its vari-
ants (Mallat and Zhifeng Zhang, 1993). Matching Pursuit
updates a candidate solution one element at a time. The
specific element i is chosen by the rule arg maxi |〈ϕi|r〉|,
where ϕi is the ith column of Φ and r = y − Φx is the
current residual. Orthogonal Matching Pursuit (OMP), also
known as Stagewise Regression, uses the same rule to add
features, but additionally optimizes all coefficients of the
active set in each iteration:

arg max
i
|〈ϕi|rA〉|, (2.2)

where rA is the least-squares residual given the set of atoms
A. Remarkably, OMP has theoretical guarantees for the
problem of recovering the support of exactly sparse signals,
even for noisy measurements (Davis et al., 1997; Tropp,
2004; Tropp and Gilbert, 2007; Rangan and Fletcher, 2009;
Cai and Wang, 2011). Recently, Matching Pursuits have
served as inspiration for optimization algorithms: Tibshirani
(2015) proposed a general framework for stagewise algo-
rithms with applications to group-structured learning, matrix
completion, and image denoising. Locatello et al. (2018)
developed a unified analysis of MP and coordinate ascent
algorithms and Combettes and Pokutta (2019) proposed
Blended Matching Pursuit, combining coordinate descent
and gradient steps to compute sparse minimizers of general
convex objectives quickly.

Stepwise Regression We here focus on known theoreti-
cal guarantees of the forward and backward algorithms and
existing algorithms that combine them. Das and Kempe
(2018) proposed a notion of approximate submodularity and
showed that it is satisfied by the coefficient of determination,
R2. In this way, they proved approximation guarantees of

https://github.com/SebastianAment/CompressedSensing.jl
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the forward algorithm and OMP to the optimal solution of
the subset selection problem, which were generalized by
Elenberg et al. (2018) for general convex objectives. Cou-
vreur and Bresler (2000) analyzed the backward algorithm
and proved the existence of a bound on the perturbation
magnitude that guarantees the recovery of the support of
sparse solutions of linear systems.

Andrle et al. (2004) proposed running the forward and back-
ward algorithm consecutively, but did not provide theoretical
guarantees, nor empirical comparisons against other algo-
rithms. Zhang (2009) proposed FoBa, which combines both
forward and backward heuristics into an adaptive algorithm.
Similarly, Rao et al. (2015) proposed a forward-backward
algorithm for the optimization of convex relaxations of (1.1)
based on atomic norms and, most recently, Borboudakis and
Tsamardinos (2019) proposed an early-dropping heuristic
for forward-backward algorithms for general feature selec-
tion problems.

Sparse Bayesian Learning The first algorithms for the
optimization of (1.3) for SBL were based on expectation-
maximization (EM) updates and the fixed-point updates of
MacKay (Tipping, 2001). Though these methods are able to
obtain sparse solutions to (1.2), they have no convergence
guarantees and are slow for large problems, due to the at
least quadratic scaling with the number of features (Tipping,
2001). Wipf and Rao (2004) showed how to adapt the EM-
based SBL algorithm to the l0-minimization problem (1.1)
and proved that, in contrast to BP, the resulting optimization
problem has the same global optimum as (1.1) and suffers
from fewer local minima than competing non-convex relax-
ations. Subsequently, Wipf and Nagarajan (2008) showed
that the usual type-II approach can be interpreted as a type-I
(MAP) approach with a special non-factorial prior. Using
this insight, they proposed an algorithm based on reweighted
l1-norm minimization, which provably converges to a local
maximum of the marginal likelihood, performs at least as
well as BP in recovering sparse signals, and usually outper-
forms techniques based on l1, l2, and entropy regularization
(Wipf and Nagarajan, 2009), especially when dictionaries
are structured and coherent (Wipf, 2011).

3. Relevance Matching Pursuit
This section first recapitulates the derivation of the coordi-
nate ascent updates for SBL derived by Tipping and Faul
(2003), subsequently introduces the Relevance Matching
Pursuit algorithm, and analyzes the algorithm’s behavior as
the noise variance approaches zero.

3.1. SBL via Coordinate Ascent

Recall from the introduction that C = (σ2I + ΦΓΦ∗) is
the covariance of the marginal distribution and Γ = diag(γ)

is the prior variance of the weights x. In the context of SBL,
we refer to A = {i|γi 6= 0} as the active set. Following
the analysis of Tipping and Faul (2003) and based on the
Woodbury matrix identity, we separate out the contribution
of a single prior variance γi to the marginal likelihood (1.3):

L(γ) = L(γ−i) +
1

2

(
q2i

γ−1i + si
− log

1

1 + γisi

)
= L(γ−i) + l(γi),

where qi
def
= ϕiC

−1
A\iy and si

def
= ϕiC

−1
A\iϕi, also termed the

"quality" and "sparsity" factors by Faul and Tipping (2002).
CA\i is as in (1.3) but only includes the features ϕk and
corresponding prior variances γk for k ∈ A\i. Crucially,
the argument of the maximum of the marginal likelihood
with respect to a single prior variance γi is unique and has a
closed form:

arg max
γi

l(γi) =

{
(q2i − si)/s2i q2i > si

0 else
. (3.1)

Equation (3.1) is the basis of the efficient coordinate ascent
updates put forth in Tipping and Faul (2003). Associated
with each coordinate update is a change in the marginal
likelihood. If q2i > si, we denote by ∆add(i), respectively
∆update(i), the change in the marginal likelihood correspond-
ing to setting a γi which was previously zero, respectively
non-zero, via equation (3.1).

We now make two preliminary observations. Given a subset
of features A, and a noise variance σ2, the posterior mean
µA,σ and variance ΣA,σ of the subset of weights xA are
given by

ΣA,σ = (ΓA
−1 + σ−2ΦT

AΦA)−1,

µA,σ = σ−2ΣAΦ∗Ay,

where ΦA and ΓA are the submatrices of Φ and Γ corre-
sponding to A. The Woodbury identity gives

RA,σ
def
= σ2C−1 = I−ΦA[σ−2ΣA]Φ∗A,

and thus, rA,σ
def
= y − ΦAµA,σ = RA,σy. We can now

express the following result on the condition which leads
SBL to include or exclude a feature.
Lemma 3.1. The optimum of the marginal likelihood with
respect to γi occurs at a non-zero value if and only if

|〈ϕ̃i|rA\i,σ〉| > σ,

where ϕ̃i
def
= ϕi/‖ϕi‖RA\i,σ , ‖ϕi‖RA\i,σ is the energetic

norm (ϕ∗iRA\i,σϕi) of ϕi, and A is the active set.

Lemma 3.1 shows the direct and proportional dependency of
the acquisition and deletion conditions on σ. The following
result characterizes the inactive feature (γi = 0) that leads
to the maximal increase in the marginal likelihood upon its
addition to the model.
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Lemma 3.2. Let ∆add(i) be the change in the marginal
likelihood upon setting an inactive feature’s prior variance
γi to its optimal value via equation (3.1). Then

arg max
i 6∈A

∆add(i) = arg max
i6∈A
|〈ϕ̃i|rA,σ〉|.

where ϕ̃i = ϕi/‖ϕi‖RA,σ , and A is the active set.

By comparing the right side of the equation in Lemma 3.2
to the acquisition criterion of OMP in (2.2), we see that a
feature selection strategy based on the maximal increase in
the marginal likelihood is intimately related to the family
of Matching Pursuit algorithms. This serves as the inspira-
tion for the name of Relevance Matching Pursuit (RMP),
described in the next section.

3.2. Algorithm Design

In describing the coordinate ascent updates, Tipping and
Faul (2003) purposefully left several choices open: which
variance γi does the algorithm choose to update, add, or
delete? In which order should these operations proceed?
RMP arises from a particular choice for these design ques-
tions, enabling our analysis of the algorithm’s behavior, and
proving to be closely related to Stepwise Regression. The
design principles give rise to Algorithm 1 and are as follows:

1) Add features based on arg maxi 6∈A |〈ϕ̃i|r〉|, until there
is no inactive feature with |〈ϕ̃i|r〉| > σ left.

2) Remove features based on arg mini 6∈A |〈ϕ̃i|r〉|, as long
as there is a feature with |〈ϕ̃i|r〉| ≤ σ.

3) Update the prior variance of the currently active atom
whose update leads to the largest increase in the marginal
likelihood, as long as there is a feature with ∆update(i) >
δL, where δL is an input to the algorithm and defines a
convergence criterion.

In Algorithm 1, we left the condition of the outer loop im-
precise for a reason: in addition to terminating after an
improvement to the likelihood fails to exceed δL and no
feature is left to add or delete, an implementation might
include additional criteria, like a maximum runtime, num-
ber of iterations, or change in γ. We further note that the
coordinate ascent updates to γi do provably converge to
a joint maximum, not merely a stationary point (Faul and
Tipping, 2002). These facts imply

Lemma 3.3. As δL → 0, the γ returned by RMPσ consti-
tutes a local maximum of the marginal likelihood.

3.3. The Noiseless Limit

We now analyze the algorithm’s behavior as the noise vari-
ance σ2 approaches zero. On a high level, this is analogous

Algorithm 1 Relevance Matching Pursuit (RMPσ)

1: Input: Dictionary Φ, signal y, noise variance σ2, con-
vergence criterion δL

2: Ouput: Support set A, prior variances γi
3: Initialize A ← ∅
4: Initialize γi ← 0 for all i
5: while has not converged do
6: while ∃i 6∈ A s.t. |〈ϕ̃i|rA,σ〉| > σ do
7: i∗ ← arg maxi 6∈A |〈ϕ̃i|rA,σ〉| {selection}
8: A ← A∪ i∗ {add to active set}
9: update γi∗ {set γi∗ via (3.1)}

10: end while
11: while true do
12: if ∃i ∈ A s.t. |〈ϕ̃i|rA\i,σ〉| ≤ σ then
13: i∗ ← arg mini∈A |〈ϕ̃i|rA\i,σ〉|
14: A ← A\i∗ {elimination}
15: else if ∃i s.t. ∆update(i) > δL then
16: i∗ ← arg maxi∈A∆update(i) {update}
17: else
18: break
19: end if
20: update γi∗ {set γi∗ via (3.1)}
21: end while
22: end while

to the approach of Wipf and Rao (2004; 2005) who studied
the noiseless limit of the EM-updates for SBL. We make
use of the following property of the Moore-Penrose inverse.
Lemma 3.4. Assume the columns of ΦA, are linearly inde-
pendent. Then

RA
def
= (I−ΦAΦ+

A) = lim
σ→0+

RA,σ.

Note that rA = RAy is the ordinary least-squares residual
of the active features ΦA and y. The following technical
result is crucial in establishing the connection of RMPσ to
Stepwise Regression.
Lemma 3.5. Let rA be the least-squares residual associ-
ated with a feature set A. Then

‖rA‖22 − ‖rA∪i‖22 = |〈ϕi, rA〉|2/‖ϕi‖2RA , and

‖rA\i‖22 − ‖rA‖22 = |〈ϕi, rA〉|2/‖ϕi‖2RA\i .
(3.2)

An immediate corollary of Lemma 3.5 is that
arg mini ‖rA∪i‖ = arg maxi |ϕi · rA|/‖ϕi‖RA , and
a similar expression for the second equation in (3.2). As
Lemma 3.4 implies that the addition criteria of RMPσ
converge to the right-hand side of this expression, the
criteria in fact converge to the ones of the forward and
backward algorithm in equation (1.4).

It remains to study what happens to the prior-variance-
update step in line 16 of Algorithm 1. Notably, RA is
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Algorithm 2 RMP0

1: Input: Dictionary Φ, signal y, tolerance δ
2: Result: Support set A
3: Initialize A ← ∅
4: while has not converged do
5: while ∃i ∈ A s.t. ‖rA‖2 − ‖rA∪i‖2 > δ2 do
6: i∗ ← arg maxi 6∈A ‖rA∪i‖ {selection}
7: A ← A∪ i∗
8: end while
9: while ∃i ∈ A s.t. ‖rA\i‖2 − ‖rA‖2 ≤ δ2 do

10: i∗ ← arg mini∈A ‖rA\i‖ {elimination}
11: A ← A\i∗
12: end while
13: end while

independent of Γ under the assumption of Lemma 3.4, and
thus, so are the addition and deletion criteria of RMPσ in
this limit. Therefore, updating and keeping track of Γ is
irrelevant for the execution of the algorithm if the active set
is linearly independent.

This observation gives rise to Algorithm 2, which we term
RMP0, which models RMPσ when there are no linearly
dependent column in the active set. This is not a restrictive
assumption since RMP0 starts with an empty A and stops
adding columns when a feasible solution is found since then
rA = 0, which happens at the latest when n columns are
added. Inspired by the acquisition criterion in Lemma 3.1,
we introduce an acquisition and deletion threshold δ sep-
arate from σ to Algorithm 2, which makes the algorithm
capable of handling noise. Setting δ ← 0 corresponds to the
noiseless limit of RMPσ .

4. Stepwise Regression
Having exposed a connection of Relevance Matching Pur-
suit to Stepwise Regression, we now provide novel theoreti-
cal insights about the forward and backward algorithms. To
this end, we briefly introduce necessary theoretical tools.

4.1. Theoretical Preliminaries

Prior work has established that the performance of many
feature selection and sparse recovery algorithms is highly
dependent on the correlation of different features. The fol-
lowing definition quantifies this notion.

Definition 4.1 (Coherence). The coherence µ of a matrix
Φ, whose columns have unit norm, is defined as

µ
def
= max

i 6=j
|〈ϕi|ϕj〉|.

The coherence is a measure of the orthogonality of Φ. It
can lead to pessimistic estimates, as it only considers the

maximal inner product of two columns. Tropp (2004) in-
troduced the Babel function to generalize the coherence by
measuring the maximal sum of absolute inner products be-
tween a column and a set of columns. Its name is inspired
by the Tower of Babel, since the function measures "how
much the atoms are speaking the same language", and it can
be used to derive sharper results.

Definition 4.2 (Babel Function). The Babel function µ1 of
a dictionary Φ is defined as

µ1(k)
def
= max
|I|=k

max
i 6∈I

∑
j∈I
|〈ϕi|ϕj〉|.

Notably, µ1(1) = µ and µ1(k) ≤ µk (Tropp, 2004).

Using this notion, Tropp (2004) proved that a necessary and
sufficient condition for Orthogonal Matching Pursuit to re-
cover any k-sparse vector is the Exact Recovery Condition.

Theorem 4.3 (Tropp (2004)). Orthogonal Matching Pur-
suit and Basis Pursuit succeed in recovering the support S
of a k-sparse x from y = Φx if

max
j 6∈S

‖Φ+
Sϕj‖1 < 1.

Further, this holds if µ1(k) < 1/2.

Soussen et al. (2013) used the connection of the forward
algorithm and OMP that was exposed through Lemma 3.5
to jointly analyze the two algorithms, proving that the exact
recovery criterion in Theorem 4.3 is necessary and sufficient
for both algorithms to retrieve any sparse signal with no
noise. In particular, for each algorithm, there is a sparse
signal which cannot be recovered in k steps, if the inequality
doesn’t hold. In this sense, the recovery guarantee for the
forward algorithm without noise cannot be improved. Tropp
(2004) further points out that even the condition on the
Babel function is necessary for exact recovery.

4.2. Forward Regression

For the results in this subsection, assume that Φ has l2-
normalized columns. In comparison to the work of Cai
and Wang (2011) on OMP with noise, our main theoretical
contributions for the analysis of the forward algorithms are
related to the necessary recovery condition on the Babel
function, µ1(k) < 1/2, and its implications. Our analysis
leads to both tighter deterministic and probabilistic bounds
on the tolerable noise magnitude.

Theorem 4.4. Orthogonal Matching Pursuit and Forward
Regression recover the support of a k-sparse vector in k iter-
ations provided the Babel function µ1 and the perturbation
ε of the target y satisfy

1− 2µ1(k)√
2[1 + µ1(k)]

min
i∈S
|xi| ≥ ‖ε‖2.
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Theorem 4.4 allows for a non-zero amount of noise as long
as µ1(k) < 1/2, which is necessary even in the noiseless
case. The tolerable magnitude increases with decreasing
Babel function value, and is proportional to the magnitude
of the smallest non-zero entry in x. Compared to Thm. 10
of Bruckstein et al. (2009) and Thm. 1 of Cai and Wang
(2011), Thm. 4.4 applies to both OMP and Forward Regres-
sion (FR) and improves the factor of 2 in both prior results
to
√

2(1 + µ1(k)). This allows up to around 40% more
noise while generalizing the results, and converges to

√
2 as

µ→ 0, the provably tightest constant even for orthogonal
matrices. We also derived the following novel probabilistic
guarantee for perturbations that are normally distributed.

Theorem 4.5. Suppose ε ∼ N (0, σ2In), and let δ =
[1/2 − µ1(k)] mini∈S |xi|/σ > 0 and d = dm/ke. Or-
thogonal Matching Pursuit and Forward Regression recover
the support of a k-sparse signal with probability exceeding

1−
⌈m
k

⌉( 1 + κ1(k)

1− µ1(2k)

)k/2 (
1− erf(δ/

√
2κ1(k))

)k
.

where κ1(k)
def
= (1 + µ1(2k))/(1− µ1(k)). For µ1(2k) <

1/2, the result further holds with probability exceeding

1−
⌈m
k

⌉( 4√
πδ
e−δ

2/6

)k
.

By comparison, the existing bounds of Ben-Haim et al.
(2010) and Cai and Wang (2011) bound the probability
of failure by 2me−δ

2/2/δ. Theorem 4.5 thus guarantees
an earlier and much sharper phase transition (see Fig. 1).
Critically, Theorem 4.5 makes use of the approximately
isometric structure of subsets of columns of Φ, which is
already inherent to the deterministic analysis, to derive a
strong bound for ‖Φ∗ε‖, for which prior works applied
bounds for generic Φ. This allows us to apply much stronger
multiplicative bounds since Φ∗Aε, an important quantity in
the analysis, has an approximately diagonal covariance.

Sparse Approximation and Exact Recovery Elenberg
et al. (2018) and Das and Kempe (2018) provide elegant
theoretical insights on the performance of OMP and FR.
Both works present approximation guarantees, but do not
provide exact recovery guarantees, as Theorems 4.4 and
4.5. The results are thus highly complementary; neither
subsumes the other. To elaborate, their results for the R2

score guarantee that FR’s result is at most a factor of (1−
e−γ) from the optimal value, where γ = σ2

min(ΦS). This
is a strong result because it holds generally, even for non-
sparse vectors and arbitrary noise. On the other hand, if
γ > 1/2 and a sparse vector generated the target with small
noise, then Theorem 4.4 guarantees the exact recovery of the
support, while the approximation guarantee with γ ≈ 1/2
only ensures FR to explain ≈ 40% of the target variance.

Figure 1. Comparing existing probabilistic bounds of (Cai and
Wang, 2011) to Theorem 4.5 for a matrix with m = 16 columns,
where δ = [1/2− µ1(k)]mini∈S |xi|/σ.

4.3. Backward Regression

We now state our main optimality result for the backward
algorithm. The existence of such a result was already proved
in Couvreur and Bresler (2000), though their bound is NP-
hard to evaluate. In contrast, Theorem 4.6 reveals a pro-
portional dependence of the tolerable noise on the smallest
singular value of the matrix. While intuitive, this is to our
knowledge the first result that makes this intuition precise.

Theorem 4.6. Suppose Φ has full column rank. Then Back-
ward Regression recovers the support S of a k-sparse m-
dimensional x in m− k iterations if

σmin(Φ)√
2[2− σmin(Φ)2]

min
i∈S
|xi| > ‖ε‖2,

where σmin(Φ) is the smallest singular value of Φ.

Remarkably, the Backward Regression (BR) only requires
linear independence of the columns, which is implied by
µ1(k) < 1, but only applies to determined systems. De-
spite this necessarily stronger assumption, Thm. 4.6 is the
first efficiently evaluable guarantee for this case. While
the underdetermined case is most challenging, SBL is pop-
ularly applied to a kernel regression model for which the
corresponding system is determined (see Sec. 5.4).

Still, because of this stronger assumption, it is important
to connect the result for the backward algorithm with the
already analyzed forward algorithm, the combination of
which does apply to underdetermined systems. To this end,
suppose a forward algorithm terminates with an arbitrary
supersetA of the true support, which is a weaker assumption
than that of exact recovery. Then Theorem 4.6 applied to
the submatrix ΦA guarantees that the backward algorithm
only deletes irrelevant features if the noise is not too large.
The following corollary formalizes this idea.
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Corollary 4.7. Suppose ΦA has full column rank, |A| = k,
and S ⊂ A. Then Backward Regression recovers the correct
support S in |A| − |S| iterations, provided√

1− µ1(k)

2[1 + µ1(k)]
min
i∈S
|xi| > ‖ε‖2.

Note the striking similarity of the bounds in Corollary 4.7
and Theorem 4.4, though the former is stronger. As Cou-
vreur and Bresler (2000) already established, the backward
algorithm is not only capable of recovering the support of
an exactly sparse vector, but in fact can solve the subset
selection to optimality, provided the residual of the optimal
solution is small enough. That is, for an arbitrary y, not
necessarily generated by Φx with a sparse x, we have

Theorem 4.8. Let xk be the vector that achieves the small-
est residual norm ‖y − Φx‖ among all vectors x with
k or fewer non-zero elements. If the associated residual
rk

def
= y −Φxk satisfies the bound in Theorem 4.6 in place

of ε, Backward Regression recovers xk, or equivalently,
solves the subset selection problem to optimality.

In an earlier short paper, we provided a precursory result
for the backward algorithm (Ament and Gomes, 2021).
The full results we present herein provide tighter bounds and
connect to the forward algorithm via Corollary 4.7. Similar
to the results for the forward algorithm in the present work,
the bound in Theorem 4.6 also converges to

√
2 as µ→ 0,

the provably tightest constant even for orthogonal matrices.

5. Numerical Experiments
The preceding results are powerful in their own right. Fur-
ther, they guarantee that the backward stage of RMP0 suc-
ceeds if the forward stage terminates with a superset of the
true support, and the perturbation ε is not too large. There-
fore, we would expect RMP to have increasing support
recovery performance as the sampling ratio n/m increases.
The validation of this hypothesis is the goal of our first
experiment. Subsequently, we benchmark the recovery per-
formance of a number of algorithms on uncorrelated and
correlated features with noise, a kernel regression task, and
end with a discussion of the experiments.

5.1. Setup and Implementation

Beside RMP, we implemented OMP, FR, FoBa (Zhang,
2009), and the steepest coordinate ascent algorithm for SBL
of Tipping and Faul (2003) (FSBL). We compare two ver-
sions of RMP0 in the experiments: RMP0, and RMP0+.
The former denotes Algorithm 2 with only one iteration of
the outer loop, while the latter terminates once the support
stabilizes. We also compare against BPDN via constrained
l1-norm minimization, and the SBL-based reweighted l1-

norm algorithm of Wipf and Nagarajan (2008) (BP ARD).
We implemented all algorithms in Julia (Bezanson et al.,
2017), using the JuMP framework (Dunning et al., 2017) to
model the BP-approaches as second-order cone programs,
and solve them using ECOS (Domahidi et al., 2013) with
default settings. All experiments were run on a workstation
with an Intel Xeon CPU X5670 and 47 GB of memory.

For the synthetic experiments, the weights x are random
k-sparse vectors with ±1 entries and the targets y were
perturbed by random vectors distributed uniformly on the
10−2-hypersphere. For all algorithms, we input δ = 2‖ε‖ to
simulate a small misspecification of the tolerance parameter
that is likely to occur in practice. See also the supplementary
materials for how RMPσ could be adapted to infer the tol-
erance parameter, which however is a non-convex problem.
Note that the stopping criteria of some of the algorithms de-
pend differently on δ: For OMP and BPDN, it is a constraint
on the residual norm, for RMP0, and FoBa, it is a bound on
the marginal improvement in residual norm, and for RMPσ ,
we assign σ → δ and note that the stopping criterion de-
pends on the more complex expression of Lemma 3.1.

Since the BP cone-programs do not directly return sparse
solutions, we determine their support by dropping all entries
below ‖ε‖/10. In setting the threshold below the noise, we
highlight that standard BPDN introduces a bias, while the
ARD-based approach maintains the same global optimum
as the l0-minimization problem (Wipf and Nagarajan, 2008).
We stress that BP leads to sparse solutions in theory (Tropp,
2006), but does not yield exactly sparse solutions using
numerical LP-solvers, which terminate with many coeffi-
cients very close, but not equal to zero, necessitating the
thresholding.

5.2. Phase-Transitions

First, we study the support recovery performance of Forward
Regression (FR), RMP0 and RMPσ as a function of the sam-
pling ratio n/m of the matrix Φ and the sparsity ratio k/n
of the weights x. Figure 2 shows the empirical frequency of
support recovery on column-normalized Gaussian random
matrices with m = 128 columns. Every cell is an average
over 256 independent realizations of the experiment.

In accordance with the results for Stepwise Regression in
Section 4, the recovery performance the RMP algorithms
increases with the sampling ratio, since the likelihood that
the forward stage recovers a superset of the true support
increases. In contrast, the success of the forward algorithm
in isolation is chiefly dependent on the sparsity ratio and
apparently independent of n/m. The ridges in the bottom
left of each plot are due to rounding effects since we set
k = d(k/n)(n/m)me. Importantly, the performance of
RMP0 is virtually identical to RMPσ and constitutes a first
experimental validation of our analysis in Section 3.
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Figure 2. Empirical frequency of support recovery as a function of the sampling ratio n/m and sparsity ratio k/n for matrices with
m = 128 and ‖ε‖2 = 10−2 for Forward Regression (left), RMP0 (middle) and RMPσ (right).

Table 1. Recovery probability for uncorrelated features
Sparsity

Type Algorithm 12 16 20 24

MP

OMP 0.53 0.15 0.02 0.00
FR 0.54 0.14 0.01 0.00
FoBa 0.99 0.82 0.31 0.04
RMP0 0.99 0.80 0.31 0.04
RMP0+ 0.99 0.80 0.31 0.04

SBL FSBL 0.99 0.80 0.31 0.04
RMPσ 0.99 0.81 0.31 0.04

BP BP 0.26 0.05 0.01 0.00
BP ARD 1.00 1.00 0.97 0.70

5.3. Support Recovery with Noise

The following experiments have been established in the
literature as a widespread proxy for performance on a variety
of tasks, and thus allow for comparison to other reported
results, for example those of Wipf and Rao (2004), Candes
et al. (2005; 2008), and He et al. (2017). In particular, we
record the empirical frequency of support recovery of a large
set of algorithms as a function of the sparsity level k for
two types of matrices. First, Gaussian random matrices and
second, matrices generated as Φ =

∑
p

1
p2 uv∗, where u,v

have standard normal entries, inspired by the experiments in
Xin et al. (2016). The two types of matrices exhibit low and
high column correlations, respectively. We used matrices
of size 64 by 128 and l2-normalized the columns. The
results reported in Tables 1 and 2 are averages over 1024
independent realizations with a 95% confidence interval
below 0.02.

BP ARD demonstrates the best recovery performance
among all tested methods, followed by RMPσ . Importantly,
RMPσ exhibits similar performance to RMP0 and virtually
identical for uncorrelated features. The differences between
RMP0 and FoBa are marginal and plausibly attributable to
statistical fluctuations. However, the differences in recovery

Table 2. Recovery probability for correlated features
Sparsity

Type Algorithm 2 3 4 5

MP

OMP 0.00 0.00 0.00 0.00
FR 0.04 0.01 0.00 0.00
FoBa 0.71 0.46 0.28 0.17
RMP0 0.72 0.45 0.28 0.14
RMP0+ 0.72 0.48 0.32 0.17

SBL FSBL 0.76 0.54 0.38 0.26
RMPσ 0.81 0.58 0.45 0.30

BP BP 0.02 0.00 0.00 0.00
BP ARD 0.96 0.91 0.83 0.70

performance of RMPσ and FSBL is statistically significant
for correlated features. BP performs poorly since our exper-
iment was designed to expose that it does not preserve the
same optimum as l0-minimization.

Another notable approach is that of Koyejo et al. (2014),
who proposed a greedy information-projection algorithm
with applications to sparse estimation problems. In our
study, the algorithm performed well on Gaussian matrices
but deteriorated similarly to OMP and FR on coherent ma-
trices, which is expected since it solely takes forward steps.

Figure 3 shows runtimes of the algorithms for matrices
of increasing sizes. As m increases, we kept the ratios
n/m = 1/2 and k/m = 1/4. BP ARD is most time-
consuming. RMP and RMP0 are on average two orders of
magnitude faster. The main performance difference between
RMPσ and RMP0 comes from RMPσ’s γi-update, which it
can execute many times before converging. FoBa should
in principle scale comparably to RMP0, but doesn’t, as we
chose not to let it take advantage of the efficient backward
updates discussed in Reeves (1999), but not mentioned in
Zhang (2009), which highlights their importance. Last, a
limitation of the timings for BP are that we used generic
LP solvers, while specialized algorithms exist (Beck and
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Figure 3. Timings for several algorithms on matrices with a fixed
sampling (1/2) and sparsity ratio (1/4).

Teboulle, 2009; Perez et al., 2019) that can accelerate BP
approaches. On the other hand, keeping the sparsity ratio
k/n fixed while growing m is to the detriment of the greedy
algorithms, which would need much fewer iterations if the
sparsity level k was fixed instead. In all, the timings are not
designed to be fair but to illustrate the inevitable trade-off
between performance and efficiency.

5.4. Sparse Kernel Regression

Following Tipping (2001), we apply the SBL-related algo-
rithms to a kernel regression model. In particular, given
inputs {xi}, we assume the responses are generated accord-
ing to y ∼ N (f(x), σ2), where

f(x)
def
=
∑
i

k(x,xi)wi, (5.1)

where k is the Matérn-3/2 kernel and weights wi. Given
a training set, we optimize wi using the SBL-related al-
gorithms, and evaluate on a test set using equation (5.1).
Figure 4 shows the mean test error as a function of sparsity
on the UCI Boston housing data (Dua and Graff, 2017),
which contains 506 data points. The results are averaged
over 4608 sparsity-error values for each algorithm, gener-
ated by evaluations for different tolerance parameters δ (i.e.
σ) and random 75-25 train-test splits. We conjecture that
(F)SBL exhibits larger errors as it does not directly minimize
squared errors, but instead the marginal likelihood. While
FR can be competitive for highly sparse solutions, it is not
as effective as RMP, RMP+ and FoBa, which achieve the
best sparsity-error trade-off throughout all sparsity levels.

6. Conclusion
We proposed Relevance Matching Pursuit, a coordinate as-
cent algorithm for SBL whose analysis reveals a surprising
connection to Stepwise Regression. The limiting algorithm
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Figure 4. Test RMSE for a kernel regression model on the UCI
Boston housing data as a function of achieved sparsity.

RMP0 closely tracks the performance of RMPσ in our empir-
ical evaluation, and is yet remarkably simple. We provided
novel theoretical insights for Stepwise Regression, among
them, an efficiently computable guarantee for the backward
algorithm. Our results further provide theoretical justifica-
tion to practitioners using Stepwise Regression in one of
many statistics packages, prominently in the widely-used
SAS. Finally, we hope these insights contribute to providing
clarity in this vast space of the literature, and inspire further
research on powerful sparsity-inducing algorithms.
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