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A. Appendix
A.1. Proofs

Theorem A.1. The expected target of PTD’s forward view can be summarized using the operator

T βv = B(I − γPπ(I −B))−1(rπ + γPπBv) + (I −B)v,

where B is the |S| × |S| diagonal matrix with β(s) on its diagonal and rπ and Pπ are the state reward vector and
state-to-state transition matrix for policy π.

Proof. The expected target of Preferential TD in the vector form is given by,

T βv = (I −B)v +B
(
rπ + γPπBv + γPπ(I −B)rπ + γ2Pπ(I −B)PπBv + . . .

)
.

We can now express the reward terms and the value terms compactly by using the Neumann series expansion.

T βv = (I −B)v +B
(
rπ + γPπ(I −B)rπ + (γPπ(I −B))2rπ + . . .

+ γPπBv + γ2Pπ(I −B)PπBv + γ3(Pπ(I −B))2PπBv + . . .
)
,

= (I −B)v +B
(

(I − γPπ(I −B))−1rπ + γ(I − γPπ(I −B))−1PπBv
)
,

= B(I − γPπ(I −B))−1(rπ + γPπBv) + (I −B)v.

Lemma A.1. The expected quantities A and b are given by A = ΦTDπB(I − Pβπ ) and b = ΦTDπB(I − γPπ)−1rπ .

Proof.

A = lim
t→∞

Eπ[A(Xt)],

= lim
t→∞

Eπ
[
et

(
φ(st)− γφ(st+1)

)T ]
,

=
∑
s

dπ(s) lim
t→∞

Eπ
[
et

(
φ(st)− γφ(st+1)

)T ∣∣∣st = s
]
,

=
∑
s

dπ(s) lim
t→∞

Eπ
[ (
γ(1− β(st))et−1 + β(st)φ(st)

)(
φ(st)− γφ(st+1)

)T
︸ ︷︷ ︸

Independent due to conditioning on s

∣∣∣st = s
]
,

=
∑
s

dπ(s) lim
t→∞

Eπ
[
γ(1− β(st))et−1 + β(st)φ(st)

∣∣∣st = s
]
Eπ
[(
φ(st)− γφ(st+1)

)T ∣∣∣st = s
]
,

=
∑
s

e(s)
(
φ(s)− γ

∑
s′

Pπ(s′|s)φ(s′)
)T
,

where e(s) = dπ(s) limt→∞ Eπ[γ(1− β(st))et−1 + β(st)φ(st)|st = s], can be expanded as:

e(s) = dπ(s) lim
t→∞

Eπ[γ(1− β(st))et−1 + β(st)φt|st = s]

= dπ(s)β(s)φ(s) + γ(1− β(s))dπ(s) lim
t→∞

Eπ[et−1|st = s]

= dπ(s)β(s)φ(s) + γ(1− β(s))dπ(s) lim
t→∞

∑
s̄,ā

P{st−1 = s̄, at−1 = ā|st = s}Eπ[et−1|st−1 = s̄]

= dπ(s)β(s)φ(s) + γ(1− β(s))dπ(s)
∑
s̄

dπ(s̄)Pπ(s|s̄)
dπ(s)

lim
t→∞

Eπ[et−1|st−1 = s̄]

= dπ(s)β(s)φ(s) + γ(1− β(s))
∑
s̄

Pπ(s|s̄)e(s̄).
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We can express these quantities in a matrix as,

ET = ΦTDB + γETPπ(I −B),

= ΦTDB + γΦTDBPπ(I −B) + γ2ΦTDB(Pπ(I −B)))2 + . . . ,

= ΦTDB(I − γPπ(I −B))−1.

We can perform a similar analysis on b and substitute ET to get,

A = ΦTDB(I − γPπ(I −B))−1(I − γPπ)Φ, (7)

b = ΦTDB(I − γPπ(I −B))−1rπ. (8)

These expressions can be simplified further by considering a new transition matrix Pβπ that accounts for the termination due
to bootstrapping and discounted by γ. In other words, Pβπ is made up of Pπ , but the transitions are terminated according to
B and continued according to (I −B) at each step. This is a sub-stochastic matrix for γ ∈ [0, 1) and a stochastic matrix
when γ = 1. By definition,

Pβπ = γPπB + γPπ(I −B)γPπB + (γPπ(I −B))2γPπB + . . .

= γ
( ∞∑
k=0

(γPπ(I −B))k
)
PπB (9)

= γ(I − γPπ(I −B))−1PπB (10)

= (I − γPπ(I −B))−1(−γPπ(I −B) + γPπ)

= (I − γPπ(I −B))−1(I − γPπ(I −B) + γPπ − I)

= I − (I − γPπ(I −B))−1(I − γPπ)

I − Pβπ = (I − γPπ(I −B))−1(I − γPπ). (11)

Therefore A and b are given by,

A = ΦTDB(I − Pβπ )Φ, (12)

b = ΦTDB(I − γPπ(I −B))−1rπ. (13)

Under assumption 1, ‖Φ‖ ≤M , where M is a constant. This implies each quantity in the above expression is bounded and
well-defined.

Theorem A.2. The forward and the backward views of PTD are equivalent in expectation:

b−Aw = ΦTD
(
T β(Φw)− Φw

)
.

Proof. We have A = ΦTDB(I − Pβπ )Φ and b = ΦTDB(I − γPπ(I −B))−1rπ .

b−Aw = ΦTDB(I − γPπ(I −B))−1rπ − ΦTDB(I − Pβπ )Φw,

= ΦTDB(I − γPπ(I −B))−1rπ + ΦTDBPβπΦw − ΦTDBΦw,

= ΦTDB(I − γPπ(I −B))−1rπ + γΦTDB(I − γPπ(I −B))−1PπBΦw − ΦTDBΦw,

= ΦTD
(
B(I − γPπ(I −B))−1(rπ + γPπBΦw)−BΦw

)
,

= ΦTD
(
B(I − γPπ(I −B))−1(rπ + γPπBΦw) + (I −B)Φw − Φw

)
,

= ΦTD
(
T β(Φw)− Φw

)
.

We used the definition of Pβπ (c.f equation 10) in the third step.

Lemma A.2. The column sums of A are positive.
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Proof. Let γ = 1. The column sums of the key matrix is given by 1TDB(I − Pβπ ) = dπB − dπBPβπ . We can expand
dπBPβπ using equation 9,

dπBPβπ = dπB
( ∞∑
k=0

(Pπ(I −B))k
)
PπB,

= dπ

(
B +B

∞∑
k=1

(Pπ(I −B))k
)
PπB,

= dπ

(
I − (I −B) +B

∞∑
k=1

(Pπ(I −B))k
)
PπB,

= dπ

(
I +

(
− I +B

∞∑
k=1

Pπ((I −B)Pπ)k−1
)

(I −B)
)
PπB,

= dπ

(
I +

(
−I +B

∞∑
k=0

Pπ((I −B)Pπ)k︸ ︷︷ ︸
=S

)
(I −B)

)
PπB,

=
(
dπ + dπS(I −B)

)
PπB. (14)

Consider dπS,

dπS = dπ

(
− I +B

∞∑
k=0

Pπ((I −B)Pπ)k
)
,

= dπ

(
− I +BPπ +B

∞∑
k=1

Pπ((I −B)Pπ)k
)
,

= dπ

(
− I + Pπ − (I −B)Pπ +B

∞∑
k=1

Pπ((I −B)Pπ)k
)
,

= −dπ + dπPπ︸ ︷︷ ︸
=0, dπPπ=dπ

+dπ

(
− (I −B)Pπ +B

∞∑
k=1

Pπ((I −B)Pπ)k
)
,

= dπ

(
− I +B

∞∑
k=1

Pπ((I −B)Pπ)k−1
)

(I −B)Pπ,

= dπ

(
− I +B

∞∑
k=0

Pπ((I −B)Pπ)k
)

(I −B)Pπ,

= dπS(I −B)Pπ.

We can recursively expand dπS n times to get dπS = dπS((I −B)Pπ)n. Notice that (I −B)Pπ is a sub-stochastic matrix,
therefore, the elements of the matrix keep getting smaller as n gets bigger. In fact, limn→∞((I −B)Pπ)n = 0. Therefore,
dπS = 0 as n→∞. We can use this result in equation 14 to get,

dπBPβπ = dπPπB = dπB. (15)

This implies, dπB(I − Pβπ ) = 0 for γ = 1 and dπB(I − Pβπ ) > 0 for γ ∈ [0, 1) as dπBPβπ < dπB. Therefore, column
sums are positive.

Lemma A.3. We have,
∑∞
t=0 ‖Eπ[A(Xt)|X0]−A‖ ≤ C1 and

∑∞
t=0 ‖Eπ[b(Xt)|X0]− b‖ ≤ C2 under assumption 2,

where C1 and C2 are constants.

Proof. By similar analysis to finding A (lemma 1), we have

Eπ[A(Xt)|X0] = ΦTBDt(I − Pβπ )Φ− ΦTBDt

∞∑
m=t+1

(γPπ(I −B))m(I − γPπ)Φ,
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where Dt(i, i) = P(st = si|s0). Now,

‖Eπ[A(Xt)|X0]−A‖ =

∥∥∥∥∥ΦTB(Dt −D)(I − Pβπ )Φ− ΦTBDt

∞∑
m=t+1

(γPπ(I −B))m(I − γPπ)Φ

∥∥∥∥∥ ,
≤
∥∥ΦTB(Dt −D)(I − Pβπ )Φ

∥∥+

∥∥∥∥∥ΦTBDt

∞∑
m=t+1

(γPπ(I −B))m(I − γPπ)Φ

∥∥∥∥∥ ,
≤
∥∥ΦT

∥∥ ‖B‖︸ ︷︷ ︸
constant

‖Dt −D‖
∥∥I − Pβπ∥∥ ‖Φ‖︸ ︷︷ ︸

constant

+
∥∥ΦT

∥∥ ‖B‖ ‖Dt‖︸ ︷︷ ︸
constant

∥∥∥∥∥
∞∑

m=t+1

(γPπ(I −B))m

∥∥∥∥∥ ‖(I − γPπ)‖ ‖Φ‖︸ ︷︷ ︸
constant

,

≤ K1Cρ
t +K2

∞∑
m=t+1

γm ‖(Pπ(I −B))m‖︸ ︷︷ ︸
≤K5,∀m

,

≤ K1Cρ
t +K3

∞∑
m=t+1

γm,

= K4ρ
t +

γt+1

1− γ
K3,

where K1,K2,K3,K4,K5 are constants, we have used the triangle inequality and ‖AB‖ ≤ ‖A‖ · ‖B‖ properties. Now,

∞∑
t=0

‖Eπ[A(Xt)|X0]−A‖ ≤
∞∑
t=0

K3ρ
t +

γt+1

1− γ
K2,

= K3
1

1− ρ
+K2

γ

(1− γ)2
,

= C1.

By a similar analysis, we get
∑∞
t=0 ‖Eπ[b(Xt)|X0]− b‖ ≤ C2. Therefore, the bias due to sampling is contained.

A.2. Standard results used in the proof

Corollary A.1. (Varga, 1999) If A is a Hermitian n× n strictly diagonally dominant or irreducibly diagonally dominant
matrix with positive real diagonal entries, then A is positive definite.

Theorem A.3. (Bertsekas & Tsitsiklis, 1996; Tsitsiklis & Van Roy, 1997) Consider an iterative algorithm of the form
wt+1 = wt + αt(A(Xt)wt + b(Xt)) where,

1. the step-size sequence αt satisfies assumption 3;

2. Xt is a Markov process with a unique invariant distribution, and there exists a mapping h from the states of the Markov
process to the positive reals, satisfying the remaining conditions;

3. A(·) and b(·) are matrix and vector valued functions respectively, for which A = Edπ [A(Xt)] and b = Edπ [b(Xt)]
are well defined and finite;

4. the matrix A is negative definite;

5. there exists constants C and q such that for all X

•
∑∞
t=0 ‖Eπ[A(Xt)|X0 = X]−A‖ ≤ C(1 + hq(X)), and

•
∑∞
t=0 ‖Eπ[b(Xt)|X0 = X]− b‖ ≤ C(1 + hq(X));

6. for any q > 1 there exists a constant µq such that for all X, t

• Eπ[hq(Xt)|X0 = X] ≤ µq(1 + hq(X)).

Then, wt converges to wπ , with probability one, where wπ is the unique vector that satisfies Awπ + b = 0.
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A.3. Counterexamples of TD(λ)

Example 2 (Ghiassian et al., 2017): Two state MDP with Pπ =

[
0 1
1 0

]
, Φ =

[
3 1
1 1

]
, λ =

[
0 0.99

]
, dπ =

[
0.5 0.5

]
,

γ = 0.95. The key matrix of TD(λ) is given by, A =

[
−0.46 0.15
−0.77 0.07

]
, which is not positive definite. Therefore, the updates

will not converge. The key matrix of Preferential TD for the same setup is A =

[
0.46 0.15
0.15 0.05

]
which is positive definite.

A.4. Experiments

A.4.1. TABULAR SETTING
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Figure A.1. Performance of Emphatic TD with a fixed interest value (shown in the title of the plot). Average RMSE of the first 10 episodes
is plotted against learning rate for different choices of λ.

We analyzed the bias-variance trade-off of Emphatic TD with several choices of fixed interest values. ETD with a low interest
value resulted in lower errors compared to high interest values. The difference in performance is due to the algorithm’s
sensitivity to learning rates when high interest is used. We present the root mean squared error obtained for various fixed
interests in Figure A.1. Different curves in the plot correspond to various values of λ. We generated the plots by averaging
the root mean squared error of the value function over 10 episodes of training across 25 seeds.

A.4.2. LINEAR SETTING

The error curves for the corridor lengths {10, 20} are provided in Figure A.2. The observations made in the main paper
holds true for these lengths as well.
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Figure A.2. The mean squared error of fully observable states’ values is plotted as a function of episodes for various algorithms. The first
two plots correspond to the results on Task 1 (left) and the next plots correspond to Task 2 (right). The corridor length is indicated in the
title of the plot.
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Figure A.3. The average mean squared error of the fully observable states’ values is plotted against learning rate on Task 1 (top) and Task
2 (bottom).
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Figure A.4. The mean squared error of the fully observable states’ values is plotted against episodes on Task 1 (top) and Task 2 (bottom).

Task 1: We chose the best learning rate from {1.2, 1.0, 0.8, 0.5, 0.3, 0.1, 8e-2, 5e-2, 3e-2, 1e-2, 7e-3, 4e-3, 1e-3, 7e-4, 4e-4,
1e-4, 7e-5, 4e-5}. We extended the range of search to include {10.0, 5.0, 4.0, 3.5, 3.0, 2.5, 2.0, 1.8, 1.5,} for ETD-fixed. We
also ran ETD-fixed on 3 different interests ({0.01, 0.05, 0.1}). We ran all the algorithms for 100 episodes. We calculated
the mean squared error of fully observable states’ values and averaged it across 100 episodes and 25 seeds for the above
mentioned learning rates. We chose the learning rate that resulted in the lowest error. The hyperparameter tuning plot is
presented in Figure A.3. We ran all the algorithms on 25 different seeds and plotted the mean error with a confidence interval
of 0.5 times the standard deviation.

Task 2: The learning rate for this task was selected from the set {0.8, 0.5, 0.3, 0.1, 8e-2, 5e-2, 3e-2, 1e-2, 7e-3, 4e-3, 1e-3,
7e-4, 4e-4, 1e-4}. We extended the range of search to include {2.5, 1.8, 1.2,} for ETD-fixed. We also ran ETD-fixed on 3
different interest values ({0.01, 0.05, 0.1}). We calculated the mean squared error of fully observable states’ values and
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Figure A.5. Performance plot of PTD and ETD-variable for different choices of β (or i and λ) for FO and PO states on Task 1 (top) and
Task 2 (bottom).

averaged it across 100 episodes and 25 seeds for the above mentioned learning rates. We choose the learning rate that
resulted in the lowest error. The hyperparameter tuning plot is presented in Figure A.3. We ran all the algorithms on 25
different seeds and plotted the mean with a confidence interval of 0.5 times the standard deviation. We ran 200 episodes to
generate the learning curves presented in Figure 3 and A.2 using the optimal learning rate.

ETD-fixed with i = 1 and a constant λ for all the states: In this experiment, we tested the performance of a different
version of ETD-fixed. In this version, we set the interest and λ to constant values for all the states. The interest value was set
to 1, and we experimented with three separate values of λ - {0.1, 0.5, 0.9}. Like the earlier version, this too performs poorly
compared to PTD and ETD-variable. This is because, setting i = 1 results in updating all the states including those that are
partially observable causing poor generalization. The results are presented in Figure A.4.

PTD and ETD-variable with non-extreme values: In this experiment, we tested PTD and ETD-variable with non-extreme
preference and (interest, λ) values respectively. The performance is not affected when β (or i) of fully observable states is
set to a value < 1 as the updates on partially observable states is still blocked. However, the performance drops significantly
when β (or i) of partially observable states is set to non-zero values. The results are presented in Figure A.5.

A.4.3. SEMI-LINEAR SETTING
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Figure A.6. Average mean squared error of the value function is plotted against learning rate for the feature net. Different plots correspond
to various grid sizes.

Feature net: Feature net is a single-layered neural network with 32 neurons with ReLU non-linearity in the hidden layer.
The network’s input is a one-hot vector of size n × n, where n is the size of the grid. The component corresponding to
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the agent’s location is set to 1 and the remaining bits are set to 0. The network is trained to minimize the mean squared
error of Monte Carlo returns and its predictions for the states visited in a trajectory. We train the network using ADAM
optimizer. We find the optimal learning rate from {1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5} for every grid size through
hyperparameter search. The networks are trained on 50 episodes on each grid size and the mean squared error of the value
function across 50 episodes is used as a metric to pick the optimal learning rate. The hyperparameter tuning results are
presented in Figure A.6. We run experiments on 25 seeds and use a confidence interval of 0.5 times the standard deviation
for plotting.

Linear: A linear function approximator is used to estimate the value function of the fully observable states. The hidden
layer output of a fully trained feature net is used as features for the input state. A one-hot vector (for fully observable states)
or a Gaussian vector (each component is generated from N (0, 1) for partially observable states) is used as an input to the
feature net to get features for the downstream task.
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Figure A.7. The average mean squared error of fully observable states’ values plotted against various learning rates for Task 1 (top) and
Task 2 (bottom).
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(b) Learning curves on Task 2

Figure A.8. The mean squared error of fully observable states’ values plotted against episodes for various algorithms. The grid size is
indicated in the title of the plot.

Task 1: We chose the optimal learning rate from {5e-2, 1e-2, 7e-3, 3e-3, 1e-3, 7e-4, 3e-4, 1e-4}. We extended the range of
search to include {5e-5, 1e-5} for ETD-variable. We also ran ETD-fixed on 3 different interest values - ({0.01, 0.05, 0.1}).
We ran all the algorithms for 50 episodes. We calculated the mean squared error of fully observable states’ values over 50
episodes for the learning rates mentioned earlier and chose the best learning rate based on the average MSE across episodes
and seeds. The hyperparameter tuning plot is presented in Figure A.7. We ran all the algorithms on 25 different seeds and
plotted the mean MSE with a confidence interval of 0.5 times the standard deviation. We ran 100 episodes for 8× 8 and
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12× 12 grids, 50 episodes for 16× 16 grid to generate the learning curves presented in the main paper using the optimal
learning rates.

Task 2: All the experimental details are same as task 1. The hyperparameter tuning results are presented in Figure A.7.
Once the best learning rate was found for all the algorithms, we ran 150 episodes for 8× 8 grid, 100 episodes for 12× 12
and 16× 16 grids to generate the learning curves presented in Figure 4 and A.8.

Additional results: The error curves for the grid sizes 8 and 12 are presented in Figure A.8. The observations made in the
main paper hold true for these grids too. However, both ETD-variable and PTD perform similarly. The other two methods
result in poor predictions.

A.4.4. NON-LINEAR SETTING

Forward view: For each algorithm and network combination, we find the best learning rate from {5e-2, 1e-2, 5e-3, 1e-3,
5e-4}. We included 1e-4 in the search space for grid task 2. The best learning rate was decided based on the area under
the error curve (AUC) of MSE averaged across episodes and seeds. We used SGD optimizer to train the network. We
consider 250 episodes and 25 seeds for all the tasks for hyperparameter tuning and use 50 seeds to plot the final results. The
hyperparameter tuning results are presented in Figures A.9 and A.10.

Backward view: For each algorithm and network combination, we find the best learning rate from {0.1, 5e-2, 1e-2, 5e-3,
1e-3, 5e-4, 1e-4}. The best learning rate was decided using the process described in Forward view. Plotting details also
remain the same as before. The hyperparameter tuning results are presented in Figures A.11 and A.12.
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Figure A.9. Task 1 forward view hyperparameter tuning curves. AUC of mean error is plotted against learning rates.
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Figure A.10. Task 2 forward view hyperparameter tuning curves. AUC of mean error is plotted against learning rates.
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Figure A.11. Task 1 backward view hyperparameter tuning curves. AUC of mean error is plotted against learning rates.
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Figure A.12. Task 2 backward view hyperparameter tuning curves. AUC of mean error is plotted against learning rates.

A.4.5. CONTROL - ACTOR CRITIC

Algorithm 2 Preferential TD: Actor-Critic

1: Input: γ,β, φ
2: Initialize: wact = 0,wcri = 0
3: Output: wact,wcri

4: for all episodes do
5: for each step in an episode do
6: Compute one-step TD error δt
7: Update wcri using PTD traces
8: end for
9: Compute forward view returns Gβt for each state

10: Update wact using∇wact log π(a|s)β(s)(Gβt −wT
criφ(s)) for every state

11: end for

Task description: We consider the cartpole task from the openAI gym (Brockman et al., 2016). The goal of the task is
to learn a policy to balance the pole using the algorithm described in 2. We provide this experiment to demonstrate that
Preferential TD works (1) when the environment is fully observable, and (2) in control setting.

Setup: We consider actor-critic algorithm for learning the optimal policy. The actor is a single layered neural network with
4 hidden units. The critic is a linear function approximator. The actor is updated at the end of each episode since it is a
non-linear function approximator. We use forward view returns to compute the error for updating the actor. The critic is
updated at each timestep using eligibility traces. We consider a non-linear approximator for actor as we were not able solve
the task using a linear actor on the raw input. We consider the same 4 algorithms for experimentation. For each algorithm
we picked the learning rate for the actor from {0.1, 5e-2, 1e-2, 5e-3, 1e-3} and for the critic from {1e-3, 5e-4, 1e-4, 5e-5,
1e-5, 5e-6, 1e-6}. The best learning rate was decided based on the average returns achieved per episode across 25 seeds
and 500 episodes. The interest for both ETD-variable and ETD-fixed was set to 0.5. β = 1 (or λ = 0) for a state if the
difference between the current cart position (or cart velocity) and the cart position (or cart velocity) of the previous β = 1
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(a) Rewards plot for condition 1
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(b) Rewards plot for condition 2
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(c) Rewards plot for condition 3
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(d) Beta plot for condition 1
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(e) Beta plot for condition 2
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(f) Beta plot for condition 3

Figure A.13. (Top) Return is plotted against episodes. (Bottom) Percentage of β = 1 (or λ = 0) states plotted against episodes. Different
columns correspond to different thresholds used to set β = 1 (or λ = 0). The plots are smoothed using a moving average window of 20
episodes. The shaded region represents a confidence interval of 50% on 25 seeds.

(or λ = 0) state is greater than a threshold. A similar condition was also checked for pole angle with a different threshold.
The thresholds for all 3 conditions are provided in table A.1. We experimented with three combinations of threshold values
to set β value to 1. All the states in between two β = 1 (λ = 0) states were set to a constant value of 0.1 (λ = 0.9). We also
experimented with {0, 0.5} as intermediate values but their performance was relatively poor. All the results are averaged
across 25 different seeds. We set the discount factor to 0.99.

Table A.1. Thresholds to determine β = 1 state.

Condition Cart position Cart velocity Pole angle
1 0.5 0.5 0.05
2 1.0 1.0 0.1
3 0.3 0.3 0.03

Observations: The environment is fully observable and therefore we expect to observe the best performance when critic
and actor are updated for all the states. TD(λ) updates the values and policy for all the states and therefore it achieves the
best performance as seen in Figure A.13. ETD-fixed and ETD-variable achieves a similar performance. The performances
are substantially poorer compared to the other methods. We suspect that it is because of high variance in the updates
resulting from trajectory dependent emphasis. This observation is also validated from the beta plots (Figure A.13), where
we observe significantly higher β = 1 states. The performances drop further for condition 3, where the percentage of β = 1
states are much higher compared to the other conditions. Besides, hyperparameter tuning was found to be challenging as
these algorithms were sensitive to them. Preferential TD’s performance was as good as TD(λ). However, PTD updates and
bootstraps from a small percentage (roughly 5%) of states. PTD learning is not sharp at the beginning when the estimates are
poor. But it catches up quickly and the overall performance is on par with TD(λ). We also observed a much lower variance
across seeds in PTD compared to the other algorithms. This experiment validates our hypothesis that a similar performance
can be achieved by bootstrapping and updating from a small set of states as opposed to all. Also, this experiment provides
preliminary evidence for PTD’s usage in fully observable setting and in settings beyond policy evaluation. Although further
analysis, both theoretical and empirical, is required to make meaningful conclusions.


