

The Logical Options Framework

Brandon Araki 1 Xiao Li 1 Kiran Vodrahalli 2

Abstract
Learning composable policies for environments
with complex rules and tasks is a challenging prob-
lem. We introduce a hierarchical reinforcement
learning framework called the Logical Options
Framework (LOF) that learns policies that are sat-
isfying, optimal, and composable. LOF effciently
learns policies that satisfy tasks by representing
the task as an automaton and integrating it into
learning and planning. We provide and prove con-
ditions under which LOF will learn satisfying,
optimal policies. And lastly, we show how LOF’s
learned policies can be composed to satisfy un-
seen tasks with only 10-50 retraining steps on our
benchmarks. We evaluate LOF on four tasks in
discrete and continuous domains, including a 3D
pick-and-place environment.

1. Introduction
To operate in the real world, intelligent agents must be
able to make long-term plans by reasoning over symbolic
abstractions while also maintaining the ability to react to
low-level stimuli in their environment (Zhang & Sridharan,
2020). Many environments obey rules that can be repre-
sented as logical formulae; e.g., the rules a driver follows
while driving, or a recipe a chef follows to cook a dish.
Traditional motion and path planning techniques struggle
to plan over these long-horizon tasks, but hierarchical ap-
proaches such as hierarchical reinforcement learning (HRL)
can solve lengthy tasks by planning over both the high-level
rules and the low-level environment. However, solving these
problems involves trade-offs among multiple desirable prop-
erties, which we identify as satisfaction, optimality, and
composability (described below). Today’s hierarchical plan-
ning algorithms lack at least one of these objectives. For
example, Reward Machines (Icarte et al., 2018) are satisfy-

1CSAIL, Massachusetts Institute of Technology, Cambridge,
MA, USA 2Department of Computer Science, Columbia Univer-
sity, New York City, NY, USA 3Toyota Research Institute, Cam-
bridge, MA, USA 4MIT Lincoln Laboratory, Lexington, MA, USA.
Correspondence to: Brandon Araki <araki@csail.mit.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Jonathan DeCastro 3 J. Micah Fry 4 Daniela Rus 1

ing and optimal, but not composable; the options framework
(Sutton et al., 1999) is composable and hierarchically op-
timal, but cannot satisfy specifcations. An algorithm that
achieves all three of these properties would be very pow-
erful because it would enable a model learned on one set
of rules to generalize to arbitrary rules. We introduce the
Logical Options Framework, which builds upon the options
framework and aims to combine symbolic reasoning and
low-level control to achieve satisfaction, optimality, and
composability with as few compromises as possible. Fur-
thermore, we demonstrate that models learned with our
framework generalize to arbitrary sets of rules without any
further learning, and we also show that our framework is
compatible with arbitrary domains and planning algorithms,
from discrete domains and value iteration to continuous
domains and proximal policy optimization (PPO).

Satisfaction: An agent operating in an environment gov-
erned by rules must be able to satisfy the specifed rules.
Satisfaction is a concept from formal logic, in which the
input to a logical formula causes the formula to evaluate to
True. Logical formulae can encapsulate rules and tasks
like the ones described in Fig. 1, such as “pick up the gro-
ceries” and “do not drive into a lake”. In this paper, we state
conditions under which our method is guaranteed to learn
satisfying policies.

Optimality: Optimality requires that the agent maximize
its expected cumulative reward for each episode. In general,
satisfaction can be achieved by rewarding the agent for satis-
fying the rules of the environment. In hierarchical planning
there are several types of optimality, including hierarchi-
cal optimality (optimal with respect to the hierarchy) and
optimality (optimal with respect to everything). We prove
in this paper that our method is hierarchically optimal and,
under certain conditions, optimal.

Composability: Our method is also composable – once it
has learned the low-level components of a task, the learned
model can be rearranged to satisfy arbitrary tasks. More
specifcally, the rules of an environment can be factored into
liveness and safety properties, which we discuss in Sec. 3.
The learned model has high-level actions called options that
can be composed to satisfy new liveness properties. A short-
coming of many RL models is that they are not composable
– trained to solve one specifc task, they are incapable of han-

mailto:araki@csail.mit.edu
mailto:araki@csail.mit.edu

The Logical Options Framework

“Go grocery shopping, pick up the kid, and go home, unless your partner calls telling you that they will pick

up the kid, in which case just go grocery shopping and then go home. And don’t drive into the lake.”

(a) These natural language instructions can be transformed into an FSA, shown in (b).

{ }
Safety

propositionSubgoal propositions

{ , , }

S0

S2

S3 G

S1

{ }
Event

proposition

(b) The FSA representing the natural language instructions. The
propositions are divided into “subgoal”, “safety”, and “event.”

`

(c) The low-level MDP and corresponding policy that satis-
fes the instructions.

Figure 1. Many parents face this task after school ends – who picks up the kid, and who gets groceries? The pictorial symbols represent
propositions, which are true or false depending on the state of the environment. The arrows in (c) represent sub-policies, and the colors of
the arrows match the corresponding transition in the FSA. The boxed phone at the beginning of some of the arrows represents how these
sub-policies can occur only after the agent receives a phone call.

dling even small variations in the task structure. However,
the real world is a dynamic and unpredictable place, so the
ability to use a learned model to automatically reason over
as-yet-unseen tasks is a crucial element of intelligence.

Fig. 1 gives an example of how LOF works. The environ-
ment is a world with a grocery store, your (hypothetical)
kid, your house, and some lakes, and in which you, the
agent, are driving a car. The propositions are divided into
“subgoals”, representing events that can be achieved, such
as going grocery shopping; “safety” propositions, represent-
ing events that you must avoid (driving into a lake); and
“event” propositions, corresponding to events that you have
no control over (receiving a phone call) (Fig. 1b). In this
environment, you have to follow rules (Fig. 1a). These rules
can be converted into a logical formula, and from there into
a fnite state automaton (FSA) (Fig. 1b). LOF learns an
option for each subgoal (illustrated by the arrows in Fig. 1c),
and a meta-policy for choosing amongst the options to reach
the goal state of the FSA. After learning, the options can be
recombined to fulfll arbitrary tasks.

1.1. Contributions

This paper introduces the Logical Options Framework
(LOF) and makes four contributions to the hierarchical rein-
forcement learning literature:

1. The defnition of a hierarchical semi-Markov Decision
Process (SMDP) that is the product of a logical FSA

and a low-level environment MDP.

2. A planning algorithm for learning options and meta-
policies for the SMDP that allows the options to be
composed to solve new tasks with only 10-50 retraining
steps on our benchmarks and no additional samples
from the environment.

3. Conditions and proofs for satisfaction and optimality.

4. Experiments on a discrete delivery domain, a continu-
ous 2D reacher domain, and a continuous 3D pick-and-
place domain on four tasks demonstrating satisfaction,
optimality, and composability.

2. Background
Linear Temporal Logic: We use linear temporal logic
(LTL) to formally specify rules (Clarke et al., 2001). LTL
can express tasks and rules using temporal operators such as
“eventually” and “always.” LTL formulae are used only indi-
rectly in LOF, as they are converted into automata that the
algorithm uses directly. We chose to use LTL to represent
rules because LTL corresponds closely to natural language
and has proven to be a more natural way of expressing
tasks and rules for engineers than designing FSAs by hand
(Kansou, 2019). Formulae φ have the syntax grammar

φ := p | ¬φ | φ1 ∨ φ2 | φ | φ1 U φ2

The Logical Options Framework

where p is a proposition (a boolean-valued truth statement
that can correspond to objects or events in the world), ¬
is negation, ∨ is disjunction, is “next”, and U is “until”.
The derived rules are conjunction (∧), implication (=⇒
), equivalence (↔), “eventually” (♦φ ≡ True U φ) and
“always” (�φ ≡ ¬♦¬φ) (Baier & Katoen, 2008). φ1 U φ2

means that φ1 is true until φ2 is true, ♦φ means that there is
a time where φ is true and �φ means that φ is always true.

The Options Framework: The options framework is a
framework for defning and solving semi-Markov Decision
Processes (SMDPs) with a type of macro-action called an
option (Sutton et al., 1999). The inclusion of options in
an MDP problem turns it into an SMDP problem, because
actions are dependent not just on the previous state but also
on the identity of the currently active option, which could
have been initiated many time steps before the current time.

An option o is a variable-length sequence of actions defned
as o = (I, π, β, Ro(s), To(s

0|s)). I ⊆ S is the initiation set
of the option. π : S ×A → [0, 1] is the policy of the option.
β : S → [0, 1] is the termination condition. Ro(s) is the
reward model of the option. To(s

0|s) is the transition model.
A major challenge in option learning is that, in general, the
number of time steps before the option terminates, k, is a
random variable. With this in mind, Ro(s) is defned as
the expected cumulative reward of option o given that the
option is initiated in state s at time t and ends after k time
steps. Letting rt be the reward received by the agent at t
time steps from the beginning of the option,

� �
Ro(s) = E r1 + γr2 + . . . γk−1 rk (1)

To(s
0|s) is the combined probability po(s0, k) that option o

will terminate at state s0 after k time steps:

∞X
To(s 0|s) = po(s 0, k)γk (2)

k=1

A crucial beneft of using options is that they can be com-
posed in arbitrary ways. In the next section, we describe
how LOF composes them to satisfy logical specifcations.

3. Logical Options Framework
Here is a brief overview of how we will present our formu-
lation of LOF:

1. The LTL formula is decomposed into liveness and
safety properties. The liveness property defnes the
task specifcation and the safety property defnes the
costs for violating rules.

2. The propositions are divided into subgoals, safety
propositions, and event propositions. Each subgoal

is associated with its own option, whose goal is to
achieve that subgoal. Safety propositions are used to
defne rules. Event propositions serve as control fow
variables that affect the task.

3. We defne an SMDP that is the product of a low-level
MDP and a high-level logical FSA.

4. We defne the logical options.

5. We present an algorithm for fnding the hierarchically
optimal policy on the SMDP.

6. We state conditions under which satisfaction of the
LTL specifcation is guaranteed, and we prove that the
planning algorithm converges to an optimal policy by
showing that the hierarchically optimal SMDP policy
is the same as the optimal MDP policy.

The Logic Formula: LTL formulae can be translated into
Büchi automata using automatic translation tools such as
SPOT (Duret-Lutz et al., 2016). All Büchi automata can
be decomposed into liveness and safety properties (Alpern
& Schneider, 1987). We assume here that the LTL for-
mula itself can be divided into liveness and safety formulae,
φ = φliveness ∧ φsafety. For the case where the LTL for-
mula cannot be factored, see App. A. The liveness property
describes “things that must happen” to satisfy the LTL for-
mula. It is a task specifcation and is used in planning to
determine which subgoals the agent must achieve. The
safety property describes “things that can never happen”
and is used to defne costs for violating the rules. In LOF,
the liveness property is written using a fnite-trace subset of
LTL called syntactically co-safe LTL (Bhatia et al., 2010),
in which � (“always”) is not allowed and , U , and ♦ are
only used in positive normal form. This way, the liveness
property can be satisfed by fnite sequences of propositions,
so the property can be represented as an FSA.

Propositions: Propositions are boolean-valued truth state-
ments corresponding to goals, objects, and events in the
environment. We distinguish between three types of propo-
sitions: subgoals PG, safety propositions PS , and event
propositions PE . Subgoals must be achieved in order to
satisfy the liveness property. They are associated with goals
such as “the agent is at the grocery store”. They only appear
in φliveness. Each subgoal may only be associated with one
state. Note that in general, it may be impossible to avoid
having subgoals appear in φsafety. App. A describes how
to deal with this scenario. Safety propositions are proposi-
tions that the agent must avoid – for example, driving into
a lake. They only appear in φsafety. Event propositions
are not goals, but they can affect the task specifcation –
for example, whether or not a phone call is received. They
may occur in φliveness, and, with extensions described in
App. A, in φsafety. In the fully observable setting, event

The Logical Options Framework

propositions are somewhat trivial because the agent knows
exactly when/if the event will occur, but in the partially
observable setting, they enable complex control fow. Our
optimality guarantees only apply in the fully observable
setting; however, LOF’s properties of satisfaction and com-
posability still apply in the partially observable setting. The
goal state of the liveness FSA must be reachable from every
other state using only subgoals. This means that no matter
what event propositions occur, it must be possible for the
agent to satisfy the liveness property. TPG : S → 2PG

and TPS : S → 2PS relate states to the subgoal and safety
propositions that are true at that state. TPE : 2

PE → {0, 1}
assigns truth labels to the event propositions.

Hierarchical SMDP: LOF defnes a hierarchical semi-
Markov Decision Process (SMDP), learns the options, and
plans over them. The high level of the SMDP is an FSA spec-
ifed with LTL. The low level is an environment MDP. We
assume that the LTL specifcation φ can be decomposed into
a liveness property φliveness and a safety property φsafety .
The propositions P are the union of the subgoals PG, safety
propositions PS , and event propositions PE . We assume
that the liveness property can be translated into an FSA
T = (F , P, TF , RF , f0, fg). F is the set of automaton
states; P is the set of propositions; TF is the transition func-
tion relating the current state and proposition to the next
state, TF : F×P×F → [0, 1]. In practice, TF is determin-
istic despite our use of probabilistic notation. We assume
that there is a single initial state f0 and fnal state fg , and that
the goal state fg is reachable from every state f ∈ F using
only subgoals. The reward function assigns a reward to ev-
ery FSA state, RF : F → R. In our experiments, the safety V
property takes the form �¬ps, which implies that ps∈PS

no safety proposition is allowed, and that they have asso-
ciated costs, RS : 2

PS → R. φsafety is not limited to this
form; App. A covers the general case. There is a low-level
environment MDP E = (S, A, RE , TE , γ). S is the state
space and A is the action space. They can be discrete or
continuous. RE : S×A → R is a low-level reward function
that characterizes, for example, distance or actuation costs.
RE is a combination of the safety reward function RS and
RE , e.g. RE (s, a) = RE (s, a) + RS (TPS (s)). The transi-
tion function of the environment is TE : S×A×S → [0, 1].

From these parts we defne a hierarchical SMDP M =
(S × F , A, P, O, TE × TP × TF , RSMDP , γ). The hierar-
chical state space contains two elements: low-level states
S and FSA states F . The action space is A. The set of
propositions is P . The set of options (one option associated
with each subgoal in PG) is O. The transition function con-
sists of the low-level environment transitions TE and the
FSA transitions TF . TP = TPG × TPS × TPE . We call TP ,
relating states to propositions, a transition function because
it determines when FSA transitions occur. The transitions
are applied in the order TE , TP , TF . The reward function

Algorithm 1 Learning and Planning with Logical Options

1: Given:
Propositions P partitioned into subgoals PG, safety
propositions PS , and event propositions PE

Logical FSA T = (F , PG × PE , TF , RF , f0, fg) de-
rived from φliveness

Low-level MDP E = (S, A, RE , TE , γ), where
RE (s, a) = RE (s, a) + RS (TPS (s)) combines the en-
vironment and safety rewards
Proposition labeling functions TPG : S → 2PG , TPS :
S → 2PS , and TPE : 2

PE → {0, 1}
2: To learn:
3: Set of options O, one for each subgoal p ∈ PG

4: Meta-policy µ(f, s, o), Q(f, s, o), and V (f, s)
5: Learn logical options:
6: for p ∈ PG do
7: Learn an option that achieves p,

op = (Iop , πop , βop , Rop (s), Top (s
0|s))

8: Iop = S(
1 if p ∈ TPG (s)9: βop =
0 otherwise

10: πop = optimal policy on E with rollouts terminating
when p ∈ TPG (s)⎧ ⎨ if p ∈ TPG (s

0); k is number Eγk

11: Top (s
0|s) = of time steps to reach p⎩0 otherwise

12: Rop (s) = E[RE (s, a1) + γRE (s1, a2) + . . .
+γk−1RE (sk−1, ak)]

13: end for
14: Find a meta-policy µ over the options:
15: Initialize Q : F × S ×O → R, V : F × S → R to 0
16: for (k, f, s) ∈ [1, . . . , n] ×F × S do
17: for o ∈ O do
18: Qk(f, s, o) ← RF (f)Ro(s)+P P P

TF (f
0|f, TP (s

0), p̄ e)TPE (p̄e)
f 0 ∈F p̄ e∈2PE s0∈S

To(s
0|s)Vk−1(f

0, s0)
19: end for
20: Vk(f, s) ← max Qk(f, s, o)

o∈O
21: end for
22: µ(f, s, o) = arg max Q(f, s, o)

o∈O

23: Return: Options O, meta-policy µ(f, s, o) and Q- and
value functions Q(f, s, o), V (f, s)

RSMDP (f, s, o) = RF (f)Ro(s), so RF (f) is a weighting
on the option rewards. The SMDP has the same discount
factor γ as E . Planning is done on the SMDP in two steps:
frst, the options O are learned over E using an appropriate
policy-learning algorithm such as PPO or Reward Machines.
Next, a meta-policy over the task specifcation T is found
using the learned options and the reward function RSMDP .

The Logical Options Framework

Logical Options: The frst step of Alg. 1 is to learn the
logical options. We associate every subgoal p with an option
op = (Iop , πop , βop , Rop , Top). These terms are defned
starting at Alg. 1 line 5. One assumption we make is that
the initiation set of every option is the entire state space
S. This assumption can be easily loosened as long as the
liveness property does not require an infeasible sequence
of options, e.g., if the task is to go to Room A and then
Room B, the initiation set of the “Room B” option must
include Room A. Every op has a policy πop whose goal is
to reach the state sp where p is true. Options are learned
by training on the environment MDP E and terminating
only when sp is reached. As we discuss in Sec. 3.1, under
certain conditions the optimal option policy is guaranteed to
always terminate at the subgoal. This allows us to simplify
the transition model of Eq. 2 to the form in Alg. 1 line 11.
In the experiments, we further simplify this expression by
setting γ = 1.

Logical Value Iteration: After fnding the logical options,
the next step is to fnd a meta-policy for FSA T over the
options (see Alg. 1 line 14). Q- and value functions are
found for the SMDP using the Bellman update equations:

X X X
Qk(f, s, o) ← RF (f)Ro(s) +

f 0∈F p̄ e ∈2PE s0∈S

TF (f
0|f, TPG (s 0), p̄ e)TPE (p̄e)To(s 0|s)Vk−1(f

0 , s 0)
(3)

Vk(f, s) ← max Qk(f, s, o) (4)
o∈O

Eq. 3 differs from the generic equations for SMDP value
iteration in that the transition function has two extra compo-P P
nents, TF (f

0|f, TP (s
0), p̄ e) and TPE (p̄e).f 0∈F p̄ e∈2PE

The equations are derived from Araki et al. (2019) and the
fact that, on every step in the environment, three transitions
are applied: the option transition To, the event proposi-
tion “transition” TPE , and the FSA transition TF . Note that
Ro(s) and To(s

0|s) compress the consequences of choosing
an option o at a state s from a multi-step trajectory into two
real-valued numbers, allowing for more effcient planning.

3.1. Conditions for Satisfaction and Optimality

Here we give an overview of the proofs and necessary con-
ditions for satisfaction and optimality. The full proofs and
defnitions are in App. B.

First, we describe the condition for an optimal option to
always reach its subgoal. Let π0(s|s0) be the optimal goal-

0conditioned policy for reaching a goal s . If the optimal
option policy equals the goal-conditioned policy for reach-
ing the subgoal sg , i.e. π∗(s) = πg (s|sg), then the option
will always reach the subgoal. This can be stated in terms

of value functions: let V π
0
(s|s0) be the expected return

of π0(s|s0). If V πg (s|sg) > V π
0
(s|s0) ∀s, s0 =6 sg , then

π∗(s) = πg(s|sg). This occurs for example if −∞ <
RE (s, a) < 0 and if the episode terminates when the agent
reaches sg. Then V πg is a bounded negative number, and
V π

0
for all other states is −∞. We show that if every option

is guaranteed to achieve its subgoal, then there must exist at
least one sequence of options that satisfes the specifcation.

We then give the condition for the hierarchically optimal
meta-policy µ ∗(s) to always achieve the FSA goal state fg .
In our context, hierarchical optimality means that the meta-
policy is optimal over the available options. Let µ0(f, s|f 0)
be the hierarchically optimal goal-conditioned meta-policy
for reaching FSA state f 0 . If the hierarchically optimal
meta-policy equals the goal-conditioned meta-policy for
reaching the FSA goal state fg , i.e. µ ∗(f, s) = µg(f, s|fg),
then µ ∗(f, s) will always reach fg. In terms of value func-

0tions: let V µ 0
(f, s|f 0) be the expected return for µ . If

∗V µg (f, s|fg) > V µ 0
(f, s|f 0)∀f, s, f 0 6= fg, then µ = µg.

This occurs if all FSA rewards RF (f) > 0, all environment
rewards −∞ < RE (s, a) < 0, and the episode only termi-
nates when the agent reaches fg. Then V µg is a bounded
negative number, and V µ 0

for all other states is −∞. Be-
cause LOF uses the Bellman update equations to learn the
meta-policy, the LOF meta-policy will converge to the hier-
archically optimal meta-policy.

Consider the SMDP where planning is allowed over low-
level actions, and let us call it the “hierarchical MDP”
(HMDP) with optimal policy π∗

HMDP . Our result is:

Theorem 3.1. Given that the conditions for satisfaction
and hierarchical optimality are met, the LOF hierarchically
optimal meta-policy µg with optimal option sub-policies πg

has the same expected returns as the optimal policy π∗
HMDP

and satisfes the task specifcation.

3.2. Composability

The results in Sec. 3.1 guarantee that LOF’s learned model
can be composed to satisfy new tasks. Furthermore, the
composed policy has the same properties as the original
policy – satisfaction and optimality. LOF’s possession of
composability along with satisfaction and optimality derives
from two facts: 1) Options are inherently composable be-
cause they can be executed in any order. 2) If the conditions
of Thm. 3.1 are met, LOF is guaranteed to fnd a (hierarchi-
cally) optimal policy over the options that will satisfy any
liveness property that uses subgoals associated with the op-
tions. The composability of LOF distinguishes it from other
algorithms that can achieve satisfaction and optimality.

The Logical Options Framework

4. Experiments & Results
Experiments: We performed experiments to demonstrate
satisfaction and composability 1. For satisfaction, we mea-
sure cumulative reward over training steps. Cumulative re-
ward is a proxy for satisfaction, as the environments can only
achieve the maximum reward when they satisfy their tasks.
For the composability experiments, we take the trained op-
tions and record how many meta-policy retraining steps it
takes to learn an optimal meta-policy for a new task.

Environments: We measure the performance of LOF on
three environments. The frst environment is a discrete
gridworld (Fig. 3a) called the “delivery domain,” as it can
represent a delivery truck delivering packages to three lo-
cations (a, b, c) and having a home base h. There are also
obstacles o (the black squares). The second environment
is called the reacher domain, from OpenAI Gym (Fig. 3d).
It is a two-link arm that has continuous state and action
spaces. There are four subgoals represented by colored
balls: red r, green g, blue b, and yellow y. The third en-
vironment is called the pick-and-place domain, and it is a
continuous 3D environment with a robotic Panda arm from
CoppeliaSim and PyRep (James et al., 2019). It is inspired
by the lunchbox-packing experiments of Araki et al. (2019)
in which subgoals r, g, and b are food items that must be
packed into lunchbox y. All environments also have an
event proposition called can, which represents when the
need to fulfll part of a task is cancelled.

Tasks: We test satisfaction and composability on four tasks.
The frst task is a “sequential” task. For the delivery domain,
the LTL formula is ♦(a ∧ ♦(b ∧ ♦(c ∧ ♦h))) ∧ �¬o –
“deliver package a, then b, then c, and then return to home
h. And always avoid obstacles.” The next task is the “IF”
task (equivalent to the task shown in Fig. 1b): (♦(c ∧♦a) ∧
�¬can) ∨ (♦c ∧ ♦can) ∧ �¬o – “deliver package c, and
then a, unless a gets cancelled. And always avoid obstacles”.
We call the third task the “OR” task, ♦((a ∨ b) ∧ ♦c) ∧
�¬o – “deliver package a or b, then c, and always avoid
obstacles”. The “composite” task has elements of all three
of the previous tasks: (♦((a ∨ b) ∧♦(c ∧♦h)) ∧ �¬can) ∨
(♦((a ∨ b) ∧♦h) ∧♦can) ∧ �¬o. “Deliver package a or b,
and then c, unless c gets cancelled, and then return to home
h. And always avoid obstacles”. The tasks for the reacher
and pick-and-place environments are equivalent, except that
there are no obstacles for the reacher and arm to avoid.

The sequential task is meant to show that planning is eff-
cient and effective even for long-time horizon tasks. The
“IF” task shows that the agent’s policy can respond to event
propositions, such as being alerted that a delivery is can-

1Code for the discrete domain experiments is
available at https://github.com/braraki/
logical-options-framework. Code for the other
domains is available in the supplementary material.

`

-2

-3

-2

-5

S0 S1 S2

LOF Total
Reward: -5

Greedy Total
Reward: -7

-3

-2

-2

-5

Figure 2. In this environment, the agent must either pick up the
kid or go grocery shopping, and then go home (the “OR” task).
Starting at S0, the greedy algorithm picks the next step in the FSA
with the lowest cost (picking up the kid), which leads to a higher
overall cost. LOF fnds the optimal path through the FSA.

celled. The “OR” task is meant to demonstrate the optimal-
ity of our algorithm versus a greedy algorithm, as discussed
in Fig. 2. Lastly, the composite task shows that learning and
planning are effcient and effective even for complex tasks.

Baselines: We test four baselines against our algorithm.
Our algorithm is LOF-VI, short for “Logical Options
Framework with Value Iteration,” because it uses value it-
eration for high-level planning. LOF-QL uses Q-learning
instead (details are in App. C.3). Unlike LOF-VI, LOF-QL
does not need explicit knowledge of TF , the FSA transition
function. Greedy is a naive implementation of task satis-
faction; it uses its knowledge of the FSA to select the next
subgoal with the lowest cost to attain. This leaves it vul-
nerable to choosing suboptimal paths through the FSA, as
shown in Fig. 2. Flat Options uses the options frame-
work with no knowledge of the FSA. Its SMDP formulation
is not hierarchical – the state space and transition function
do not contain high-level states F or transition function TF .
The last baseline is RM, short for Q-Learning for Reward
Machines (Icarte et al., 2018). Whereas LOF learn options
to accomplish subgoals, RM learns sub-policies for every
FSA state. App. C.4 discusses the differences between RM
and LOF in detail.

Implementation: For the delivery domain, options were
learned using Q-learning with an �-greedy exploration pol-
icy. RM was learned using the Q-Learning for Reward Ma-

https://github.com/braraki/logical-options-framework
https://github.com/braraki/logical-options-framework

The Logical Options Framework

b

h

c

a

(a) Delivery domain. (b) Satisfaction performance. (c) Composability performance.

r

g

y
b

(d) Reacher domain. (e) Satisfaction performance. (f) Composability performance.

b

g

r
y

(g) Pick-and-place domain. (h) Satisfaction performance. (i) Composability performance.

Figure 3. Performance on the satisfaction and composability experiments, averaged over all tasks. Note that LOF-VI composes new
meta-policies in just 10-50 retraining steps. The frst row is the delivery domain, the second row is the reacher domain, and the third row
is the pick-and-place domain. All results, including RM performance on the reacher and pick-and-place domains, are in App. C.6.

chines (QRM) algorithm described in Icarte et al. (2018).
For the reacher and pick-and-place domains, options were
learned by using proximal policy optimization (PPO) (Schul-
man et al., 2017) to train goal-oriented policy and value
functions, which were represented using 128 × 128 and
128 × 128 × 128 fully connected neural networks, respec-
tively. Deep-QRM was used to train RM. The implementa-
tion details are discussed more fully in App. C.

4.1. Results

Satisfaction: Results for the satisfaction experiments, aver-
aged over all four tasks, are shown in Figs. 3b, 3e, and 3h.
(Results on all tasks are in App. C.6). As expected, Flat
Options shows no ability to satisfy tasks, as it has no
knowledge of the FSAs. Greedy trains as quickly as
LOF-VI and LOF-QL, but its returns plateau before the
others because it chooses suboptimal paths in the composite
and OR tasks. The difference is small in the continuous
domains but still present. LOF-QL achieves as high a return
as LOF-VI, but it is less composable (discussed below).

RM learns much more slowly than the other methods. This
is because for RM, a reward is only given for reaching the
goal state, whereas in the LOF-based methods, options are
rewarded for reaching their subgoals, so during training
LOF-based methods have a richer reward function than RM.
For the continuous domains, RM takes an order of magnitude
more steps to train, so we left it out of the fgures for clarity
(see App. Figs. 14 and 16). However, in the continuous
domains, RM eventually achieves a higher return than the
LOF-based methods. This is because for those domains,
we defne the subgoals to be spherical regions rather than
single states, violating one of the conditions for optimality.
Therefore, for example, it is possible that the meta-policy
does not take advantage of the dynamics of the arm to swing
through the subgoals more effciently. RM does not have this
condition and learns a single policy that can take advantage
of inter-subgoal dynamics to learn a more optimal policy.

Composability: The composability experiments were done
on the three composable baselines, LOF-VI, LOF-QL, and
Greedy. App. C.4 discusses why RM is not composable.
Flat Options is not composable because its formula-

The Logical Options Framework

tion does not include the FSA T . Therefore it is completely
incapable of recognizing and adjusting to changes in the
FSA. The composability results are shown in Figs. 3c, 3f,
and 3i. Greedy requires no retraining steps to “learn” a
meta-policy on a new FSA – given its current FSA state,
it simply chooses the next available FSA state that has the
lowest cost to achieve. However, its meta-policy may be
arbitrarily suboptimal. LOF-QL learns optimal (or in the
continuous case, close-to-optimal) policies, but it takes ∼50-
250 retraining steps, versus ∼10-50 for LOF-VI. Therefore
LOF-VI strikes a balance between Greedy and LOF-QL,
requiring far fewer steps than LOF-QL to retrain, and
achieving better performance than Greedy.

5. Related Work
We distinguish our work from related work in HRL by its
possession of three desirable properties – composability,
satisfaction, and optimality. Most other works possess two
of these properties at the cost of the other.

Not Composable: The previous work most similar to ours
is Icarte et al. (2018), which introduces a framework to
solve tasks defned by automata called Reward Machines.
Their algorithm, Q-Learning for Reward Machines, learns a
sub-policy for every state of the automaton that achieves sat-
isfaction and optimality. However, the learned sub-policies
have limited composability because they end up learning a
specifc path through the automaton, and if the structure of
the automaton is changed, there is no guarantee that the sub-
policies will be able to satisfy the new automaton without
re-training. By contrast, LOF learns a sub-policy for every
subgoal, independent of the automaton, and therefore the
sub-policies can be arranged to satisfy arbitrary tasks. An-
other similar work is Logical Value Iteration (LVI) (Araki
et al., 2019; 2020). LVI defnes a hierarchical MDP and
value iteration equations that fnd satisfying and optimal
policies; however, the algorithm is limited to discrete do-
mains and has limited composability. A number of HRL
algorithms use reward shaping to guide the agent through
the states of an automaton (Li et al., 2017; 2019; Cama-
cho et al., 2019; Hasanbeig et al., 2018; Jothimurugan et al.,
2019; Shah et al., 2020; Yuan et al., 2019; De Giacomo et al.,
2019). While these algorithms can guarantee satisfaction
and sometimes optimality, they cannot be composed be-
cause their policies are not hierarchical. Another approach
is to use a symbolic planner to fnd a satisfying sequence
of tasks and use an RL agent to learn and execute that se-
quence of tasks (Gordon et al., 2019; Illanes et al., 2020;
Lyu et al., 2019). However, the meta-controllers of Gor-
don et al. (2019) and Lyu et al. (2019) are not composable
as they are trained together with the low-level controllers.
Although the work of Illanes et al. (2020) is amenable to
transfer learning, it is not composable. Paxton et al. (2017);

Mason et al. (2017) use logical constraints to guide explo-
ration, and while these approaches are also satisfying and
optimal, they are not composable as the agent is trained
for a specifc set of rules. LOF is composable unlike the
above methods because it has a hierarchical action space
with high-level options. Once the options are learned, they
can be composed arbitrarily.

Not Satisfying: Most hierarchical frameworks cannot sat-
isfy tasks. Instead, they focus on using state and action
abstractions to make learning more effcient (Dietterich,
2000; Dayan & Hinton, 1993; Parr & Russell, 1998; Diuk
et al., 2008; Oh et al., 2019). The options framework (Sutton
et al., 1999) stands out because of its composability and its
guarantee of hierarchical optimality, which is why we based
our work off of it. There is also a class of HRL algorithms
that builds on the idea of goal-oriented policies that can
navigate to nearby subgoals (Eysenbach et al., 2019; Ghosh
et al., 2018; Faust et al., 2018). By sampling sequences
of subgoals and using a goal-oriented policy to navigate
between them, these algorithms can travel much longer dis-
tances than a policy can travel on its own. Although these
algorithms are “composable” in that they can navigate to
far-away goals without further training, they are not able to
solve tasks. Andreas et al. (2017) present an algorithm for
solving simple policy “sketches” which is also composable;
however, sketches are considerably less expressive than au-
tomata and linear temporal logic, which we use. Unlike the
above methods, LOF is satisfying because it has a hierar-
chical state space with low-level MDP states and high-level
FSA states. Therefore LOF can satisfy tasks by learning
policies that reach the FSA goal state.

Not Optimal: In HRL, there are at least three types of opti-
mality – hierarchical, recursive, and overall. As defned in
Dietterich (2000), the hierarchically optimal policy is the
optimal policy given the constraints of the hierarchy, and
recursive optimality is when a policy is optimal given the
policies of its children. For example, the options frame-
work is hierarchically optimal, while MAXQ and abstract
MDPs (Gopalan et al., 2017) are recursively optimal. Icarte
et al. (2019) introduce a composable method for learning
Reward Machines, but their approach is focused on the rein-
forcement learning setting and is only guaranteed to learn
hierarchically optimal policies. Leon et al. (2020) introduce
a neurosymbolic method for generating policies for satis-
fying logical specifcations that can zero-shot generalize to
new specifcations. However, the “symbolic module” of
their network has no guarantees on being able to optimally
satisfy specifcations. The method described in Kuo et al.
(2020) is fully composable, but not optimal as it uses a re-
current neural network to generate a sequence of high-level
actions and is therefore not guaranteed to fnd optimal poli-
cies. The approach in Kuo et al. (2020) has some advantages
in terms of scalability versus our approach, since they use

The Logical Options Framework

a single deep model to learn policies for all operators and
propositions. However, for LOF, a single deep goal-oriented
policy could be trained to reach all subgoals, as is done in
Leon et al. (2020). We therefore believe that LOF could be
made equally scalable as Kuo et al. (2020), although this
would be at the cost of losing most of the guarantees of the
framework. However, one guarantee that LOF would keep
is the hierarchical optimality of the meta-policy, which is a
result of fnding the meta-policy using value iteration. We
therefore believe that LOF should have better performance
on unseen specifcations than Kuo et al. (2020), because
Kuo et al. (2020) has no guarantees for satisfying specif-
cations. LOF is hierarchically optimal because it fnds an
optimal meta-policy over the high-level options, and as we
state in the paper, there are also conditions under which the
overall policy is optimal.

6. Discussion and Conclusion
In this work, we claim that LOF has a unique combination
of three properties: satisfaction, optimality, and composabil-
ity. We state and prove the conditions for satisfaction and
optimality in Sec. 3.1. The experimental results confrm our
claims while also pointing out some weaknesses. LOF-VI
achieves optimal or near-optimal policies and trains an order
of magnitude faster than the existing work most similar to
it, RM. However, the optimality condition that each subgoal
be associated with one state cannot be met for continuous
domains, and therefore RM eventually outperforms LOF-VI.
But even when optimality is not guaranteed, LOF-VI is hi-
erarchically optimal, which is why it outperforms Greedy
in the composite and OR tasks. Next, the composability
experiments show that LOF-VI can compose its learned
options to perform new tasks in about 10-50 iterations on
the benchmarks. Although Greedy requires no retraining
steps, 10-50 retraining iterations is a tiny fraction of the tens
of thousands of steps required to learn the original policy.
Lastly, we have shown that LOF learns policies effciently,
and that it can be used with a variety of domains and policy-
learning algorithms.

Acknowledgments
This material is supported by the Toyota Research Insti-
tute within the Toyota-CSAIL joint research center, NSF
grant IIS-1723943, ONR N00014-18-1-2830, the Under
Secretary of Defense for Research and Engineering under
Air Force Contract No. FA8702-15-D-0001, and SUTD
Project Astralis. Any opinions, fndings, conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily refect the views of the
funding agencies.

References
Abel, D. and Winder, J. The expected-length model of

options. In IJCAI, 2019.

Alpern, B. and Schneider, F. B. Recognizing safety and
liveness. Distributed computing, 2(3):117–126, 1987.

Andreas, J., Klein, D., and Levine, S. Modular multitask
reinforcement learning with policy sketches. In Interna-
tional Conference on Machine Learning, pp. 166–175,
2017.

Araki, B., Vodrahalli, K., Leech, T., Vasile, C. I., Don-
ahue, M., and Rus, D. Learning to plan with logical
automata. In Proceedings of Robotics: Science and Sys-
tems, FreiburgimBreisgau, Germany, June 2019. doi:
10.15607/RSS.2019.XV.064.

Araki, B., Vodrahalli, K., Leech, T., Vasile, C. I., Donahue,
M., and Rus, D. Deep bayesian nonparametric learning
of rules and plans from demonstrations with a learned
automaton prior. In AAAI, pp. 10026–10034, 2020.

Baier, C. and Katoen, J. Principles of model checking. MIT
Press, 2008. ISBN 978-0-262-02649-9.

Bhatia, A., Kavraki, L. E., and Vardi, M. Y. Sampling-based
motion planning with temporal goals. In 2010 IEEE
International Conference on Robotics and Automation,
pp. 2689–2696. IEEE, 2010.

Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A.,
and McIlraith, S. A. Ltl and beyond: Formal languages
for reward function specifcation in reinforcement learn-
ing. In IJCAI, volume 19, pp. 6065–6073, 2019.

Clarke, E. M., Grumberg, O., and Peled, D. Model Checking.
MIT Press, 2001. ISBN 978-0-262-03270-4.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
In Advances in neural information processing systems,
pp. 271–278, 1993.

De Giacomo, G., Iocchi, L., Favorito, M., and Patrizi, F.
Foundations for restraining bolts: Reinforcement learning
with ltlf/ldlf restraining specifcations. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 29, pp. 128–136, 2019.

Dietterich, T. G. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of artif-
cial intelligence research, 13:227–303, 2000.

Diuk, C., Cohen, A., and Littman, M. L. An object-oriented
representation for effcient reinforcement learning. In Pro-
ceedings of the 25th international conference on Machine
learning, pp. 240–247, 2008.

The Logical Options Framework

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T.,
Renault, E., and Xu, L. Spot 2.0 — a framework for LTL
and ω-automata manipulation. In Proceedings of the 14th
International Symposium on Automated Technology for
Verifcation and Analysis (ATVA’16), volume 9938 of Lec-
ture Notes in Computer Science, pp. 122–129. Springer,
October 2016. doi: 10.1007/978-3-319-46520-3 8.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems, pp. 15220–15231, 2019.

Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L.,
Fiser, M., and Davidson, J. Prm-rl: Long-range robotic
navigation tasks by combining reinforcement learning
and sampling-based planning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 5113–5120. IEEE, 2018.

Ghosh, D., Gupta, A., and Levine, S. Learning actionable
representations with goal-conditioned policies. arXiv
preprint arXiv:1811.07819, 2018.

Gopalan, N., Littman, M. L., MacGlashan, J., Squire, S.,
Tellex, S., Winder, J., Wong, L. L., et al. Planning with
abstract markov decision processes. In Twenty-Seventh
International Conference on Automated Planning and
Scheduling, 2017.

Gordon, D., Fox, D., and Farhadi, A. What should i do now?
marrying reinforcement learning and symbolic planning.
arXiv preprint arXiv:1901.01492, 2019.

Hasanbeig, M., Abate, A., and Kroening, D. Logically-
constrained reinforcement learning. arXiv preprint
arXiv:1801.08099, 2018.

Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S.
Using reward machines for high-level task specifcation
and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107–2116,
2018.

Icarte, R. T., Waldie, E., Klassen, T., Valenzano, R., Castro,
M., and McIlraith, S. Learning reward machines for
partially observable reinforcement learning. In Advances
in Neural Information Processing Systems, pp. 15523–
15534, 2019.

Illanes, L., Yan, X., Icarte, R. T., and McIlraith, S. A. Sym-
bolic plans as high-level instructions for reinforcement
learning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, pp.
540–550, 2020.

James, S., Freese, M., and Davison, A. J. Pyrep: Bring-
ing v-rep to deep robot learning. arXiv preprint
arXiv:1906.11176, 2019.

Jothimurugan, K., Alur, R., and Bastani, O. A composable
specifcation language for reinforcement learning tasks.
In Advances in Neural Information Processing Systems,
pp. 13041–13051, 2019.

Kansou, B. K. A. Converting asubset of ltl formula to buchi
automata. International Journal of Software Engineering
& Applications (IJSEA), 10(2), 2019.

Kuo, Y.-L., Katz, B., and Barbu, A. Encoding formulas as
deep networks: Reinforcement learning for zero-shot ex-
ecution of ltl formulas. arXiv preprint arXiv:2006.01110,
2020.

Leon, B. G., Shanahan, M., and Belardinelli, F. Systematic
generalisation through task temporal logic and deep re-
inforcement learning. arXiv preprint arXiv:2006.08767,
2020.

Li, X., Vasile, C.-I., and Belta, C. Reinforcement learning
with temporal logic rewards. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 3834–3839. IEEE, 2017.

Li, X., Serlin, Z., Yang, G., and Belta, C. A formal meth-
ods approach to interpretable reinforcement learning for
robotic planning. Science Robotics, 4(37), 2019.

Lyu, D., Yang, F., Liu, B., and Gustafson, S. Sdrl: inter-
pretable and data-effcient deep reinforcement learning
leveraging symbolic planning. In Proceedings of the
AAAI Conference on Artifcial Intelligence, volume 33,
pp. 2970–2977, 2019.

Mason, G. R., Calinescu, R. C., Kudenko, D., and Banks,
A. Assured reinforcement learning with formally verifed
abstract policies. In 9th International Conference on
Agents and Artifcial Intelligence (ICAART). York, 2017.

Oh, Y., Patel, R., Nguyen, T., Huang, B., Pavlick, E.,
and Tellex, S. Planning with state abstractions for
non-markovian task specifcations. arXiv preprint
arXiv:1905.12096, 2019.

Parr, R. and Russell, S. J. Reinforcement learning with hier-
archies of machines. In Advances in neural information
processing systems, pp. 1043–1049, 1998.

Paxton, C., Raman, V., Hager, G. D., and Kobilarov, M.
Combining neural networks and tree search for task and
motion planning in challenging environments. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6059–6066. IEEE, 2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

The Logical Options Framework

Shah, A., Li, S., and Shah, J. Planning with uncertain
specifcations (puns). IEEE Robotics and Automation
Letters, 5(2):3414–3421, 2020.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artifcial intelligence, 112(1-2):
181–211, 1999.

Yuan, L. Z., Hasanbeig, M., Abate, A., and Kroening, D.
Modular deep reinforcement learning with temporal logic
specifcations. arXiv preprint arXiv:1909.11591, 2019.

Zhang, S. and Sridharan, M. A survey of knowledge-based
sequential decision making under uncertainty. arXiv
preprint arXiv:2008.08548, 2020.

