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Abstract 
Learning composable policies for environments 
with complex rules and tasks is a challenging prob-
lem. We introduce a hierarchical reinforcement 
learning framework called the Logical Options 
Framework (LOF) that learns policies that are sat-
isfying, optimal, and composable. LOF effciently 
learns policies that satisfy tasks by representing 
the task as an automaton and integrating it into 
learning and planning. We provide and prove con-
ditions under which LOF will learn satisfying, 
optimal policies. And lastly, we show how LOF’s 
learned policies can be composed to satisfy un-
seen tasks with only 10-50 retraining steps on our 
benchmarks. We evaluate LOF on four tasks in 
discrete and continuous domains, including a 3D 
pick-and-place environment. 

1. Introduction 
To operate in the real world, intelligent agents must be 
able to make long-term plans by reasoning over symbolic 
abstractions while also maintaining the ability to react to 
low-level stimuli in their environment (Zhang & Sridharan, 
2020). Many environments obey rules that can be repre-
sented as logical formulae; e.g., the rules a driver follows 
while driving, or a recipe a chef follows to cook a dish. 
Traditional motion and path planning techniques struggle 
to plan over these long-horizon tasks, but hierarchical ap-
proaches such as hierarchical reinforcement learning (HRL) 
can solve lengthy tasks by planning over both the high-level 
rules and the low-level environment. However, solving these 
problems involves trade-offs among multiple desirable prop-
erties, which we identify as satisfaction, optimality, and 
composability (described below). Today’s hierarchical plan-
ning algorithms lack at least one of these objectives. For 
example, Reward Machines (Icarte et al., 2018) are satisfy-
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ing and optimal, but not composable; the options framework 
(Sutton et al., 1999) is composable and hierarchically op-
timal, but cannot satisfy specifcations. An algorithm that 
achieves all three of these properties would be very pow-
erful because it would enable a model learned on one set 
of rules to generalize to arbitrary rules. We introduce the 
Logical Options Framework, which builds upon the options 
framework and aims to combine symbolic reasoning and 
low-level control to achieve satisfaction, optimality, and 
composability with as few compromises as possible. Fur-
thermore, we demonstrate that models learned with our 
framework generalize to arbitrary sets of rules without any 
further learning, and we also show that our framework is 
compatible with arbitrary domains and planning algorithms, 
from discrete domains and value iteration to continuous 
domains and proximal policy optimization (PPO). 

Satisfaction: An agent operating in an environment gov-
erned by rules must be able to satisfy the specifed rules. 
Satisfaction is a concept from formal logic, in which the 
input to a logical formula causes the formula to evaluate to 
True. Logical formulae can encapsulate rules and tasks 
like the ones described in Fig. 1, such as “pick up the gro-
ceries” and “do not drive into a lake”. In this paper, we state 
conditions under which our method is guaranteed to learn 
satisfying policies. 

Optimality: Optimality requires that the agent maximize 
its expected cumulative reward for each episode. In general, 
satisfaction can be achieved by rewarding the agent for satis-
fying the rules of the environment. In hierarchical planning 
there are several types of optimality, including hierarchi-
cal optimality (optimal with respect to the hierarchy) and 
optimality (optimal with respect to everything). We prove 
in this paper that our method is hierarchically optimal and, 
under certain conditions, optimal. 

Composability: Our method is also composable – once it 
has learned the low-level components of a task, the learned 
model can be rearranged to satisfy arbitrary tasks. More 
specifcally, the rules of an environment can be factored into 
liveness and safety properties, which we discuss in Sec. 3. 
The learned model has high-level actions called options that 
can be composed to satisfy new liveness properties. A short-
coming of many RL models is that they are not composable 
– trained to solve one specifc task, they are incapable of han-
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The Logical Options Framework 

“Go grocery shopping, pick up the kid, and go home, unless your partner calls telling you that they will pick 

up the kid, in which case just go grocery shopping and then go home. And don’t drive into the lake.”

(a) These natural language instructions can be transformed into an FSA, shown in (b). 
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(b) The FSA representing the natural language instructions. The 
propositions are divided into “subgoal”, “safety”, and “event.” 

`

(c) The low-level MDP and corresponding policy that satis-
fes the instructions. 

Figure 1. Many parents face this task after school ends – who picks up the kid, and who gets groceries? The pictorial symbols represent 
propositions, which are true or false depending on the state of the environment. The arrows in (c) represent sub-policies, and the colors of 
the arrows match the corresponding transition in the FSA. The boxed phone at the beginning of some of the arrows represents how these 
sub-policies can occur only after the agent receives a phone call. 

dling even small variations in the task structure. However, 
the real world is a dynamic and unpredictable place, so the 
ability to use a learned model to automatically reason over 
as-yet-unseen tasks is a crucial element of intelligence. 

Fig. 1 gives an example of how LOF works. The environ-
ment is a world with a grocery store, your (hypothetical) 
kid, your house, and some lakes, and in which you, the 
agent, are driving a car. The propositions are divided into 
“subgoals”, representing events that can be achieved, such 
as going grocery shopping; “safety” propositions, represent-
ing events that you must avoid (driving into a lake); and 
“event” propositions, corresponding to events that you have 
no control over (receiving a phone call) (Fig. 1b). In this 
environment, you have to follow rules (Fig. 1a). These rules 
can be converted into a logical formula, and from there into 
a fnite state automaton (FSA) (Fig. 1b). LOF learns an 
option for each subgoal (illustrated by the arrows in Fig. 1c), 
and a meta-policy for choosing amongst the options to reach 
the goal state of the FSA. After learning, the options can be 
recombined to fulfll arbitrary tasks. 

1.1. Contributions 

This paper introduces the Logical Options Framework 
(LOF) and makes four contributions to the hierarchical rein-
forcement learning literature: 

1. The defnition of a hierarchical semi-Markov Decision 
Process (SMDP) that is the product of a logical FSA 

and a low-level environment MDP. 

2. A planning algorithm for learning options and meta-
policies for the SMDP that allows the options to be 
composed to solve new tasks with only 10-50 retraining 
steps on our benchmarks and no additional samples 
from the environment. 

3. Conditions and proofs for satisfaction and optimality. 

4. Experiments on a discrete delivery domain, a continu-
ous 2D reacher domain, and a continuous 3D pick-and-
place domain on four tasks demonstrating satisfaction, 
optimality, and composability. 

2. Background 
Linear Temporal Logic: We use linear temporal logic 
(LTL) to formally specify rules (Clarke et al., 2001). LTL 
can express tasks and rules using temporal operators such as 
“eventually” and “always.” LTL formulae are used only indi-
rectly in LOF, as they are converted into automata that the 
algorithm uses directly. We chose to use LTL to represent 
rules because LTL corresponds closely to natural language 
and has proven to be a more natural way of expressing 
tasks and rules for engineers than designing FSAs by hand 
(Kansou, 2019). Formulae φ have the syntax grammar 

φ := p | ¬φ | φ1 ∨ φ2 | φ | φ1 U φ2 









 
 

  
 

    
     

   
   

 
     

       
      

 

 
 

   
  

 
       

 

   
  

 
    

 

    

  

 

 

The Logical Options Framework 

where p is a proposition (a boolean-valued truth statement 
that can correspond to objects or events in the world), ¬ 
is negation, ∨ is disjunction, is “next”, and U is “until”. 
The derived rules are conjunction (∧), implication ( =⇒ 
), equivalence (↔), “eventually” (♦φ ≡ True U φ) and 
“always” (�φ ≡ ¬♦¬φ) (Baier & Katoen, 2008). φ1 U φ2 

means that φ1 is true until φ2 is true, ♦φ means that there is 
a time where φ is true and �φ means that φ is always true. 

The Options Framework: The options framework is a 
framework for defning and solving semi-Markov Decision 
Processes (SMDPs) with a type of macro-action called an 
option (Sutton et al., 1999). The inclusion of options in 
an MDP problem turns it into an SMDP problem, because 
actions are dependent not just on the previous state but also 
on the identity of the currently active option, which could 
have been initiated many time steps before the current time. 

An option o is a variable-length sequence of actions defned 
as o = (I, π, β, Ro(s), To(s

0|s)). I ⊆ S is the initiation set 
of the option. π : S ×A → [0, 1] is the policy of the option. 
β : S → [0, 1] is the termination condition. Ro(s) is the 
reward model of the option. To(s

0|s) is the transition model. 
A major challenge in option learning is that, in general, the 
number of time steps before the option terminates, k, is a 
random variable. With this in mind, Ro(s) is defned as 
the expected cumulative reward of option o given that the 
option is initiated in state s at time t and ends after k time 
steps. Letting rt be the reward received by the agent at t 
time steps from the beginning of the option, 

� � 
Ro(s) = E r1 + γr2 + . . . γk−1 rk (1) 

To(s
0|s) is the combined probability po(s0, k) that option o 

will terminate at state s0 after k time steps: 

∞X 
To(s 0|s) = po(s 0, k)γk (2) 

k=1 

A crucial beneft of using options is that they can be com-
posed in arbitrary ways. In the next section, we describe 
how LOF composes them to satisfy logical specifcations. 

3. Logical Options Framework 
Here is a brief overview of how we will present our formu-
lation of LOF: 

1. The LTL formula is decomposed into liveness and 
safety properties. The liveness property defnes the 
task specifcation and the safety property defnes the 
costs for violating rules. 

2. The propositions are divided into subgoals, safety 
propositions, and event propositions. Each subgoal 

is associated with its own option, whose goal is to 
achieve that subgoal. Safety propositions are used to 
defne rules. Event propositions serve as control fow 
variables that affect the task. 

3. We defne an SMDP that is the product of a low-level 
MDP and a high-level logical FSA. 

4. We defne the logical options. 

5. We present an algorithm for fnding the hierarchically 
optimal policy on the SMDP. 

6. We state conditions under which satisfaction of the 
LTL specifcation is guaranteed, and we prove that the 
planning algorithm converges to an optimal policy by 
showing that the hierarchically optimal SMDP policy 
is the same as the optimal MDP policy. 

The Logic Formula: LTL formulae can be translated into 
Büchi automata using automatic translation tools such as 
SPOT (Duret-Lutz et al., 2016). All Büchi automata can 
be decomposed into liveness and safety properties (Alpern 
& Schneider, 1987). We assume here that the LTL for-
mula itself can be divided into liveness and safety formulae, 
φ = φliveness ∧ φsafety. For the case where the LTL for-
mula cannot be factored, see App. A. The liveness property 
describes “things that must happen” to satisfy the LTL for-
mula. It is a task specifcation and is used in planning to 
determine which subgoals the agent must achieve. The 
safety property describes “things that can never happen” 
and is used to defne costs for violating the rules. In LOF, 
the liveness property is written using a fnite-trace subset of 
LTL called syntactically co-safe LTL (Bhatia et al., 2010), 
in which � (“always”) is not allowed and , U , and ♦ are 
only used in positive normal form. This way, the liveness 
property can be satisfed by fnite sequences of propositions, 
so the property can be represented as an FSA. 

Propositions: Propositions are boolean-valued truth state-
ments corresponding to goals, objects, and events in the 
environment. We distinguish between three types of propo-
sitions: subgoals PG, safety propositions PS , and event 
propositions PE . Subgoals must be achieved in order to 
satisfy the liveness property. They are associated with goals 
such as “the agent is at the grocery store”. They only appear 
in φliveness. Each subgoal may only be associated with one 
state. Note that in general, it may be impossible to avoid 
having subgoals appear in φsafety. App. A describes how 
to deal with this scenario. Safety propositions are proposi-
tions that the agent must avoid – for example, driving into 
a lake. They only appear in φsafety. Event propositions 
are not goals, but they can affect the task specifcation – 
for example, whether or not a phone call is received. They 
may occur in φliveness, and, with extensions described in 
App. A, in φsafety. In the fully observable setting, event 



    

    

 
  

 
  

 
  

      
  

      

  

   

    
 

 
   

     
 

     

  

         

     

  
         

 

 

         

   

 
  

       
 

    

         

    
  

  
 

  

  

       

  

       

   
    

  
 

   
    

      

  
 

        
  

 
            

       
  

      
      

     

 

       
 

         
 

   
     

       

 
  

 
 

The Logical Options Framework 

propositions are somewhat trivial because the agent knows 
exactly when/if the event will occur, but in the partially 
observable setting, they enable complex control fow. Our 
optimality guarantees only apply in the fully observable 
setting; however, LOF’s properties of satisfaction and com-
posability still apply in the partially observable setting. The 
goal state of the liveness FSA must be reachable from every 
other state using only subgoals. This means that no matter 
what event propositions occur, it must be possible for the 
agent to satisfy the liveness property. TPG : S → 2PG 

and TPS : S → 2PS relate states to the subgoal and safety 
propositions that are true at that state. TPE : 2

PE → {0, 1}
assigns truth labels to the event propositions. 

Hierarchical SMDP: LOF defnes a hierarchical semi-
Markov Decision Process (SMDP), learns the options, and 
plans over them. The high level of the SMDP is an FSA spec-
ifed with LTL. The low level is an environment MDP. We 
assume that the LTL specifcation φ can be decomposed into 
a liveness property φliveness and a safety property φsafety . 
The propositions P are the union of the subgoals PG, safety 
propositions PS , and event propositions PE . We assume 
that the liveness property can be translated into an FSA 
T = (F , P, TF , RF , f0, fg ). F is the set of automaton 
states; P is the set of propositions; TF is the transition func-
tion relating the current state and proposition to the next 
state, TF : F×P×F → [0, 1]. In practice, TF is determin-
istic despite our use of probabilistic notation. We assume 
that there is a single initial state f0 and fnal state fg , and that 
the goal state fg is reachable from every state f ∈ F using 
only subgoals. The reward function assigns a reward to ev-
ery FSA state, RF : F → R. In our experiments, the safety V 
property takes the form �¬ps, which implies that ps∈PS 

no safety proposition is allowed, and that they have asso-
ciated costs, RS : 2

PS → R. φsafety is not limited to this 
form; App. A covers the general case. There is a low-level 
environment MDP E = (S, A, RE , TE , γ). S is the state 
space and A is the action space. They can be discrete or 
continuous. RE : S×A → R is a low-level reward function 
that characterizes, for example, distance or actuation costs. 
RE is a combination of the safety reward function RS and 
RE , e.g. RE (s, a) = RE (s, a) + RS (TPS (s)). The transi-
tion function of the environment is TE : S×A×S → [0, 1]. 

From these parts we defne a hierarchical SMDP M = 
(S × F , A, P, O, TE × TP × TF , RSMDP , γ). The hierar-
chical state space contains two elements: low-level states 
S and FSA states F . The action space is A. The set of 
propositions is P . The set of options (one option associated 
with each subgoal in PG) is O. The transition function con-
sists of the low-level environment transitions TE and the 
FSA transitions TF . TP = TPG × TPS × TPE . We call TP , 
relating states to propositions, a transition function because 
it determines when FSA transitions occur. The transitions 
are applied in the order TE , TP , TF . The reward function 

Algorithm 1 Learning and Planning with Logical Options 

1: Given: 
Propositions P partitioned into subgoals PG, safety 
propositions PS , and event propositions PE 

Logical FSA T = (F , PG × PE , TF , RF , f0, fg) de-
rived from φliveness 

Low-level MDP E = (S, A, RE , TE , γ), where 
RE (s, a) = RE (s, a) + RS (TPS (s)) combines the en-
vironment and safety rewards 
Proposition labeling functions TPG : S → 2PG , TPS : 
S → 2PS , and TPE : 2

PE → {0, 1}
2: To learn: 
3: Set of options O, one for each subgoal p ∈ PG 

4: Meta-policy µ(f, s, o), Q(f, s, o), and V (f, s) 
5: Learn logical options: 
6: for p ∈ PG do 
7: Learn an option that achieves p, 

op = (Iop , πop , βop , Rop (s), Top (s
0|s)) 

8: Iop = S( 
1 if p ∈ TPG (s)9: βop = 
0 otherwise 

10: πop = optimal policy on E with rollouts terminating 
when p ∈ TPG (s)⎧ ⎨ if p ∈ TPG (s

0); k is number Eγk 

11: Top (s
0|s) = of time steps to reach p⎩0 otherwise 

12: Rop (s) = E[RE (s, a1) + γRE (s1, a2) + . . . 
+γk−1RE (sk−1, ak)] 

13: end for 
14: Find a meta-policy µ over the options: 
15: Initialize Q : F × S ×O → R, V : F × S → R to 0 
16: for (k, f, s) ∈ [1, . . . , n] ×F × S do 
17: for o ∈ O do 
18: Qk(f, s, o) ← RF (f)Ro(s)+P P P 

TF (f
0|f, TP (s

0), p̄  e)TPE (p̄e) 
f 0 ∈F p̄  e∈2PE s0∈S 

To(s
0|s)Vk−1(f

0, s0) 
19: end for 
20: Vk(f, s) ← max Qk(f, s, o) 

o∈O 
21: end for 
22: µ(f, s, o) = arg max Q(f, s, o) 

o∈O 

23: Return: Options O, meta-policy µ(f, s, o) and Q- and 
value functions Q(f, s, o), V (f, s) 

RSMDP (f, s, o) = RF (f)Ro(s), so RF (f) is a weighting 
on the option rewards. The SMDP has the same discount 
factor γ as E . Planning is done on the SMDP in two steps: 
frst, the options O are learned over E using an appropriate 
policy-learning algorithm such as PPO or Reward Machines. 
Next, a meta-policy over the task specifcation T is found 
using the learned options and the reward function RSMDP . 



 
      

  

  
 

 

 

 

 
      

      

          

       
 

 
          

  

  
  

 
 

   

 
 

 
    

 
     

   
     

  

 
 

  

  

 

     

   
   

   
        

       
   

     
  

   

 
 

  
 

 

The Logical Options Framework 

Logical Options: The frst step of Alg. 1 is to learn the 
logical options. We associate every subgoal p with an option 
op = (Iop , πop , βop , Rop , Top ). These terms are defned 
starting at Alg. 1 line 5. One assumption we make is that 
the initiation set of every option is the entire state space 
S. This assumption can be easily loosened as long as the 
liveness property does not require an infeasible sequence 
of options, e.g., if the task is to go to Room A and then 
Room B, the initiation set of the “Room B” option must 
include Room A. Every op has a policy πop whose goal is 
to reach the state sp where p is true. Options are learned 
by training on the environment MDP E and terminating 
only when sp is reached. As we discuss in Sec. 3.1, under 
certain conditions the optimal option policy is guaranteed to 
always terminate at the subgoal. This allows us to simplify 
the transition model of Eq. 2 to the form in Alg. 1 line 11. 
In the experiments, we further simplify this expression by 
setting γ = 1. 

Logical Value Iteration: After fnding the logical options, 
the next step is to fnd a meta-policy for FSA T over the 
options (see Alg. 1 line 14). Q- and value functions are 
found for the SMDP using the Bellman update equations: 

X X X 
Qk(f, s, o) ← RF (f)Ro(s) + 

f 0∈F p̄  e ∈2PE s0∈S 

TF (f
0|f, TPG (s 0), p̄  e)TPE (p̄e)To(s 0|s)Vk−1(f

0 , s 0) 
(3) 

Vk(f, s) ← max Qk(f, s, o) (4) 
o∈O 

Eq. 3 differs from the generic equations for SMDP value 
iteration in that the transition function has two extra compo-P P 
nents, TF (f

0|f, TP (s
0), p̄  e) and TPE (p̄e).f 0∈F p̄  e∈2PE 

The equations are derived from Araki et al. (2019) and the 
fact that, on every step in the environment, three transitions 
are applied: the option transition To, the event proposi-
tion “transition” TPE , and the FSA transition TF . Note that 
Ro(s) and To(s

0|s) compress the consequences of choosing 
an option o at a state s from a multi-step trajectory into two 
real-valued numbers, allowing for more effcient planning. 

3.1. Conditions for Satisfaction and Optimality 

Here we give an overview of the proofs and necessary con-
ditions for satisfaction and optimality. The full proofs and 
defnitions are in App. B. 

First, we describe the condition for an optimal option to 
always reach its subgoal. Let π0(s|s0) be the optimal goal-

0conditioned policy for reaching a goal s . If the optimal 
option policy equals the goal-conditioned policy for reach-
ing the subgoal sg , i.e. π∗(s) = πg (s|sg), then the option 
will always reach the subgoal. This can be stated in terms 

of value functions: let V π
0 
(s|s0) be the expected return 

of π0(s|s0). If V πg (s|sg) > V π
0 
(s|s0) ∀s, s0 =6 sg , then 

π∗(s) = πg(s|sg). This occurs for example if −∞ < 
RE (s, a) < 0 and if the episode terminates when the agent 
reaches sg. Then V πg is a bounded negative number, and 
V π

0 
for all other states is −∞. We show that if every option 

is guaranteed to achieve its subgoal, then there must exist at 
least one sequence of options that satisfes the specifcation. 

We then give the condition for the hierarchically optimal 
meta-policy µ ∗(s) to always achieve the FSA goal state fg . 
In our context, hierarchical optimality means that the meta-
policy is optimal over the available options. Let µ0(f, s|f 0) 
be the hierarchically optimal goal-conditioned meta-policy 
for reaching FSA state f 0 . If the hierarchically optimal 
meta-policy equals the goal-conditioned meta-policy for 
reaching the FSA goal state fg , i.e. µ ∗(f, s) = µg(f, s|fg ), 
then µ ∗(f, s) will always reach fg. In terms of value func-

0tions: let V µ 0 
(f, s|f 0) be the expected return for µ . If 

∗V µg (f, s|fg ) > V µ 0 
(f, s|f 0)∀f, s, f 0 6= fg, then µ = µg. 

This occurs if all FSA rewards RF (f) > 0, all environment 
rewards −∞ < RE (s, a) < 0, and the episode only termi-
nates when the agent reaches fg. Then V µg is a bounded 
negative number, and V µ 0 

for all other states is −∞. Be-
cause LOF uses the Bellman update equations to learn the 
meta-policy, the LOF meta-policy will converge to the hier-
archically optimal meta-policy. 

Consider the SMDP where planning is allowed over low-
level actions, and let us call it the “hierarchical MDP” 
(HMDP) with optimal policy π∗ 

HMDP . Our result is: 

Theorem 3.1. Given that the conditions for satisfaction 
and hierarchical optimality are met, the LOF hierarchically 
optimal meta-policy µg with optimal option sub-policies πg 

has the same expected returns as the optimal policy π∗ 
HMDP 

and satisfes the task specifcation. 

3.2. Composability 

The results in Sec. 3.1 guarantee that LOF’s learned model 
can be composed to satisfy new tasks. Furthermore, the 
composed policy has the same properties as the original 
policy – satisfaction and optimality. LOF’s possession of 
composability along with satisfaction and optimality derives 
from two facts: 1) Options are inherently composable be-
cause they can be executed in any order. 2) If the conditions 
of Thm. 3.1 are met, LOF is guaranteed to fnd a (hierarchi-
cally) optimal policy over the options that will satisfy any 
liveness property that uses subgoals associated with the op-
tions. The composability of LOF distinguishes it from other 
algorithms that can achieve satisfaction and optimality. 
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4. Experiments & Results 
Experiments: We performed experiments to demonstrate 
satisfaction and composability 1. For satisfaction, we mea-
sure cumulative reward over training steps. Cumulative re-
ward is a proxy for satisfaction, as the environments can only 
achieve the maximum reward when they satisfy their tasks. 
For the composability experiments, we take the trained op-
tions and record how many meta-policy retraining steps it 
takes to learn an optimal meta-policy for a new task. 

Environments: We measure the performance of LOF on 
three environments. The frst environment is a discrete 
gridworld (Fig. 3a) called the “delivery domain,” as it can 
represent a delivery truck delivering packages to three lo-
cations (a, b, c) and having a home base h. There are also 
obstacles o (the black squares). The second environment 
is called the reacher domain, from OpenAI Gym (Fig. 3d). 
It is a two-link arm that has continuous state and action 
spaces. There are four subgoals represented by colored 
balls: red r, green g, blue b, and yellow y. The third en-
vironment is called the pick-and-place domain, and it is a 
continuous 3D environment with a robotic Panda arm from 
CoppeliaSim and PyRep (James et al., 2019). It is inspired 
by the lunchbox-packing experiments of Araki et al. (2019) 
in which subgoals r, g, and b are food items that must be 
packed into lunchbox y. All environments also have an 
event proposition called can, which represents when the 
need to fulfll part of a task is cancelled. 

Tasks: We test satisfaction and composability on four tasks. 
The frst task is a “sequential” task. For the delivery domain, 
the LTL formula is ♦(a ∧ ♦(b ∧ ♦(c ∧ ♦h))) ∧ �¬o – 
“deliver package a, then b, then c, and then return to home 
h. And always avoid obstacles.” The next task is the “IF” 
task (equivalent to the task shown in Fig. 1b): (♦(c ∧♦a) ∧ 
�¬can) ∨ (♦c ∧ ♦can) ∧ �¬o – “deliver package c, and 
then a, unless a gets cancelled. And always avoid obstacles”. 
We call the third task the “OR” task, ♦((a ∨ b) ∧ ♦c) ∧ 
�¬o – “deliver package a or b, then c, and always avoid 
obstacles”. The “composite” task has elements of all three 
of the previous tasks: (♦((a ∨ b) ∧♦(c ∧♦h)) ∧ �¬can) ∨ 
(♦((a ∨ b) ∧♦h) ∧♦can) ∧ �¬o. “Deliver package a or b, 
and then c, unless c gets cancelled, and then return to home 
h. And always avoid obstacles”. The tasks for the reacher 
and pick-and-place environments are equivalent, except that 
there are no obstacles for the reacher and arm to avoid. 

The sequential task is meant to show that planning is eff-
cient and effective even for long-time horizon tasks. The 
“IF” task shows that the agent’s policy can respond to event 
propositions, such as being alerted that a delivery is can-

1Code for the discrete domain experiments is 
available at https://github.com/braraki/ 
logical-options-framework. Code for the other 
domains is available in the supplementary material. 
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Figure 2. In this environment, the agent must either pick up the 
kid or go grocery shopping, and then go home (the “OR” task). 
Starting at S0, the greedy algorithm picks the next step in the FSA 
with the lowest cost (picking up the kid), which leads to a higher 
overall cost. LOF fnds the optimal path through the FSA. 

celled. The “OR” task is meant to demonstrate the optimal-
ity of our algorithm versus a greedy algorithm, as discussed 
in Fig. 2. Lastly, the composite task shows that learning and 
planning are effcient and effective even for complex tasks. 

Baselines: We test four baselines against our algorithm. 
Our algorithm is LOF-VI, short for “Logical Options 
Framework with Value Iteration,” because it uses value it-
eration for high-level planning. LOF-QL uses Q-learning 
instead (details are in App. C.3). Unlike LOF-VI, LOF-QL 
does not need explicit knowledge of TF , the FSA transition 
function. Greedy is a naive implementation of task satis-
faction; it uses its knowledge of the FSA to select the next 
subgoal with the lowest cost to attain. This leaves it vul-
nerable to choosing suboptimal paths through the FSA, as 
shown in Fig. 2. Flat Options uses the options frame-
work with no knowledge of the FSA. Its SMDP formulation 
is not hierarchical – the state space and transition function 
do not contain high-level states F or transition function TF . 
The last baseline is RM, short for Q-Learning for Reward 
Machines (Icarte et al., 2018). Whereas LOF learn options 
to accomplish subgoals, RM learns sub-policies for every 
FSA state. App. C.4 discusses the differences between RM 
and LOF in detail. 

Implementation: For the delivery domain, options were 
learned using Q-learning with an �-greedy exploration pol-
icy. RM was learned using the Q-Learning for Reward Ma-

https://github.com/braraki/logical-options-framework
https://github.com/braraki/logical-options-framework
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(a) Delivery domain. (b) Satisfaction performance. (c) Composability performance. 
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(d) Reacher domain. (e) Satisfaction performance. (f) Composability performance. 
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(g) Pick-and-place domain. (h) Satisfaction performance. (i) Composability performance. 

Figure 3. Performance on the satisfaction and composability experiments, averaged over all tasks. Note that LOF-VI composes new 
meta-policies in just 10-50 retraining steps. The frst row is the delivery domain, the second row is the reacher domain, and the third row 
is the pick-and-place domain. All results, including RM performance on the reacher and pick-and-place domains, are in App. C.6. 

chines (QRM) algorithm described in Icarte et al. (2018). 
For the reacher and pick-and-place domains, options were 
learned by using proximal policy optimization (PPO) (Schul-
man et al., 2017) to train goal-oriented policy and value 
functions, which were represented using 128 × 128 and 
128 × 128 × 128 fully connected neural networks, respec-
tively. Deep-QRM was used to train RM. The implementa-
tion details are discussed more fully in App. C. 

4.1. Results 

Satisfaction: Results for the satisfaction experiments, aver-
aged over all four tasks, are shown in Figs. 3b, 3e, and 3h. 
(Results on all tasks are in App. C.6). As expected, Flat 
Options shows no ability to satisfy tasks, as it has no 
knowledge of the FSAs. Greedy trains as quickly as 
LOF-VI and LOF-QL, but its returns plateau before the 
others because it chooses suboptimal paths in the composite 
and OR tasks. The difference is small in the continuous 
domains but still present. LOF-QL achieves as high a return 
as LOF-VI, but it is less composable (discussed below). 

RM learns much more slowly than the other methods. This 
is because for RM, a reward is only given for reaching the 
goal state, whereas in the LOF-based methods, options are 
rewarded for reaching their subgoals, so during training 
LOF-based methods have a richer reward function than RM. 
For the continuous domains, RM takes an order of magnitude 
more steps to train, so we left it out of the fgures for clarity 
(see App. Figs. 14 and 16). However, in the continuous 
domains, RM eventually achieves a higher return than the 
LOF-based methods. This is because for those domains, 
we defne the subgoals to be spherical regions rather than 
single states, violating one of the conditions for optimality. 
Therefore, for example, it is possible that the meta-policy 
does not take advantage of the dynamics of the arm to swing 
through the subgoals more effciently. RM does not have this 
condition and learns a single policy that can take advantage 
of inter-subgoal dynamics to learn a more optimal policy. 

Composability: The composability experiments were done 
on the three composable baselines, LOF-VI, LOF-QL, and 
Greedy. App. C.4 discusses why RM is not composable. 
Flat Options is not composable because its formula-
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tion does not include the FSA T . Therefore it is completely 
incapable of recognizing and adjusting to changes in the 
FSA. The composability results are shown in Figs. 3c, 3f, 
and 3i. Greedy requires no retraining steps to “learn” a 
meta-policy on a new FSA – given its current FSA state, 
it simply chooses the next available FSA state that has the 
lowest cost to achieve. However, its meta-policy may be 
arbitrarily suboptimal. LOF-QL learns optimal (or in the 
continuous case, close-to-optimal) policies, but it takes ∼50-
250 retraining steps, versus ∼10-50 for LOF-VI. Therefore 
LOF-VI strikes a balance between Greedy and LOF-QL, 
requiring far fewer steps than LOF-QL to retrain, and 
achieving better performance than Greedy. 

5. Related Work 
We distinguish our work from related work in HRL by its 
possession of three desirable properties – composability, 
satisfaction, and optimality. Most other works possess two 
of these properties at the cost of the other. 

Not Composable: The previous work most similar to ours 
is Icarte et al. (2018), which introduces a framework to 
solve tasks defned by automata called Reward Machines. 
Their algorithm, Q-Learning for Reward Machines, learns a 
sub-policy for every state of the automaton that achieves sat-
isfaction and optimality. However, the learned sub-policies 
have limited composability because they end up learning a 
specifc path through the automaton, and if the structure of 
the automaton is changed, there is no guarantee that the sub-
policies will be able to satisfy the new automaton without 
re-training. By contrast, LOF learns a sub-policy for every 
subgoal, independent of the automaton, and therefore the 
sub-policies can be arranged to satisfy arbitrary tasks. An-
other similar work is Logical Value Iteration (LVI) (Araki 
et al., 2019; 2020). LVI defnes a hierarchical MDP and 
value iteration equations that fnd satisfying and optimal 
policies; however, the algorithm is limited to discrete do-
mains and has limited composability. A number of HRL 
algorithms use reward shaping to guide the agent through 
the states of an automaton (Li et al., 2017; 2019; Cama-
cho et al., 2019; Hasanbeig et al., 2018; Jothimurugan et al., 
2019; Shah et al., 2020; Yuan et al., 2019; De Giacomo et al., 
2019). While these algorithms can guarantee satisfaction 
and sometimes optimality, they cannot be composed be-
cause their policies are not hierarchical. Another approach 
is to use a symbolic planner to fnd a satisfying sequence 
of tasks and use an RL agent to learn and execute that se-
quence of tasks (Gordon et al., 2019; Illanes et al., 2020; 
Lyu et al., 2019). However, the meta-controllers of Gor-
don et al. (2019) and Lyu et al. (2019) are not composable 
as they are trained together with the low-level controllers. 
Although the work of Illanes et al. (2020) is amenable to 
transfer learning, it is not composable. Paxton et al. (2017); 

Mason et al. (2017) use logical constraints to guide explo-
ration, and while these approaches are also satisfying and 
optimal, they are not composable as the agent is trained 
for a specifc set of rules. LOF is composable unlike the 
above methods because it has a hierarchical action space 
with high-level options. Once the options are learned, they 
can be composed arbitrarily. 

Not Satisfying: Most hierarchical frameworks cannot sat-
isfy tasks. Instead, they focus on using state and action 
abstractions to make learning more effcient (Dietterich, 
2000; Dayan & Hinton, 1993; Parr & Russell, 1998; Diuk 
et al., 2008; Oh et al., 2019). The options framework (Sutton 
et al., 1999) stands out because of its composability and its 
guarantee of hierarchical optimality, which is why we based 
our work off of it. There is also a class of HRL algorithms 
that builds on the idea of goal-oriented policies that can 
navigate to nearby subgoals (Eysenbach et al., 2019; Ghosh 
et al., 2018; Faust et al., 2018). By sampling sequences 
of subgoals and using a goal-oriented policy to navigate 
between them, these algorithms can travel much longer dis-
tances than a policy can travel on its own. Although these 
algorithms are “composable” in that they can navigate to 
far-away goals without further training, they are not able to 
solve tasks. Andreas et al. (2017) present an algorithm for 
solving simple policy “sketches” which is also composable; 
however, sketches are considerably less expressive than au-
tomata and linear temporal logic, which we use. Unlike the 
above methods, LOF is satisfying because it has a hierar-
chical state space with low-level MDP states and high-level 
FSA states. Therefore LOF can satisfy tasks by learning 
policies that reach the FSA goal state. 

Not Optimal: In HRL, there are at least three types of opti-
mality – hierarchical, recursive, and overall. As defned in 
Dietterich (2000), the hierarchically optimal policy is the 
optimal policy given the constraints of the hierarchy, and 
recursive optimality is when a policy is optimal given the 
policies of its children. For example, the options frame-
work is hierarchically optimal, while MAXQ and abstract 
MDPs (Gopalan et al., 2017) are recursively optimal. Icarte 
et al. (2019) introduce a composable method for learning 
Reward Machines, but their approach is focused on the rein-
forcement learning setting and is only guaranteed to learn 
hierarchically optimal policies. Leon et al. (2020) introduce 
a neurosymbolic method for generating policies for satis-
fying logical specifcations that can zero-shot generalize to 
new specifcations. However, the “symbolic module” of 
their network has no guarantees on being able to optimally 
satisfy specifcations. The method described in Kuo et al. 
(2020) is fully composable, but not optimal as it uses a re-
current neural network to generate a sequence of high-level 
actions and is therefore not guaranteed to fnd optimal poli-
cies. The approach in Kuo et al. (2020) has some advantages 
in terms of scalability versus our approach, since they use 
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a single deep model to learn policies for all operators and 
propositions. However, for LOF, a single deep goal-oriented 
policy could be trained to reach all subgoals, as is done in 
Leon et al. (2020). We therefore believe that LOF could be 
made equally scalable as Kuo et al. (2020), although this 
would be at the cost of losing most of the guarantees of the 
framework. However, one guarantee that LOF would keep 
is the hierarchical optimality of the meta-policy, which is a 
result of fnding the meta-policy using value iteration. We 
therefore believe that LOF should have better performance 
on unseen specifcations than Kuo et al. (2020), because 
Kuo et al. (2020) has no guarantees for satisfying specif-
cations. LOF is hierarchically optimal because it fnds an 
optimal meta-policy over the high-level options, and as we 
state in the paper, there are also conditions under which the 
overall policy is optimal. 

6. Discussion and Conclusion 
In this work, we claim that LOF has a unique combination 
of three properties: satisfaction, optimality, and composabil-
ity. We state and prove the conditions for satisfaction and 
optimality in Sec. 3.1. The experimental results confrm our 
claims while also pointing out some weaknesses. LOF-VI 
achieves optimal or near-optimal policies and trains an order 
of magnitude faster than the existing work most similar to 
it, RM. However, the optimality condition that each subgoal 
be associated with one state cannot be met for continuous 
domains, and therefore RM eventually outperforms LOF-VI. 
But even when optimality is not guaranteed, LOF-VI is hi-
erarchically optimal, which is why it outperforms Greedy 
in the composite and OR tasks. Next, the composability 
experiments show that LOF-VI can compose its learned 
options to perform new tasks in about 10-50 iterations on 
the benchmarks. Although Greedy requires no retraining 
steps, 10-50 retraining iterations is a tiny fraction of the tens 
of thousands of steps required to learn the original policy. 
Lastly, we have shown that LOF learns policies effciently, 
and that it can be used with a variety of domains and policy-
learning algorithms. 
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