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Abstract
Annealed Importance Sampling (AIS) and its
Sequential Monte Carlo (SMC) extensions are
state-of-the-art methods for estimating normal-
izing constants of probability distributions. We
propose here a novel Monte Carlo algorithm, An-
nealed Flow Transport (AFT), that builds upon
AIS and SMC and combines them with normaliz-
ing flows (NFs) for improved performance. This
method transports a set of particles using not
only importance sampling (IS), Markov chain
Monte Carlo (MCMC) and resampling steps - as
in SMC, but also relies on NFs which are learned
sequentially to push particles towards the suc-
cessive annealed targets. We provide limit the-
orems for the resulting Monte Carlo estimates of
the normalizing constant and expectations with
respect to the target distribution. Additionally,
we show that a continuous-time scaling limit of
the population version of AFT is given by a
Feynman–Kac measure which simplifies to the
law of a controlled diffusion for expressive NFs.
We demonstrate experimentally the benefits and
limitations of our methodology on a variety of
applications.

1. Introduction
Let π be a target density on X ⊆ Rd w.r.t. the Lebesgue
measure known up to a normalizing constant Z. We
want to estimate Z and approximate expectations with re-
spect to π. This has applications in Bayesian statistics
but also variational inference (VI) (Mnih and Rezende,
2016) and compression (Li and Chen, 2019; Huang et al.,
2020) among others. AIS (Neal, 2001) and its SMC exten-
sions (Del Moral et al., 2006) are state-of-the art Monte
Carlo methods addressing this problem which rely on a
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sequence of annealed targets πk ∝ π1−βk
0 πβkK bridging

smoothly an easy-to-sample distribution π0 to πK := π
for 0 = β0 < β1 < · · · < βK = 1 and MCMC kernels of
invariant distributions πk (Zhou et al., 2016; Llorente et al.,
2020). In their simplest instance, SMC samplers propagate
N particles approximating πk at time k. These particles are
reweighted according to weights proportional to πk+1/πk
at time k + 1 to build an IS approximation of πk+1, then
one resamplesN times from this approximation and finally
mutate the resampled particles according to MCMC steps
of invariant distribution πk+1. This procedure can provide
high-variance estimators if the discrepancy between πk and
πk+1 is significant as the resulting IS weights then have
a large variance and/or if the MCMC kernels mix poorly.
This can be reduced by increasing K and the number of
MCMC steps at each temperature but comes at an increas-
ing computational cost.

An alternative approach is to build a transport map T :
X → X to ensure that if X ∼ π0 then the distribution
of X ′ = T (X) denoted T#π0 is approximately equal to
π. In (El Moselhy and Marzouk, 2012), this map is param-
eterized using a polynomial chaos expansion and learned
by minimizing a regularized Kullback-Leibler (KL) diver-
gence between T#π0 and π; see also (Marzouk et al.,
2016). Taghvaei et al. (2020) and Olmez et al. (2020) ob-
tain transport maps by solving a Poisson equation. How-
ever, they do not correct for the discrepancy between T#π0

and π using IS. Doing so would incur a O(d3) cost when
computing the Jacobian. Normalizing Flows (NFs) are an
alternative flexible class of diffeomorphisms with easy-to-
compute Jacobians (Rezende and Mohamed, 2015). These
can be used to parameterize T and are also typically learned
by minimizing KL(T#π0||π) or a regularized version of it.
This approach has been investigated in many recent work;
see e.g. (Gao et al., 2020; Nicoli et al., 2020; Noé et al.,
2019; Wirnsberger et al., 2020). Although it is attractive, it
is also well-known that optimizing this ‘mode-seeking’ KL
can lead to an approximation of the target T#π0 which has
thinner tails than the target π and ignore some of its modes;
see e.g. (Domke and Sheldon, 2018).

In this paper, our contributions are as follows.

• We propose Annealed Flow Transport (AFT), a method-
ology that takes advantages of the strengths of both
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SMC and NFs. Given particles approximating πk at
time k, we learn a NF Tk+1 minimizing the KL be-
tween (Tk+1)#πk and πk+1. As πk is closer to πk+1

than π0 is from πK = π, learning such a NF is easier
and less prone to mode collapse. Additionally the use
of MCMC steps in SMC samplers allows the particles
to diffuse and further prevent such collapse. Having ob-
tained Tk+1, we then apply this mapping to the particles
before building an IS approximation of πk+1 and then
use resampling and MCMC steps.
• We establish a weak law of large numbers and a Central

Limit Theorem (CLT) for the resulting Monte Carlo es-
timates of Z and expectations w.r.t. π. Available CLT
results for SMC (Chopin, 2004; Del Moral, 2004; Kün-
sch, 2005; Beskos et al., 2016) do not apply here as the
transport maps are learned from particles.
• When one relies on Unadjusted Langevin algorithm

(ULA) kernels to mutate particles, a time-rescaled pop-
ulation version of AFT without resampling is shown to
converge as K → ∞ towards a Feynman–Kac mea-
sure. For NFs expressive enough to include exact trans-
port maps between successive distributions, this mea-
sure corresponds to the measure induced by a controlled
Langevin diffusion.
• We demonstrate the performance of AFT on a variety of

benchmarks, showing that it can improve over SMC for
a given number of temperatures.

Related Work. The use of deterministic maps with AIS
(Vaikuntanathan and Jarzynski, 2011) and SMC (Akyildiz
and Míguez, 2020; Everitt et al., 2020; Heng et al., 2021)
has already been explored. However, Everitt et al. (2020)
and Vaikuntanathan and Jarzynski (2011) do not propose
a generic methodology to build such maps while Akyildiz
and Míguez (2020) introduce mode-seeking maps and do
not correct for the incurred bias. Heng et al. (2021) rely on
quadrature and a system of time-discretized nonlinear or-
dinary differential equations: this can be computationally
cheaper than learning NFs but is application specific. NFs
benefit from easy-to-compute Jacobians and a large and
quickly expanding literature (Papamakarios et al., 2019);
e.g., as both MCMC and NFs on manifolds have been de-
veloped, our algorithm can be directly extended to such set-
tings.

Evidence Lower Bounds (ELBOs) based on unbiased esti-
mators of Z have also been mentioned in (Salimans et al.,
2015; Goyal et al., 2017; Caterini et al., 2018; Huang et al.,
2018; Wu et al., 2020; Thin et al., 2021). These estima-
tors generalize AIS, and are obtained using sequential IS,
transport maps and MCMC. However, when MCMC ker-
nels such as Metropolis–Hastings (MH) or Hamiltonian
Monte Carlo (HMC) are used, accept/reject steps lead to
high variance estimates of ELBO gradients (Thin et al.,
2021). Moreover, while SMC (i.e. combining sequential

IS and resampling) can also be used to define an ELBO,
resampling steps correspond to sampling discrete distribu-
tions and lead to high variance gradient estimates; see e.g.
(Maddison et al., 2017; Le et al., 2018; Naesseth et al.,
2018) in the context of state-space models. The algorithm
proposed here does not rely on the ELBO, so it can use
arbitrary MCMC kernels and exploit the benefits of resam-
pling. Moreover, it only requires a single pass through the
K+1 annealed distributions: there is no need to iteratively
run sequential IS or SMC for estimating Z and an ELBO
gradient estimate.

Optimal control ideas have also been proposed to im-
prove SMC by introducing an additive drift to a time-
inhomogeneous ULA to improve sampling; see Richard
and Zhang (2007); Kappen and Ruiz (2016); Guarniero
et al. (2017); Heng et al. (2020). The proposed iterative
algorithms require estimating value functions but, to be im-
plementable, the approximating function class has to be
severely restricted. The algorithm proposed here is much
more widely applicable and can use sophisticated MCMC
kernels.

Finally, alternative particle methods based on gradient
flows in the space of probability measures have been pro-
posed to provide an approximation of π, such as Stein Vari-
ational Gradient Descent (SVGD) (Liu and Wang, 2016;
Liu et al., 2019; Wang and Li, 2019; Zhu et al., 2020; Re-
ich and Weissmann, 2021). However, their consistency re-
sults require both K, the number of time steps, and N , the
number of particles, to go to infinity. In contrast, AFT only
needs N → ∞. Moreover, they require specifying a suit-
able Reproducing Kernel Hilbert Space or performing ker-
nel density estimation, which can be challenging in high di-
mension. Additionally, contrary to AFT, these methods do
not provide an estimate of Z. One recent exception is the
work of Han and Liu (2017) which combines SVGD with
IS to estimate Z but this requires computing Jacobians of
computational cost O(d3).

2. Sequential Monte Carlo samplers
We provide here a brief overview of SMC samplers and
their connections to AIS. More details can be found in
(Del Moral et al., 2006; Dai et al., 2020).

We will rely on the following notation for the annealed den-
sities (πk)0≤k≤K targeted by SMC:

πk(x) =
γk(x)

Zk
=

exp(−Vk(x)

Zk
,

whereZ0 = 1 so π0(x) = γ0(x) and Vk(x) = (1−βk)V0+
βkVK for 0 = β0 < β1 < · · · < βK = 1. However,
we could use more generally any sequence of distributions
bridging smoothly π0 to πK = π.
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2.1. Sequential importance sampling

Let us first ignore the key resampling steps used by SMC.
In this case, SMC boils down to a sequential IS technique
where one approximates πk at time k. We first sample
X0 ∼ π0 at time k = 0, then at time k ≥ 1, obtain a a new
sample Xk ∼ Mk(Xk−1, ·) using a Markov kernel Mk.
For the distribution of Xk to be closer to πk than the one of
Xk−1, Mk is typically selected as a MCMC kernel of in-
variant density πk such as MH or HMC, or of approximate
invariant density πk such as ULA. Hence, by construction,
the joint density of X0:k is

η̄k(x0:k) = π0(x0)
∏k
l=1Ml(xl−1, xl). (1)

The resulting marginal ηk of Xk under η̄k usually differs
from πk. If one could evaluate ηk pointwise, then IS could
be used to correct for the discrepancy between ηk and πk
using the IS weight wk(xk) = γk(xk)/ηk(xk). Unfortu-
nately, ηk is intractable in all but toy scenarios. Instead,
SMC samplers introduce joint target densities π̄k(x0:k) to
compute tractable IS weights wk(x0:k) over the whole path
X0:k defined by

π̄k(x0:k) = πk(xk)
∏k−1
l=0 Ll(xl+1, xl), (2)

here Ll are “backward” Markov kernels moving each sam-
ple Xl+1 into a sample Xl starting from a virtual sample
Xk from πk

1. Hence by construction πk is the marginal of
π̄k at time k. The backward kernels Lk−1 are chosen so
that the following incremental IS weights are well-defined

Gk(xk−1, xk) =
γk(xk)Lk−1(xk, xk−1)

γk−1(xk−1)Mk(xk−1, xk)
, (3)

and, from (1) and (2), one obtains

wk(x0:k) :=
γ̄k(x0:k)

η̄k(x0:k)
=

k∏

l=1

Gl(xl−1, xl), (4)

where γ̄k(x0:k) = Zkπ̄k(x0:k) is the unnormalized joint
target. Using IS, it is thus straightforward to check that

Zk = η̄k[wk], π̄k[f ] =
η̄k[wkf ]

η̄k[wk]
, (5)

where f(x0:k) is a function of the whole trajectory x0:k

and µ[g] is a shorthand notation for the expectation
EX∼µ[g(X)]. As πk is a marginal of π̄k, we can also es-
timate expectations w.r.t. to πk using π̄k[f ] = πk[f ] for

1As in (Crooks, 1998; Neal, 2001; Del Moral et al., 2006; Dai
et al., 2020), we do not use measure-theoretic notation here but it
should be kept in mind that the kernels Ml do not necessarily ad-
mit a density w.r.t. Lebesgue measure; e.g. a MH kernel admits an
atomic component. For completeness, a formal measure-theoretic
presentation of the results of this section is given in Appendix A.

f(x0:k) = f(xk). From (5), it is thus possible to derive
consistent estimators of Zk and πk[f ] by sampling N ‘par-
ticles’ Xi

0:k ∼ η̄k where i = 1, ..., N and using

ZNk =
1

N

N∑

i=1

wk(Xi
0:k), πNk [f ] =

N∑

i=1

W i
kf(Xi

k), (6)

where W i
k ∝ wk(Xi

0:k),
∑N
i=1W

i
k = 1.

When the kernels Mk are πk-invariant and we select
Lk−1 as the reversal of Mk, i.e. πk(x)Mk(x, x′) =
πk(x′)Lk−1(x′, x), it is easy to check that Gl(xl−1, xl) =
γl(xl−1)/γl−1(xl−1). In that case, (5) corresponds to AIS
(Neal, 2001) and is also known as the Jarzynski–Crooks
identity (Jarzynski, 1997; Crooks, 1998). When πk is a
sequence of posterior densities, a similar construction was
also used in (MacEachern et al., 1999; Gilks and Berzuini,
2001; Chopin, 2002). The generalized identity (5) allows
the use of more general dynamics, including deterministic
maps which will be exploited by our algorithm.

In practice, the choice of the backward transition kernels
has a large impact on the variance of the estimates (6).
(Del Moral et al., 2006) identified the backward kernels
minimizing the variance of the IS weights (3)-(4) and pro-
posed various approximations to them.

2.2. Sequential Monte Carlo

To reduce the variance of the IS estimators (6), SMC sam-
plers combine sequential IS steps with resampling steps.
Given an IS approximation πNk−1 =

∑N
i=1W

i
k−1δXik−1

of
πk−1 at time k−1, one resamplesN times from πNk−1 to ob-
tain particles approximately distributed according to πk−1.
This has for effect of discarding particles with low weights
and replicating particles with high weights, this helps fo-
cusing subsequent computation on “promising” regions of
the space. Empirically, resampling usually provides lower
variance unbiased estimates of normalizing constants and
is computationally very cheap; see e.g. (Chopin, 2002;
Hukushima and Iba, 2003; Del Moral et al., 2006; Rous-
set and Stoltz, 2006; Zhou et al., 2016; Barash et al., 2017).
The resampled particles are then evolved according to Mk,
weighted according to Gk and resampled again.

3. Annealed Flow Transport Monte Carlo
We now introduce AFT, a new flexible adaptive Monte
Carlo method that leverages NFs. Given the particle ap-
proximations πNk−1 :=

∑N
i=1W

i
k−1δXik−1

and ZNk−1 at
time k − 1, AFT computes an approximation πNk and ZNk
by performing four main sub-steps: Transport, Importance
Sampling, Resampling and Mutation, as summarized in
Algorithm 1. Whenever the index i is used in the algorithm,
we mean ‘for all i ∈ {1, ..., N}’. These four sub-steps are
now detailed below.
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Algorithm 1 Annealed Flow Transport

1: Input: number of particles N , unnormalized annealed
targets {γk}Kk=0 such that γ0 = π0 and γK = γ, re-
sampling threshold A ∈ [1/N, 1).

2: Ouput: Approximations πNK and ZNK of π and Z.
3: Sample Xi

0 ∼ π0 and set W i
0 = 1

N and ZN0 = 1.
4: for k = 1, . . . ,K do
5: Compute LNk (T ) using (8).
6: Solve Tk ← argminT∈T LNk (T ) using e.g. SGD.
7: Transport particles: X̃i

k = Tk(Xi
k−1).

8: Estimate normalizing constant Zk:
ZNk ← ZNk−1

(∑N
i=1W

i
k−1Gk,Tk(Xi

k−1)
)

.
9: Compute IS weights:

wik ←W i
k−1Gk,Tk(Xi

k−1) // unnormalized

W i
k ←

wik∑N
j=1 w

j
k

// normalized

10: Compute effective sample size ESSNk using (10).
11: if ESSNk /N ≤ A then
12: Resample N particles denoted abusively also X̃i

k

according to the weights W i
k, then set W i

k = 1
N .

13: end if
14: Sample Xi

k ∼ Kk(X̃i
k, ·). // MCMC

15: end for

3.1. Transport map estimation

In this step, we learn a NF Tk that moves each sampleXk−1

from πk−1 to a sample X̃k = Tk(Xk−1) as close as pos-
sible to πk by minimizing an estimate of KL(T#πk−1||πk)
over a set T of NFs. This KL can be decomposed as a
sum of a loss term Lk(T ) and a term log Zk

Zk−1
that can

be ignored as it is independent of the NF T . A sim-
ple change of variables allows us to express the loss term
Lk(T ) as an expectation under πk−1 of some tractable
function x 7→ hT (x):

Lk(T ) :=πk−1[hT ],

hT (x) :=Vk(T (x))− Vk−1(x)− log |∇T (x)|. (7)

The Jacobian determinant of T in (7) can be evaluated ef-
ficiently for NFs while the expectation under πk−1 can be
estimated using πNk−1 thus yielding the empirical loss:

LNk (T ) :=
∑N
i=1W

i
k−1hT (Xi

k−1). (8)

In practice, (8) is optimized over the NF parameters using
gradient descent. The resulting NF Tk is then used to trans-
port each particle Xi

k−1 to X̃i
k = Tk(Xi

k−1)2. However,
the loss (8) being not necessarily convex, the solution Tk
is likely to be sub-optimal. This is not an issue, since IS is
used to correct for such approximation error as we will see

2We should write TN
k to indicate the dependence of our esti-

mate of N but do not to simplify notation.

next. We also emphasize that the convergence results for
this scheme presented in Section 4 do not require finding a
global minimizer of this non-convex optimization problem.

3.2. Importance Sampling, Resampling and Mutation

Importance Sampling. This step corrects for the NF Tk
being only an approximate transport between πk−1 and πk.
In this case, we have M trans

k (x, x′) = δTk(x)(x
′) and by se-

lecting Ltrans
k−1(x, x′) = δT−1

k (x′)(x) then the incremental IS
weight (3) is given by a simple change-of-variables formula

Gk,Tk(xk−1) =
γk(Tk(xk−1))|∇Tk(xk−1)|

γk−1(xk−1)
. (9)

Using (9), we can update the weights wik =
W i
k−1Gk,Tk(Xi

k−1) to account for the errors intro-
duced by Tk. When Tk are exact transport maps from πk−1

to πk, the incremental weight in (9) becomes constant and
equal to the ratio Zk/Zk−1. Thus, introducing the NF
Tk can be seen as a way to reduce the variance of the IS
weights in the SMC sampler.

Resampling. As discussed in Section 2.2, resampling
can be very beneficial but it should only be performed when
the variance of the IS weights is too high (Liu and Chen,
1995) as measured by the Effective Sample Size (ESS)

ESSNk =

(
N∑

i=1

(
W i
k

)2
)−1

, (10)

which is such that ESSNk ∈ [1, N ]. When ESSNk /N is
smaller than some prescribed threshold A ∈ [1/N, 1) (we
use A = 0.3), resampling is triggered and each particle
X̃i
k is then resampled without replacement from the set of

N available particles {X̃i
k}i∈[1:N ] according to a multino-

mial distribution with weights {W i
k}i∈[1:N ]. The weights

are then reset to uniform ones; i.e. W i
k = 1

N . More sophis-
ticated lower variance resampling schemes have also been
proposed; see e.g. (Kitagawa, 1996; Chopin, 2004).

Mutation. The final step consists in mutating the parti-
cles using a πk−invariant MCMC kernel Kk , i.e. using
Xi
k ∼ Kk(X̃i

k, ·). This allows particles to better explore
the space.

Note that if the transport maps Tk were known, Algo-
rithm 1 could be reinterpreted as a specific instance of a
SMC as detailed in Section 2 where at each time k ≥ 1 we
perform two time steps of a standard SMC sampler by ap-
plying first a transport step M trans

k (x, x′) = δTk(x)(x
′) then

a mutation step Mmut
k (x, x′) = Kk(x, x′); see Appendix

B.1 for details.
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3.3. Variants and Extensions

Contrary to standard SMC, the estimates ZNk returned by
Algorithm 1 are biased because of the dependence of the
NF Tk on the particles. To obtain unbiased estimates of
Zk and to avoid over-fitting of the NF to the N particles, a
variant of Algorithm 1 described in Algorithm 2 (see Ap-
pendix F) is used in the experimental evaluation. This vari-
ant employs three sets of particles: the training set is used
to evaluate the loss (8), the validation set is used in a stop-
ping criterion when learning the NF and the test set is inde-
pendent from the rest and is computed sequentially using
the learned NFs. It would also be possible to combine AFT
with various extensions to SMC that were already proposed
in the literature. For example, we can select adaptively the
annealing parameters βk to ensure the ESS only decreases
by a pre-determined percentage (Jasra et al., 2011; Schäfer
and Chopin, 2013; Beskos et al., 2016; Zhou et al., 2016)
or use the approximation of πk obtained at step 13 of Algo-
rithm 1 to determine the parameters of the MCMC kernel
Kk (Del Moral et al., 2012a; Buchholz et al., 2021).

4. Asymptotic analysis
We establish here a law of large numbers and a CLT for
the particle estimates πNk [f ] and ZNk of πk[f ] and Zk. We

denote by P−→ convergence in probability and by D−→ con-
vergence in distribution.

4.1. Weak law of large numbers

Theorem 1 shows that πNk [f ] andZNk are consistent estima-
tors of πk[f ] and Zk, hence of π[f ] and Z at time k = K.

Theorem 1 (weak law of large numbers). Let f be a func-
tion s.t. |f(x)| ≤ C(1 + ‖x‖4) for all x ∈ X and for
some C > 0. Under Assumptions (A) to (D) and for any
k ∈ 0, ...,K:

(Rk) : πNk [f ]
P−→ πk[f ], ZNk

P−→ Zk.

The result is proven in Appendix C.3 and relies on four
assumptions stated in Appendix C.1: (A) on the smooth-
ness of the Markov kernels Kk, (B) on the moments of πk,
(C) on the smoothness of the family of NFs and (D) on the
boundedness of the incremental IS weight Gk,T (x). Per-
haps surprisingly, Theorem 1 does not require the NFs to
converge as N → ∞. This is a consequence of Proposi-
tion 9 in Appendix C.3 which ensures uniform consistency
of the particle approximation regardless of the choice of
the NFs. However, convergence of the NFs is required to
obtain a CLT result as we see next. Theorem 4 of Ap-
pendix C.3 states a similar result for Algorithm 2 of Ap-
pendix F.

4.2. Central Limit theorem

Besides assumptions (A) to (D), we make five assumptions
stated in Appendix C.1: (E) on the Markov kernels Kk

strengthens (A) and is satisfied by many commonly used
Markov kernels as shown in C.2. The smoothness assump-
tions (F) and (G) on the family T of NFs and potentials Vk
are also standard. Finally, (H) and (I) describe the asymp-
totic behavior of Tk. We do not require Tk to be a global
minimizer of the loss LNk , neither do we assume it to be
an exact local minimum of LNk . Instead, (H) only needs
Tk to be an approximate local minimum of LNk and (I) im-
plies that Tk converges in probability towards a strict local
minimizer T ?k of Lk as N →∞.

Before stating the CLT result, we need to introduce the
asymptotic incremental variance Vinc

k [f ] at iteration k. To
this end, consider the set of limiting re-sampling times
Kopt := {k0, ...kP } ⊂ {0, ...,K} defined recursively by
kp+1 := inf{kp < k : nESSk ≤ A} and kP+1 := K + 1

where ESSNk /N
N→∞→ nESSk with

nESSk =
πkp
[
E
[
w?k
∣∣Xkp

]]2

πkp

[
E
[
(w?k)

2
∣∣∣Xkp

]] ,

the expectation being w.r.t. to Xs ∼ Ks(T
?
s (Xs−1), ·)

for kp + 1 ≤ s ≤ k, while Xkp ∼ πkp and w?k =∏k
s=kp+1Gs,T?s (Xs−1) is the product of the incremental

IS weights using the locally optimal NFs T ?s . The variance
Vinc
k [f ] at time k is given by:

Vinc
k [f ] =

{
Z2
kVarπk [f ], k ∈ K,

Z2
kp
πkp

[
E
[
(w?k)

2Gk[f ]
∣∣∣Xkp

]]
, kp < k < kp+1,

with Gk[f ] := Kk

[
f2
]
(T ?k (Xk−1))−Kk[f ]

2
(T ?k (Xk−1)).

Theorem 2 (Central limit theorem). Let f be a real valued
function s.t., for some C > 0, f(x) ≤ C(1 + ‖x‖2) and

‖f(x)− f(x′)‖ ≤ C
(

1 + ‖x‖3 + ‖x′‖3
)
‖x− x′‖.

Then, under Assumptions (A) to (I) and for 0 ≤ k ≤ K:

(CLTk) :

{√
N
(
πNk [f ]− πk[f ]

) D−→ N (0,Vπk [f ]),√
N
(
ZNk − Zk

) D−→ N (0,Vγk [1]).

Vγk [f ] and Vπk [f ] are defined recursively with Vγ0 [f ] =
Varπ0

[f ] and

Vγk [f ] = Vinc
k [f ] + Vγk−1

[
Qk,T?k [f ]

]
,

Vπk [f ] = Z−2
k Vγk [f − πk[f ]],

where Qk,T (x, dy) := Gk,T (x)Kk(T (x),dy).
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The asymptotic variances Vγk and Vπk depend only on the
maps T ∗k and not on the local variations of the family T
around T ∗k . This is a consequence of the particular form of
the IS weights which provide an exact correction regardless
of the NF selected as summarized by the following identity:

πk[f ] =
πk−1[Qk,T [f ]]

πk−1[Gk,T ]
, ∀T ∈ T .

In the ideal case when T ?k are exact transport maps from
πk−1 to πk, the ESS resampling criterion ESSNk /N is al-
ways equal to 1 and thus resampling is never triggered.
Moreover, a direct computation shows that the asymptotic
variance Vπk [f ] is exactly equal to Varπk [f ]. This illustrates
the benefit of introducing NFs to improve SMC. A proof is
provided in Appendix C.4 along with a similar result (The-
orem 5) for Algorithm 2.

5. Continuous-time scaling limit
We consider the setting where πk arise from the time-
discretization of a continuous-time path (Πt)[0,1] of den-
sities connecting π0 to π; i.e. πk is of the form πk = Πtk

with tk = kλ and λ = 1
K . We write Vt(x) and Zt to denote

the potential and unknown normalizing constant of Πt and
Γt(x) = exp(−Vt(x)). We are here interested in identi-
fying the “population” behavior of AFT (i.e. N → ∞) as
λ → 0 when ULA kernels are used and no resampling is
performed as in AIS. To simplify the analysis, we further
consider in this Section the ideal situation where Tk is an
exact minimizer of the population lossLk. Rigorous proofs
of the results discussed here can be found in Appendix E.

5.1. Settings

Without resampling, the population version of AFT be-
haves as a sequential IS algorithm as defined in Section 2.1
where it is possible to collapse the transport step and mu-
tation step into one single Markov kernel Mk(x, x′) =
Kk(Tk(x), x′). Similarly we can collapse the correspond-
ing backward kernels and the resulting extended target dis-
tributions π̄k are still given by (5) with modified IS weights

wk(x0:k) =
k∏

l=1

γl(xl)

γlKl(xl)
︸ ︷︷ ︸

rk(x1:k)

k∏

l=1

Gl,Tl(xl−1), (11)

where rk(x1:k) = 1 for πl-invariant MCMC kernels Kl as
used in Algorithm 1; see Appendix B.2 for a derivation. To
ensure that the laws η̄k and π̄k of the Markov chain X0:k

converge to some continuous-time limits, Kk are chosen
to be ULA kernels3; i.e. Kk(x, x′) is a Gaussian density

3The random walk MH algorithm also admits a Langevin dif-
fusion as scaling limit when λ → 0 (Gelfand and Mitter, 1991;
Choi, 2019) but the technical analysis is much more involved.

in x′ with mean x − λVk(x) and covariance 2λI . In this
case, γkKk(x) =

∫
γk(y)Kk(y, x) dy is intractable and so

is rk(x1:k). This is not an issue as we are only interested
here in identifying the theoretical scaling limit. To ensure
η̄k and π̄k admit a limit, we also consider NFs of the form:

T (x) = x+ λAθ(x),

where (θ, x) 7→ Aθ(x) is from Θ × X to X and Θ is a
compact parameter space. The continuous-time analogues
of NFs sequences (Tk)k∈{1,...,K} are represented by a set
A of time-dependent controls of the form αt(x) = Aθt(x),
where t 7→ θt is a 1-Lipschitz trajectory in Θ. To any con-
trol α corresponds an NFs sequence (Tk)k∈{1,...,K} defined
by Tk(x) = x+ λαtk(x).

5.2. Continuous-time limits

Limiting forward process. Using a similar approach to
(Dalalyan, 2017), the Markov chain X0:K under η̄K con-
verges towards a stochastic process X[0,1] defined by the
following Stochastic Differential Equation (SDE)

dXt = (αt(Xt)−∇Vt(Xt)) dt+
√

2 dBt, (12)

where X0 ∼ π0 and (Bt)t≥0 is a standard Brownian mo-
tion. We denote by Λ̄αt the joint distribution of this process
up to time t and by Λαt its marginal at time t.

Limiting weights. The weight wK(X0:K) in (11) is such
that rK(X1:K) → 1 as the invariant distribution of the
ULA kernel Kk converges to πk when λ → 0 while the
logarithm of the product of Gl,Tl(Xl−1) is a Riemann sum
whose limiting value is the following integral:

K∑

l=1

log(Gl,Tl(Xl−1)) −−−→
λ→0

∫ 1

0

gαs (Xs) ds,

with X[0,1] defined in (12) and gαt (x) being the dominating
term in the Taylor expansion of log(Gl,Tl(x)) w.r.t. time:

gαt (x) = ∇ · αt(x)−∇xVt(x)>αt(x)− ∂tVt(x).

The limit of IS weights wk(X0:k) is thus identified as

wαt (X[0,t]) = exp

(∫ t

0

gαs (Xs) ds

)
.

In the context of non-equilibrium dynamics, gαt (x) is
known as instantaneous work (Rousset and Stoltz, 2006)
and is constant in the ideal case where Πt = Λαt .

Limiting objective. To identify a non-trivial limiting
loss, we consider the following aggregation of all Lk(Tk)

Ltotλ (α) := λ−1
K∑

k=1

Lk(Tk). (13)
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The next result shows that (13) converges towards a non-
trivial lossM(α) as λ→ 0 under three assumptions stated
in Appendix E.2: (a) and (b) on the smoothness of Vt(x)
and Aθ(x) and (c) on the moments of Πt.

Proposition 1. Under Assumptions (a) to (c), for λ small
enough, it holds that for all α ∈ A

∣∣Ltotλ (α)−M(α)
∣∣ ≤ λC,

where C is independent of λ and

M(α) =
1

2

∫ 1

0

(
Πt

[
(gαt )

2
]
−Πt[g

α
t ]

2
)

dt. (14)

The optimal NFs (Tk)1:K are thus expected to converge
towards some α? minimizingM(α) over A as made pre-
cise in Proposition 29 of Appendix E.6. Moreover when
the class of NFs is expressive, i.e. A is rich enough, then
M(α?) = 0 and thus gαt are constant and α? satisfies the
Partial Differential Equation (PDE)

0 = ∇ · α?t (x)−∇xVt(x)>α?t (x)− ∂tVt(x) + Πt[∂tVt].

This PDE has appeared, among others, in Lelièvre et al.
(2010, pp. 273–275) and (Vaikuntanathan and Jarzynski,
2008; Reich, 2011; Heng et al., 2021). Its solution defines
a deterministic flow α?t that transports mass along the path
(Πα

t )[0,1]; i.e. if Xt is a solution to an ODE of the form
Ẋt = α?t (Xt) with initial values X0 ∼ Π0, then Xt ∼ Πt.

Feynman–Kac measure. Given a control α, we consider
the Feynman–Kac measure Πt defined for any bounded
continuous functional f of the process X[0,t] in (12)

Π
α

t [f ] =
Λ
α

t [wαt f ]

Λ
α

t [wαt ]
. (15)

By a similar argument as in (Rousset and Stoltz, 2006), we
show in Proposition 22 of Appendix E.3 that Π

α

t admits Πt

as a marginal at time t regardless of the choice of α. Using
the optimal control α? in (12) and (15) gives rise to Λ

?
and

Π
?

t which are equal whenM(α?) = 0. Next, we show that
Π
?

t is the scaling limit of πk.

5.3. Convergence to the continuous-time limit

As the measures πk and Π
?

t are defined on different spaces,
we construct a sequence of interpolating measures Π̄λ

t de-
fined over the same space as Π̄?

t and whose marginal at
the joint times {t0, ..., tK} is exactly equal to π̄k; see
Appendix E.1 for details. Theorem 3 provides a conver-
gence rate for the interpolating measures Π̄λ

t towards Π
?

t as
λ → 0, thus establishing Π

?

t as the scaling limit of πk; see
Appendix E.6 for the proof.

Theorem 3. Under Assumptions (a) to (g), then for λ small
enough there exists a finite C such that for any t ∈ [0, 1]:

KL(Π̄?
t ||Π̄λ

t ) ≤ C
√
λ.

This result relies on Assumptions (d) to (g) in addition
to Assumptions (a) to (c) which are also stated in Ap-
pendix E.2. (d) strengthens assumption (c) on the moments
of Πt. (e) guarantees the existence of a solution α? in A
minimizingM and controls the local behavior ofM near
α?. (f) guarantees the existence of solutions αλ in A min-
imizing Ltotλ (α) for any λ = 1

K . Finally, (g) ensures the
optimal control α? induces bounded IS weights.

6. Applications
In this section we detail the practical implementation of
AFT and empirically investigate performance against rel-
evant baselines.

As discussed in Section 3.3, we use three sets of particles-
‘train, test and validation’ which improves robustness,
avoids overfitting the flow to the particles and gives unbi-
ased estimates of Z when using the test set. We initialize
our flows to the identity for the optimization at each time
step. Algorithm 2, in the supplement gives a summary.

We concentrate our empirical value evaluation on the learnt
flow, which is equivalent to using the test set particles. The
learnt flow is of interest in deploying an efficient sampler
on large scale distributed parallel compute resources. It is
also of interest for inclusion as a subroutine in a larger sys-
tem. Since modern hardware enables us to do large com-
putations in parallel, the computation is dominated by algo-
rithmic steps that are necessarily done serially, particularly
repeat applications of the Markov kernel (Lee et al., 2010).

As our primary, strong, baseline for AFT, we use a stan-
dard instance of SMC samplers (Del Moral et al., 2006;
Zhou et al., 2016) which corresponds to AIS with adaptive
resampling and is also known as population annealing in
physics (Hukushima and Iba, 2003; Barash et al., 2017).
As observed many times in the literature and in our experi-
ments, SMC estimates are of lower variance than AIS esti-
mates. This SMC baseline is closely related to AFT since it
corresponds to using AFT with an identity transformation
Tk(x) = x instead of a learnt flow.

We largely use the number of transitions K as a proxy for
compute time. This is valid when the cost of evaluating
the flow is modest relative to that of the other algorithmic
steps, as it is for the trained flows in all non-trivial cases
we consider. We only consider flows of no more than a few
layers per transition, but deeper flows could start to form an
appreciable part of the serial computation. In some cases,
we use variational inference (VI) as a measure of behaviour
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without MCMC. In this case, evaluation time is not com-
parable and faster. Since we concentrate on trained flows,
we do not evaluate training time in the benchmarks con-
sidered, though fast training of AFT could be of interest
in further work. Both SMC and AFT use the same Markov
kernelsKk, using HMC except where otherwise stated. We
tune the step size to have a reasonable acceptance probabil-
ity based on preliminary runs of SMC using a modest K.
Then for larger K experiments, we linearly interpolate the
step sizes chosen on the preliminary runs. We always use
a linearly spaced geometric schedule and the initial distri-
bution is always a multivariate standard normal. We repeat
experiments 100 times. Further experimental details may
be found in Appendix G. We plan to make the code avail-
able within https://github.com/deepmind.

6.1. Illustrative example

We start with an easily visualized two dimensional target
density as shown in Figure 1. All sensible methods should
work in such a low dimensional case but it can still be in-
formative. We investigate two families of flows based on
rational quadratic splines (Durkan et al., 2019). The first
(termed AFTmf for mean field) operates on the two di-
mensions separately. The second family (denoted AFT in
Figure 1) adds dependence to the splines using inverse au-
toregressive flows (Kingma et al., 2016). Figure 1 shows
weighted samples from AFT as we anneal from a standard
normal distribution. Figure 2 (a) shows that AFT reduces
the variance of the normalizing constant estimator relative
to SMC. Conversely, we see that AFTmf actually increases
the variance relative to SMC for small numbers of transi-
tions. Since the factorized approximation cannot model the
dependence of variables the optimum of the KL underesti-
mates the variance of the target. Later, in Sections 6.3 and
6.4, we discuss examples where even a simple NF leads to
an improvement for a modest number of transitions.

Figure 1: Weighted samples for a 2-D target density with
AFT. The colours show the normalized weights which are
clipped at the 95th percentile for clarity. The final samples
are visually indistinguishable from the target.

6.2. Funnel distribution

We next evaluate the performance of the method on Neal’s
ten-dimensional ‘funnel’ distribution (Neal, 2003):

x0 ∼ N (0, σ2
f ), x1:9|x0 ∼ N (0, exp(x0)I).

Figure 2: Results from the four different examples. Cyan
lines denote gold standard values of the log normalizing
constant. In (c) and (d) green horizontal lines denote the
median value for an importance sampling estimate based
on variational inference. Note that in (d) the small AFT
error bars can make it difficult to see - it can be found next
to the gold standard value in each case.
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Here, σ2
f = 9. Many MCMC methods find this example

challenging because there is a variety of length scales de-
pending on the value of x0 and because marginally x1:9 has
heavy tails. We use here slice sampling instead of HMC
for the Markov kernels as recommended in (Neal, 2003).
For each flow we use an affine inverse autoregressive flow
(Kingma et al., 2016). In this example, we also compare
against VI (Rezende et al., 2014) which uses the same num-
ber of flows. We then apply a simple importance correc-
tion to the VI samples to give an unbiased estimate of the
normalizing constant. Figure 2 (b) shows the results. We
see that for small number of flows/transitions VI performs
best, followed by AFT. However, VI shows little further
improvement with additional flows and in this regime AFT,
SMC and VI perform similarly.

6.3. Variational Autoencoder latent space

For our next example, we trained a variational autoencoder
(Kingma and Welling, 2014; Rezende et al., 2014) with
convolution on the binarized MNIST dataset (Salakhutdi-
nov and Murray, 2008) and a normal encoder distribution
with diagonal covariance. Using the fixed, trained, genera-
tive decoder network we investigated the quality of normal-
izing constant estimation which in this case corresponds to
the likelihood of a data point with the distribution over the
30 latent variables marginalized out (Wu et al., 2017).

Using long run SMC on the 10000 point test set we es-
timate that the hold out log-likelihood per data point for
the network is -86.3. For each data point we also found
the optimal variational normal approximation with diago-
nal covariance rather than using the amortized variational
approximation. Using this optimal normal approximation
we investigated its variance when used as an importance
proposal for the likelihood. We estimate the mean abso-
lute error for the estimator across the test set was 0.6 nats
per data point which indicates that the VI is often perform-
ing well. There was a tail of digits where VI performed
relatively worse. Since these ‘difficult’ digits constituted a
more challenging inference problem, we used one of these,
with a VI/SMC error of 1.5 nats, to comparatively bench-
mark AFT in the detailed manner used in our other exam-
ples.

For the AFT flow we used an affine transformation with
diagonal linear transformation matrix. The baseline VI ap-
proximation can be thought of the pushforward of a stan-
dard normal through this ‘diagonal affine’ flow. Note that
since diagonal affine transformations are closed under com-
position there would obtain no additional expressiveness in
the baseline VI approximation from adding more of them.

Figure 2 (c) shows the results for this example. Both AFT
and SMC reduce in variance as the number of temperatures
increases and exceed the performance of the variational

baseline. AFT has a notably lower variance than SMC for
10 and 30 temperatures- which shows the incorporation of
the flows is beneficial in this case. Results for other diffi-
cult digits are shown in the appendix where the qualitative
trend is similar.

6.4. Log Gaussian Cox process

We evaluate here the performance of AFT for estimating
the normalizing constant of a log Gaussian Cox process ap-
plied to modelling the positions of pine saplings in Finland
(Møller et al., 1998). We consider points on a discretized
d = M ×M = 1600 grid. This results in the target density

γ(x) = N (x;µ,K)
∏

i∈[1:M ]2

exp(xiyi − a exp(xi)).

This challenging high-dimensional problem is a commonly
used benchmark in the SMC literature (Heng et al., 2020;
Buchholz et al., 2021). The mean and covariance function
match those estimated by (Møller et al., 1998) and are de-
tailed in the Appendix. The supplement also discusses the
effect of pre-conditioners on the mixing of the Markov ker-
nel. For the NF we again used the diagonal affine transfor-
mation. The approximating family is the push forward of
the previous target distribution and thus even a simple flow
can result in a good approximation. It is also fast to evalu-
ate. Figure 2 (d) shows that the baseline VI approximation
is unable to capture the posterior correlation and that AFT
gives significantly more accurate results than SMC for a
given number of transitions. As such, the Markov kernel
and flow complement each other in this case.

7. Conclusion
We proposed Annealed Flow Transport which combines
SMC samplers and normalizing flows. We studied its
asymptotic behavior and showed the benefit of introducing
learned flows to reduce the asymptotic variance. We iden-
tified the scaling limit of AFT as a controlled Feynman–
Kac measure whose optimal control solved a flow trans-
port problem in an idealized setting. Empirically we found
multiple cases where trained AFT gave lower variance esti-
mates than SMC for the same number of transitions, show-
ing that we can combine the advantages of both SMC and
normalizing flows. We believe AFT will be particularly
useful in scenarios where it is both difficult to design fast
mixing MCMC kernels and very good flows so that neither
SMC nor VI provide low variance estimates.
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