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Abstract

A commonly applied approach for estimating
causal effects from observational data is to is
to apply weights which render treatments in-
dependent of observed pre-treatment covariates.
This property is known as balance; in its ab-
sence, estimated causal effects may be arbitrar-
ily biased. In this work we introduce permu-
tation weighting, a method for estimating bal-
ancing weights using a standard binary classifier
(regardless of cardinality of treatment). A large
class of probabilistic classifiers may be used in
this method; the choice of loss for the classi-
fier implies the particular definition of balance.
We bound bias and variance in terms of the ex-
cess risk of the classifier, show that these dis-
appear asymptotically, and demonstrate that our
classification problem directly minimizes imbal-
ance. Additionally, hyper-parameter tuning and
model selection can be performed with standard
cross-validation methods. Empirical evaluations
indicate that permutation weighting provides fa-
vorable performance in comparison to existing
methods.

1. Introduction

Observational causal inference methods infer causal ef-
fects in the absence of an explicit randomization mecha-
nism. Given observed treatments, outcomes, and a suffi-
cient set of confounding pretreatment covariates, identifica-
tion of the causal effect is made possible by rendering treat-
ment independent of the covariates (Rubin, 2011 Pearl,
2009). Inverse propensity score weighting (IPW) is a com-
mon way to accomplish this, where outcomes are weighted
by the inverse probability of receiving the observed treat-
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ment given covariates (Hernan and Robins, 2010). If these
probabilities correctly represent the conditional distribu-
tion, then the weighted data will have independence be-
tween treatment and covariates. This property is known
as balance; for example, in a binary or categorical treat-
ment setting, all treatment groups would have the same
weighted distribution of covariates. Unlike in design-based
causal inference, where the relationship between treatment
and covariates is known by design, propensity scores of-
ten must be estimated from observed data. Under model
misspecification, however, there are no guarantees of bal-
ance, and there may remain arbitrary dependencies be-
tween treatment and covariates. Nevertheless, IPW has be-
come widely used in a variety of fields, e.g., epidemiology
(Cole and Hernan, 2008), economics (Hirano et al., 2003)
and computer science (Dudik et al.| 2011).

In this paper, we present permutation weighting (PW), a
method for estimating balancing weights for general treat-
ment types by solving a binary classification problem. In
contrast to prior work, where the target distribution is
implicitly defined via the balance objective, PW explic-
itly represents the balanced dataset by permuting observed
treatments, emulating the target randomized control trial
(RCT) (Hernan and Taubman, 2008). As a result, the
problem of inferring balancing weights reduces to estimat-
ing importance sampling weights between the observed
and permuted data. We estimate these importance sam-
pling weights using classifier-based density ratio estima-
tion (Qin, {1998}, |Cheng et al., 2004} Bickel et al., [2007).
This procedure is amenable to general treatment types—
binary, multi-valued or continuous—and reduces them all
to the same simple binary classification problem which can
be solved with off-the-shelf methods. The choice of clas-
sifier and specification of the classification problem im-
plies the balance condition. Existing methods (Imai and
Ratkovic| 2014} [Hazlett, |2016; |[Fong et al., 2018; [Zhao,
2019) with balance constraints correspond to particular
choices of loss and feature representations for this classi-
fier. We show that minimizing error in our classification
problem directly minimizes the bias and variance of the
causal estimator, and imbalance. This property also im-
plies that cross-validation can be used to tune classifier hy-
perparameters (section [f.T) and choose between balancing
weight specifications using standard software (section4.3).
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To summarize, this paper makes three contributions to the
literature on balancing weights:

1. We show how to use standared probabilistic classifiers
for weight estimation.

2. We tie causal estimation to classification error (defined
through proper scoring rules), providing justification for
using cross-validation for hyperparameter tuning and
the selection of balance criteria.

3. The capability to model arbitrary treatment types within
the same theoretical and practical framework.

The rest of the paper is structured as follows. Section
introduces necessary background and the problem setting
of causal inference, balance and weighting methods. Sec-
tion [3] introduces permutation weighting and in Section [
we discuss properties of the method. Finally, we evaluate
the efficacy of our method for causal inference on binary
and continuous treatments in Section

2. Problem Statement and Related Work

We first fix notation used throughout. We denote random
variables using upper case, constant values and observa-
tions drawn from random variables in lower case, and de-
note a set with boldface. We will refer to estimates of quan-
tities using hats, e.g., w is an estimate of w. Let D be a
dataset consisting of treatments A defined over a domain
A, real valued outcomes Y € R, and a set of covariates X
defined over a domain X'. Note that in our setup, we make
no assumption on the cardinality of treatment. Finally, we
denote a potential outcome as Y (a), which represents an
outcome that would have been observed if treatment a had
been assigned.

We assume the following properties of the observed data
throughout this work:

Al. Weak unconfoundedness (Hirano and Imbens, |2004),
ie,Y(@ 1L A|X VaecA

A2. Positivity over treatment status, i.e., there exists a pos-
itive constant c such that foralla € A n(a | X = x) >
c Vxe X

A3. SUTVA (Imbens and Rubin, |2015): Units’ potential
outcomes are independent of the realized treatment status
of all other units.

The causal estimand we focus our attention on is the dose-
response function, E[Y (a)], i.e., the expected value of the
outcome after intervening and assigning treatment to value
a. This is a general construct that does not presuppose a
specific type, e.g. binary, for treatment. Further, the iden-
tification of the dose-response function implies identifica-
tion of many common treatment contrasts of interest. For

example, the average treatment effect under binary treat-
ments A = {0, 1}, is given as E[Y (1)] — E[Y'(0)].

2.1. Balance

A common approach to obtain an unbiased estimate of the
dose-response function is to render treatments independent
from the confounding variables, X (Pearl, |2009; |[Rubin|
2011). Within the causal inference literature, this indepen-
dence is often referred to as the balance condition. We
define a general notion of imbalance as some divergence
between the observed joint distribution, p(A, X), and the
product distribution, p(A)p(X).

In the binary treatment setting, where balance is most com-
monly considered, this reduces to performing a two sam-
ple test between covariates under treatment and control,
ie. D(¢p(X¢), (X)) = 0, where D denotes some di-
vergence, ¢(-) is some function, and X and X refer to
instances of X associated with control and treatment, re-
spectively.

When treatment is not binary, e.g., continuous or multi-
valued, the balance condition must be described explicitly
in terms of independence between A and X, rather than
indirectly via the two sample condition. While there are a
number of definitions, we will focus on divergences which
can be described with an L, norm of the form

IE[o(X) @ p(A)] = E[¢(X)] @ E[p(A)] [, (1)

where ® is the Kronecker product, ¢ and 1) are arbitrary
functions, and p is the order of the L, norm. It may help
build intuition to note that when ¢ and ) are the identity
function and X is univariate, this value is some norm of
the covariance between X and A. In a more general set-
ting when the functions are contained in some reproducing
kernel Hilbert space, equation [T|corresponds to the Hilbert-
Schmidt independence criterion (Gretton et al., 2005).

2.2. Importance Weighting

A common method for estimating the dose-response func-
tion is weighting by the inverse of the conditional prob-
ability of receiving treatment given observed covariates,
i.e., inverse propensity score weighting (IPW) (Rosenbaum
and Rubin, 1983} [Imai and Van Dyk| 2004). Weighting by
the inverse of this score provides the standard Hajek (or
“self-normalized”) estimator, which reweights data such
that there is no relationship between A and X, providing
identification of causal effects. This is based on the insight
that:

i.e. reweighting individual units provides unbiased esti-
mates of the dose-response surface. In the binary or cat-
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egorical treatment case, this allows direct aggregation of
effects through a weighted average that is consistent for the
dose-response. In the continuous case, consistency requires
approaches such as|Kennedy et al. (2016)), which uses local
regression to aggregate units together with similar observed
dosage. To improve efficiency, many practitioners use the
Hajek| (1964) estimator which renormalizes weighted av-
erages based on the sum of the weights rather than the
number of units; this improves variance in exchange for
a small bias which disappears quickly with increasing sam-
ple size. When the marginal distribution of treatment is
far from uniform, both inverse propensity score weighting
and the H4jek estimator can have high variance. To rem-
edy this, Robins (1997) proposed inverse-propensity stabi-
lized weighting (IPSW) which modifies [IPW by placing the
marginal density of treatment in the numerator, i.e.,

£l () - [ 2201 =0) /g [l =)

pafx;) pla | x;)

When the conditional distribution has been correctly spec-
ified in the propensity score estimation procedure, IPW
results in the balance condition (Rosenbaum and Rubin,
1983)), i.e. the weighted distribution of X is the same for
all values of A. However, when the conditional distribution
is not well specified, either in terms of the functional form
or the assumed sufficient set of pretreatment covariates, in-
verse propensity score weighting may fail to produce bal-
ance on the observed covariates, and the resulting causal
estimate may be badly biased (Harder et al., 2010; [Kang
and Schafer, 2007).

In this work we revisit the definition of IPSW as

M a —a)l = ‘TM a;=a
P(a¢|Xi)]l( ' )] B {yb p(ai, x;) e (2))

which makes plain that the weights given by IPSW define
importance sampling weights where the target distribution
is the distribution under balance. To be explicit, the goal of
IPSW is to transform expectations over the observed joint
distribution of A and X to expectations over A and X in
which they appear as if generated from an RCT (the “tar-
get trial”). However, the importance sampling weights un-
der IPSW are constructed indirectly by separately estimat-
ing the conditional and marginal treatment densities. The
contribution of this work is a method, permutation weight-
ing, which estimates this quantity directly via a probabilis-
tic classification problem which we describe in the next
section. Direct estimation provides more than just intu-
itive appeal. Unlike IPSW, direct estimation of the impor-
tance sampling ratio explicitly seeks to minimize imbal-
ance, which we show in section[d] We also show that this
approach leads to bounds on bias and variance of the dose-
response estimates based on classifier error. The result is

4

that bias is reduced under direct estimation of the density
ratio, even in the case of misspecification.

2.3. Balancing Weights

Covariate balancing weights (Hainmueller, | 2012} Imai and
Ratkovic| 2014; Zubizarreta, 2015) seek to remedy the
problems of imbalance under misspecification by optimiz-
ing a balance condition directly. The promise of these
techniques is that even when the propensity score model is
misspecified, the method will still reduce confounding bias
by optimizing for its respective balance condition. As the
balancing weight literature grows, proposed methodologies
are differentiated largely by two aspects: (1) the choice of
the distance employed as a measure of balance, and (2)
the optimization procedure. This presents a challenge for
practitioners, since the appropriate measure of balance is
application-specific and many of the proposed optimization
procedures (e.g. [Zubizarretal (2015)); [Hainmueller| (2012)),
have hyperparameters (e.g., d for stable balancing weights,
and the strength of the entropy penalty for entropy bal-
ancing) which must be manually specified and can sig-
nificantly affect performance. In addition, the aforemen-
tioned work focuses on the binary treatment regime, but
many applied problems are not simple dichotomous treat-
ments. While|Fong et al. (2018)) provides a linear-balancing
method for general treatments, this task still requires hard
choices for practitioners about how to specify balance and
how to parameterize the conditional distribution of treat-
ment. Thus, providing a unified framework for comparing
balancing weight estimators is critical for effective appli-
cation. [Zhao| (2019) provides one step in this direction by
unifying many existing balancing weights for binary treat-
ments by considering proper scoring rules, but does not
provide guidance for model selection.

3. Permutation Weighting

We now introduce permutation weighting, which allows for
the direct estimation of the importance sampler defined by
equation 2] Permutation weighting consists of two steps:

1. The original dataset is stacked with a dataset in which
A has been permuted. The permuted dataset is equiva-
lent to fixed-margin randomization of treatment, so rep-
resents a distribution where A and X are independent.
That is, it obeys the balance condition by design. In
what follows, we denote the distribution that the ob-
served data is drawn from as P, and the product dis-
tribution resulting from permutation as Q.

2. The importance sampling weights, w(a;,x;), are con-
structed by estimating the density ratio between P and

Q.
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In order to estimate the density ratios (step 2), we em-
ploy classifier-based density ratio estimation (Qinl [1998;
Cheng et al., 2004} Bickel et al., 2007)), which transforms
the problem of density ratio estimation into binary classi-
fication by building a training set from the concatenation
of the observed and permuted datasets. A and X are used
as features, and a label, C' € {0, 1}, is given to denote the
membership of the instance to the observed or the permuted
dataset, respectively. A probabilistic classifier learns to re-
cover p(C = 1| A,X). We denote the true conditional
probability as 17 and the estimated conditional probabilities
from the classifier as 7). To aid discussion, with some abuse
of notation, we will also refer to the classifier which pro-
duced the conditional probabilities as 7). After training the
classifier, assuming equally sized observed and permuted
datasets, the importance weights are recovered by taking
the density of the distribution of A and X in the permuted
dataset (d@) over the density of the observed joint distribu-
tion (dP) (Bickel et al.,[2007):

_on(ax)  p(C=1]a;,x;)
wlanxi) = 1—n(a,x;) p(C=0]a;x;)
_ p(C=1a;x) (p(C =1)dQ +p(C =0)dP) dQ
- p(C=0,a;,x%;) (p(C =1)dQ + p(C =0)dP) dP

When d(@ breaks dependence between A and X (e.g.
permuting by treatment assignment or specifying the
full cross-product), the resulting importance sampler is
% The use of a probabilistic classifier for density
ratio estimation has a growing literature (Sugiyama et al.,
2012; [Menon and Ong, [2016; Mohamed and Lakshmi-
narayanan, |2016)), and was used by |Yamada and Sugiyama
(2010) for inferring the causal direction between two ran-
dom variables, but it has yet to be employed in the context
of observational causal inference.

We define the classifier loss as some function A : {—1,1} x
[0,1] — R.. Throughout we use A and A_; to refer to the
losses for the permuted and unpermuted classes, respec-
tively. Using D to denote the distribution of the stacked
dataset over which the classifier is trained on (an equal mix-
ture of P and @), the risk for the classifier 7 under loss A
is then defined as

L(7; D, A) = Ep [M((a, x)] + Eq [A-1(1(a, x))]

The Bayes risk is given as L*(D,\) = ming L(; D, A)
(Reid and Williamson, [2011; Menon and Ong, [2016). The
regret is defined as the difference between risk of a clas-
sifier, 7} and the Bayes risk, reg(7; D, \) = L(7; D, ) —
L*(D, ).

In order to ensure that the probabilities produced by the
classifier are well calibrated, we introduce the following
assumption:

Ad4. The classifier, 1), is trained using a twice differentiable
strictly proper scoring rule, i.e., ) #n = L(1; D, \) >
L(n; D, A) (Buja et al.| 2005} \Gneiting and Raftery, 2007).

More intuitively, strictly proper scoring rules define func-
tions which, when minimized, provide calibrated forecasts.
The most common examples of strictly proper scoring rules
are logistic, exponential, and quadratic losses (Gneiting
and Raftery, [2007). Strictly proper scoring rules also pro-
vide a natural connection to statistical divergences: every
proper scoring rule is associated with a divergence between
the estimated and true forecasting distribution (Reid and
Williamson, [201 1} |Huszar, |2013). Finally, we also assume
consistency of the classifier under the data-generating pro-
cess.

AS. The classifier error, 1 — n, scales uniformly as
O(n=¢),e € (0,1).

If the permuted dataset obeys the balance condition, then
the weights will target balance. In finite samples, this
dataset may not have perfect balance, so we perform multi-
ple permutations where the classification procedure is car-
ried out to obtain weights, which are averaged to provide
the final estimate of the weight. Justification for this pro-
cedure is provided in the proof of Corollary in Ap-
pendix [A, which relies on the fact that each permutation
is a random sample from the ideal balanced distribution.
For low cardinality treatments, the permuted dataset can
be constructed as the cross product of the unique values of
treatment with X, and no iteration is necessary.

Inferring weights using a classifier confers three important
advantages:

1. Regardless of the type of the treatment (binary, continu-
ous, multinomial, etc.), the problem reduces to the same
binary classification task. In contrast to many existing
methods, this means that it is not necessary to explic-
itly assume a parametric form for the treatment condi-
tional on covariates (for instance, generalized propen-
sity scores often assume that dosage is conditionally
normal). As such, the use of binary classification to di-
rectly estimate weights requires weaker assumptions in
environments with complicated treatments.

2. As we discuss in section 4 minimizing the error of the
binary classifier directly results in minimizing both im-
balance (proposition [#.4) and the error of the causal
estimate itself (propositions 4.1I] and #.2). As a re-
sult, both the hyperparameters and the measure of bal-
ance itself (via the choice of feature representation and
loss) can be optimized directly by considering the cross-
validated error of the binary classifier. In addition to
theory, we demonstrate the empirical efficacy of hy-
perparameter tuning and model selection for estimating
causal effects in section
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3. There is a deep connection between binary classifica-
tion and two sample testing (Friedman, 2004; Reid and
Williamson, 2011). Through this lens, the choice of fea-
ture representation and classification loss is equivalent
to choosing a balance condition.

4. Properties

We now examine the finite sample and asymptotic behavior
of permutation weighting. To do so, we will first consider
a slightly more general setting than the procedure outlined
in the previous section. Specifically, propositions
and [£.4] examine the behavior of importance sampling
from the observed distribution P to an arbitrary distribu-
tion @) (under positivity, assumption [AZ), using a classifier
trained with a strictly proper scoring rule (assumption[A4).
These may be of independent interest as they admit reason-
ing over a broad class of estimands (e.g. Bickel et al., 2007
Sugiyama et al.} 2012 Menon and Ong, 2016)), including
common causal estimands like the average treatment effect
on the treated. Indeed, any distribution of A and X which
conforms to the overlap assumption can be used as a target
distribution under this framework. Before presenting our
results, we first introduce Bregman divergences, a class of
statistical distances.

Definition 1 (Bregman divergence (Bregman, |(1967)). De-
fine the Bregman generator, g : S — R, to be a convex,
differentiable function. The difference between the value of
g at point s and the value of the first-order Taylor expan-
sion of g around point sg evaluated at point s is given by

By(s,50) = g(s) — g(s0) — (s — 50, Vg(s0))-

Minimizing many commonly used classification losses cor-
respond to minimizing a Bregman divergence, e.g., ac-
curacy (0-1) loss corresponds to total variation distance,
squared loss corresponds to triangular discrimination dis-
tance, log loss corresponds to the Jensen-Shannon diver-
gence, and exponential loss corresponds to the Hellinger
distance (Reid and Williamson, 2011). The latter three
losses are proper scoring rules and conform to our assump-
tion[A4] All strictly proper scoring rules have a correspond-
ing Bregman divergence (Dawid, [2007). We use this cor-
respondence in the proofs of our theoretical results, which
are generally deferred to the supplement.

4.1. Estimation

Throughout this section we will denote the target weights
for the permutation weighting importance sampler as w and
the estimated weights w. We now begin by deriving bounds
on the bias for weighting estimators.

Proposition 4.1 (Bias of PW). Let Ep and Eq denote the
expectation under the distributions P and @), respectively.
The bias of the dose response function E p [yw] with respect

to Eq[y] is bounded by

A 2ly|
Eqly] —Ep [y0]| < Ep g,,(l)m] ,
where g(-) is a Bregman generator and kK, =
reg(7; D, \)

Minimizing this bound corresponds to minimizing the re-
gret of the classsifier. We next bound the variance of the
permutation weighting dose-response estimator.

Proposition 4.2 (Variance). Let Vg |y| denote the variance
of Y under the distribution q. Vqly] is bounded by

V[]<1E[2]+ 4Ky B 24 Y2

= —_— W+ ———k,
S N/ e 5" (1)
where k. = \/reg(1; D, \)

The bounds given by propositions and demonstrate
that the quality of importance sampling weights is gov-
erned by the regret of the classifier used. For KL diver-
gence, the bound given by proposition is essentially
Pinsker’s inequality (Reid and Williamson, 2010).

Finally, consistency of the importance sampler used by per-
mutation weighting is given by the following proposition,
which follows as a consequence of propositions {.1] and

42

Proposition 4.3 (Consistency). Under Assumptions |Al-
[A5, and bounded outcomes y, the permutation weighting
dose-response estimator is consistent, i.e., as n — 00,
Eplyw] — Eqlyl.

4.2. Balance

We next show how the importance sampler provided by
permutation weighting provides balance. We preface this
with a general definition of balance:

Definition 2 (Functional discrepancy). The L,, functional
discrepancy for functions ¢ and 1, under a weighting esti-
mator W is

[Ep [¢(ai) @ ¢ (xi)w(ai, xi)] — Eq [p(a:) @ p(x)]]l,, -

When the target distribution can be factored as p(A)p(X),
this is a measure of imbalance:

[Ep [6(a:) @ p(xi)i(as, xi)] — Ep [p(a:)] @ Ep [¢(xi)]]], -

This quantity is the extent to which the reweighted expec-
tation differs from the expectation under the product dis-
tribution. A functional discrepancy of zero for all ¢ and
1) implies independence between A and X. When both ¢
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and v are the identity function, then a discrepancy of zero
is synonymous with linear balance. With this definition in
hand, we can provide an explicit expression for the func-
tional imbalance attained by permutation weighting:

Proposition 4.4 (Minimizing Imbalance). The L, func-
tional discrepancy between the observed data drawn from
p(a, x) and the proposed distribution q(a, x) under permu-
tation weighting is

HEp(am) [#(a;) ® Y (x;)(w(ai, x;)

2
< T(l)nr ||Ep(a,x) [¢(al) ® 1[1(X1)H|

—w(ai, x;))]||,

p

where p > 0 and k, = \/reg(7}; D, \).

Proposition [4.4]demonstrates the balancing behavior of the
importance sampler employed by permutation weighting.
The importance sampler defined by permutation weighting
has a linear dependence on the error of the density ratio es-
timate which is minimized as classifier regret is minimized.

The above demonstrates properties for estimating impor-
tance weights to any pre-specified joint distribution, (), of
A and X. We now focus our attention on the distribu-
tion p(A)p(X) — that of marginal-preserving independence
between treatment and covariates. With a low cardinality
treatment (such as binary), it’s possible to directly construct
a balanced dataset to satisfy p(A)p(X). This is done by
taking the cross-product of the unique values of A and of
X. Rows can then be weighted to match the marginals from
the original data. Each row in the pseudo-dataset, 7, would
receive a weight of —zn(a;)n(x;), where n(a;) denotes the
number of rows in the original dataset with treatment level
a;, and likewise for n(x;). However, if A has larger car-
dinality, it may be computationally difficult or (in the case
of continuous treatments) impossible to construct such a
dataset. Instead, the easiest way to target this distribution
is through a simple permutation, in which the treatment
vector is reshuffled. By design, this permuted dataset will
have no systematic relationship between A and X except
for that which occurs by chance. This is true for the same
reason that fixed-margins randomization in RCTs attains
balance at expectation. This easy permutation construc-
tion allows the application of all the properties of density
ratio estimation discussed above. Asymptotically in n, a
single permutation will (like data observed from an RCT)
converge to the appropriate balanced target distribution. In
finite samples, there may remain minor imbalances from a
single permutation. For this reason, we propose averaging
across multiple permutations to attain an effective balanc-
ing weight. Theoretical justification for this procedure is
given in the supplement.

4.3. Choosing among scoring rules

In contrast to existing work which requires a priori speci-
fication of the balance condition, the choice of the balance
condition can be performed by considering the out of sam-
ple performance of the classifier with respect to the receiver
operator characteristic (ROC) curve, a common measure of
classifier performance. From the bounds given in proposi-
tions [4.1]and [4.2] we can select the condition which mini-
mizes the error of the causal estimate. By noting the con-
nection between the choice of classifier loss and two sam-
ple discrepancies provided by|Reid and Williamson|(2011),
this procedure also corresponds to choosing a balance con-
dition. This brings us to Proposition 13 of (Menon and
‘Williamson, [2016), that stochastic dominance of the ROC
curve for one classifier over another implies dominance
with respect to any strictly proper scoring rule.

That is, when two ROC curves do not cross, the one with
higher true positive rates across all false negative rates will
also be superior according to all proper scoring rules. This
property shows how the AUC is an effective diagnostic to
choose between classifiers. When the ROC curves for two
classifiers cross one another, it may be the case that differ-
ent choices of loss would suggest different “optimal” clas-
sifiers. Within the context of this paper, these results imply
that the choice of a balance criterion can be made by ex-
amining the ROC curves produced by different modeling
choices. These modeling choices correspond to the estima-
tion of different balancing weights.

5. Experiments

For the following simulation studies, we will examine only
performance of simple weighting estimators for scalar-
valued treatments, E[Y (a)] =~ Y"1, yi(a;, x;) K (a;, a).
For binary treatments, K(-,-) is an indicator for treat-
ment status, while for continuous treatments, it is a ker-
nel weighting term as analyzed in the context of doubly-
robust estimators by Kennedy et al.| (2016). This simple
estimator is used in our evaluation to provide the most di-
rect test of the efficacy of the various estimators of the
weights. Appendix[D provides results for the doubly-robust
estimators of [Kennedy et al.| (2016) as well as the estima-
tion of weighted outcome regressions. These more com-
plex evaluations do not differ in their substantive conclu-
sions (i.e. rank-order and relative performance). Error is
measured via integrated root mean squared error (IRMSE)
as in [Kennedy et al.|(2016), with s indexing S simulations
and 0,(a) being the unconditional expectation of a given
potential outcome in a single simulation, E¢[Y (a)], i.e.,

[N

_ 13
IRMSE = A* [S Z{Hs(a) — 95(0,)}2 p(a)da
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That is, we take an average of RMSE weighted over the
marginal probability of treatment. Following Kennedy
et al.|(2016), we perform this evaluation over .4*, the cen-
tral 90% of the distribution of A (in the case of binary
treatments, we evaluate over the entire support of A). We
also evaluate the Integrated Mean Absolute Bias, which re-
places the inner average with %Zle{és(a) —05(a)}|.
When permutation weighting is used, we perform 100 in-
dependent iterations of the permutation procedure to gen-
erate weights. Our evaluations center around two main
classifiers: logistic regression and gradient boosted deci-
sion trees. The former focuses on minimizing a log-loss
and therefore the balance condition corresponds to mini-
mization of the Jensen-Shannon divergence. The boost-
ing model corresponds to an exponential loss (Lebanon
and Lafferty, 2002) which implies the minimization of the
Hellinger divergence. Achieving equivalence to linear bal-
ancing methods using the permutation weighting frame-
work entails the addition of an interaction term between
A and X due to the different setup of the classification
problem; otherwise, the linear classifier would only be able
to account for differing marginal distributions of A and X
(asymptotically, there are no such differences). We include
this interaction in all of the models we evaluate.

5.1. Binary treatment simulation

Our first simulation study follows the design of [Kang and
Schatfer|(2007). In this simulation, four independent, stan-
dard normal covariates are drawn. A linear combination of
them is taken to form the outcome and treatment process
(the latter passed through an inverse-logistic function). In
this simulation, we induce misspecification by observing
only four non-linear and interactive real-valued functions
of the covariates. See Appendix [D for more details and
results on a correctly-specified model.

Figure [I| shows results for the realistic case in which the
researcher does not know the correct specifications of the
confounding relationships of the covariate set with treat-
ment. In these results, PW with boosting drastically im-
proves on the existing weighting estimators, reducing by
around 30% the IRMSE relative to balancing propensity
scores at n = 2000. At smaller sample sizes, the improve-
ments are less substantial, but even by n = 500, PW with
boosting provides superior performance. This is unsurpris-
ing, given that boosting is able to learn a more expressive
balancing model (and, therefore, reduce bias) more effec-
tively than other balancing methods. A standard propen-
sity score estimated by gradient boosted decision trees does
not solve the issues faced by propensity scores, leading to
large biases in estimation and subsequently large IRMSE
across all sample sizes. Detailed results in tabular format
are available in Appendix[D. A similar simulation study on

Integrated Mean Absolute Bias Integrated Root Mean Square Error

Sample Size (Thousands)

PW (GLM) + PW (GBM)

Unweighted -+ IPSW (GLM)

IPSW (GBM) 4~ CBPS -4- SBW

Figure 1: On the |[Kang and Schafer| (2007) simulation
under misspecification of confounding variables, PW at-
tains state-of-the-art performance in both bias and RMSE
by n = 500 and reduces RMSE by 30% at n = 2000.
Unweighted uses no weighting. IPSW (GLM) is a
logistic-regression-based propensity score model. IPSW
(GBM) is a propensity score model trained with a gradient
boosted decision tree. CBP S is covariate balancing propen-
sity scores (Imai and Ratkovic, 2014). SBW is stable bal-
ancing weights (Zubizarreta, 2015). PW (GLM) is a per-
mutation weighting model using a logistic regression. PW
(GBM) is a permutation weighting model using a gradient
boosted decision tree.

a continuous treatment is detailed in Appendix

5.2. Lalonde evaluation with continuous treatment

To explore the behavior of permutation weighting under
continuous treatment regimes with irregularly distributed
data, we turn to the data of [Lalonde| (1986)), and in par-
ticular, the Panel Study of Income Dynamics observational
sample of 2915 units (discarding all treated units from the
sample and retaining only the experimental control units).
Our evaluation is based around the differences between the
experimental control group and the observational control
group, which are known to differ greatly based on observed
covariates (Smith and Todd, 2005). The covariates in this
data are highly non-ellipsoidal, consisting of point-masses
and otherwise irregular distributions. Following the sim-
ulation study in |Diamond and Sekhon (2013), we simu-
late a nonlinear process determining assignment of units to
dosage level and, then, to outcome based on observed co-
variates (full details in Appendix [F). The treatment process
is made to behave similarly to real-world data by estimat-
ing a random forest to predict presence in the experimental
/ observational sample as a function of observed covariates.
Dosage is then a quartic function of that predicted score
as well as the nonlinear function determining treatment as-
signment in/Diamond and Sekhon|(2013)). The shape of the
true dose-response function is similarly a quartic function
of dose.
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Integrated Mean Absolute Bias

Integrated Root Mean Square Error

Unweighted Unweighted .
PW (GLM) - PW (GLM) ]
W (GBM) PW (GBM) | @
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IPSW (GBM) — IPSW (GBM) -
IPSW (GLM) — IPSW (GLM) ——

225 25

(in thousands)

30

40
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Figure 2: On the continuous-treatment simulation based
on the LalLonde data, PW greatly reduces both bias and
variance relative to existing methods. Unweighted uses
no weighting. PW (GLM) is a permutation weighting
model using a logistic regression. PW (GBM) is a per-
mutation weighting model using a gradient boosted deci-
sion tree. NPCBPS is non-parametric covariate balancing
propensity scores (Fong et al., 2018). IPSW (GLM) is
a normal-linear regression based propensity score model.
IPSW (GBM) is a gradient boosted regression generalized
propensity score model with homoskedastic normal condi-
tional densities.

0.001 0.01 0.1

~ N N
o & S
4

Absolute Causal Error (in-sample)
@

o
3
N
1S)
3
N
1S)
3
=)
1S)
Y
@

PW log-loss (out-of-sample)

Tree Depth 2+ 46 8

Figure 3: The estimated GBDT classifier error out-of-
sample correlates strongly with the error of the causal es-
timate over a grid of hyperparameter values. The y-axis
represents in-sample causal error, while the x-axis is the
out-of-sample PW loss (i.e. out-of-sample imbalance). Hy-
perparameters tuned were the tree-depth of each decision
tree (color), the learning rate, v (columns) and the number
of trees (not annotated, from 100 to 5000).
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Figure [2] shows the IRMSE of a variety of weighting es-
timators on this simulated benchmark. Only weights gen-
erated by permutation weighting out-perform the raw, un-
weighted data in terms of IRMSE. All models reduce bias
relative to the raw, unweighted dose-response, but induce
unacceptably large variance as they do so. When a logistic
regression is used as the classifier, PW performs better than
no weighting by just half a percent in terms of IRMSE (as
it does not greatly reduce bias). When a boosted model is
used, however, this gap grows substantially, with PW out-
performing the raw estimates by around 25% - the only
substantial improvement in accuracy among these estima-
tors. As the earlier simulations have shown, using a boost-
ing model to estimate a standard propensity score does not
perform well, increasing IRMSE relative to the unweighted
estimate. It’s also worth noting the much reduced variabil-
ity around the estimates of IRMSE from the permutation
weighting models relative to other methods which often
have very unstable performance characteristics. Rank or-
dering among methods remains largely unchanged when
an outcome model is incorporated (see appendix [F).

5.3. Cross-validation

In this section, we demonstrate how cross-validation may
be used to effectively tune the permutation weight model.
For this experiment, we took one instance of the Kang-
Schafer simulation (with a correctly specified linear model)
described in section [5.1] with a sample size of 2000 and
performed 10-fold cross-validation on this data, measuring
both in and out-of-sample errors. Presented in figure 3| are
the results of this exercise for out-of-sample PW error and
in-sample PW error, respectively. Appendix [E shows the
ROC curve for three models and demonstrates weighting-
model selection on that basis.

In the traditional causal inference environment, practition-
ers care about the in-sample causal error, rather than gen-
eralization error to other potential samples. Minimizing
classifier error, through proposition 4.4] minimizes imbal-
ance. Minimization of in-sample imbalance may seem de-
sirable since any residual imbalance can lead to bias in
a purely weighting estimator. Our results are shown in
figure (3| (with a similar figure for in-sample error in Ap-
pendix [D). The primary takeaway from these results is that
generalization performance of weights does matter. Sim-
ply minimizing in-sample imbalance is not necessarily the
way to best optimize estimation accuracy. More impor-
tant than in-sample imbalance is out-of-sample imbalance,
which can be consistently measured through the PW error.
We can see clearly that while improving the PW loss out-
of-sample brings with it corresponding improvements in in-
sample causal error, this is not true for in-sample PW loss.
This represents classic over-fitting to the sample. Impor-
tantly, looking at the error of permutation-weighting out-
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of-sample gives a reliable way to assess the quality of fit:
choosing a permutation weighting model which generalizes
well will, in turn, ensure that in-sample causal error is min-
imized. In short, permutation weighting provides a reliable
framework through which to use cross-validation for model
selection and hyperparameter tuning for weighting.

6. Conclusion

Weighting is one of the most commonly applied estima-
tors for causal inference. This work provides a new lens on
weighting by framing the problem in terms of importance
sampling towards the distribution of treatment and covari-
ates that would be observed under randomization. Through
this lens we introduced permutation weighting, which casts
the balancing weights problem into generic binary classi-
fication and allows the standard machine learning toolkit
to be applied to the problem. We show that regret in this
classification problem bounds the bias and variance of the
causal estimation problem. Thus, methods for regulariza-
tion and model selection from the supervised learning lit-
erature can be used directly to manage the bias-variance
tradeoff of this causal effect estimation problem. Permuta-
tion weighting generalizes existing balancing schemes, ad-
mits selection via cross-validation, and provides a frame-
work to sensibly integrate generic treatment types within
the same weighting estimator. Simulations show that per-
mutation weighting outperforms existing estimation meth-
ods even in conditions unfavorable to the assumptions un-
derlying the model.
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