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1. Additional bounds on the Log marginal likelihood of Gaussian process regression
In this section, we discuss additional bounds on the log marginal likelihood of GPR regression that can be computed
efficiently. We focus on the case when we have access to a rank-m-plus-diagonal approximate Q ≺ K, where we write
A ≺ B if (and only if) A and B and A− B is PSD (i.e. ≺ is the Loewner partial order on PSD matrices). We also assume
we can efficiently compute the trace of K. We can then think of finding the optimal lower bound on log pY (y; θ) as a
constrained optimisation problem:
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We then apply an element-wise bound,

log pY (y; θ) ≥ c+ inf
A�Q

tr(A)=t

(
−1

2
yTA−1y − 1

2
log|A|

)
≥ c+ inf

A�Q
tr(A)=t

−1

2
yTA−1y + inf

A�Q
tr(A)=t

−1

2
log|A| (2)

We now consider each term separately,

1.1. Quadratic term

Since A ≺ Q, we may write A = Q + EE, where E is the PSD square root of A− Q. Applying Woodbury’s Lemma,

yTA−1y = yTQ−1y − yTQ−1E(I + EQ−1E)−1EQ−1y. (3)

The second term is non-negative, but can be 0; in particular if K = Q + tzzT, where z is a unit vector orthogonal to Q−1y.
Hence,

inf
A�Q

tr(A)=t

−1

2
yTA−1y = −1

2
yTQ−1y, (4)

which does not lead to any improvement in the quadratic term.

1.2. Log-determinant term

We recall the following property of PSD matrices,

Proposition 1 (Horn & Johnson, 2012, Corollary 7.7.4). Let A1,A2 ∈ Rk×k such that A1 − A2 is PSD. Let λi(Aj), 1 ≤
i ≤ k, j ∈ {1, 2} denote the ith largest eigenvalue of Aj . Then, λi(A1) ≥ λi(A2) for 1 ≤ i ≤ k.

We write

log|A| =
n∑

i=1

log(ai) =
∑

log(`i + ei), (5)

where ai are the eigenvalues of A and `i are the eigenvalues of Q, both sorted in descending order, and ei = ai − `i. We
can then translate the constraints on K as ei ≥ 0 and

∑
i(ei + `i) = t. The `i can be computed in O(nm2) by noting that

n−m of them are σ2, and the remaining ones are the eigenvalues of MMT + σ2I , where M = K−1/2uu Kuf.
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We define t′ = t− tr(Q) and consider

sup
A�Q

tr(A)=t

log|A| = sup
ei>0∑
ei=t′

log(ei + `i). (6)

This coincides with a problem in information theory related to power-allocation over channels. It is a convex optimization
which can be solved using Lagrange multiplier and the KKT conditions. The solution of this equation is,

ei = max(0, t′/ν − t′`i), (7)

where ν is chosen such that,
∑n

i=1 max(0, 1/ν − `i) = 1. See Example 5.2 in Boyd & Vandenberghe (2004) for details of
this maximization. The Lagrange multiplier can be found in O(n) as it is the solution to a piecewise linear problem.

In preliminary experiments, we found using this bound with hyperparameter optimisation did not yield significant gains over
the simpler AM-GM based bound, and hence used the latter in the main experiments.

1.2.1. LOWER BOUNDING THE LOG DETERMINANT

In some cases upper bounds on the log marginal likelihood are of interest (Titsias, 2014; Kim & Teh, 2018). We therefore
turn to the problem of lower bounding the log determinant of K. Improvements in this bound can be used in conjunction
with either of the bounds on the quadratic term given in Titsias (2014) or Kim & Teh (2018). We have for any A satisfying
the constraints,

log(A) =
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Rewriting the second term on the right hand side as the log of a product, expanding the product and using that ei ≥ 0,
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Using that `i ≤ `1,

log|K| ≥ inf
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tr(A)=tr(K−Q)

log |A| ≥ log|Q|+ log

(
1 +
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)
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We now show that this is the greatest upper bound given the constraints on A by constructing an A satisfying this bound.
Consider A = Q + tr(K− Q)wwT, where w is the eigenvector of Q corresponding to `1. Then all of the eigenvalues of
A coincide with the eigenvalues of Q, except the largest, which is `1 + tr(K − Q). Rearranging the formula for the log
determinant, we see that this implies the second inequality in eq. (10) is in fact an equality.

2. Additional Experiments
We performed Iterative GP experiments with all combinations of Adam learning rates (0.1, 0.01) and minimum likelihood
noise constraints (σ2

min = 1e−4, σ2
min = 1e−6) for poletele, kin40k, elevators, bike and protein datasets.

The experiments displayed instability and sensitivity to some settings (fig. 6, fig. 8, and fig. 9). In particular, we found that
the setting with σ2

min = 1e−6 and Adam learning rate 0.1 (Wang et al. (2019) uses σ2
min = 1e−4 and Adam learning rate

0.1), causes severe predictive performance degradation in poletele, bike, and kin40k datasets after 2000 iterations.
Lowering the learning rate to 0.01 facilitates smoother, but much slower convergence. However, datasets such as poletele
(fig. 9) and protein (fig. 10) still exhibit a decrease in the predictive performance during training.

We also used Adam optimiser with 0.1 and 0.01 learning rates to train CGLB with 2048 inducing points on poletele,
bike, and elevators datasets. We investigate how performance characteristics change with Adam optimiser, and we
explore whether Adam optimiser can cause instabilities similar to Iterative GP in CGLB predictive performance. Experiments
show that the CGLB model trained with Adam optimizer and 0.1 learning rate on poletele (fig. 11) and elevators
(fig. 12) datasets achieves performance on par with results for the CGLB trained with L-BFGS. However, CGLB with Adam
performs much worse on bike dataset than it did with L-BFGS. None of those experiments exhibit significant degradation
in performance over the training time analogous to the behaviour of Iterative GP.
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Figure 1. Test root mean square error (RMSE) and negative log predictive density (NLPD) metrics of CGGP, SGPR and Iterative GP
models computed on bike dataset. The shaded area is IQR region, and the line is a median over five experiment trials with different
dataset splits.
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Figure 2. Test root mean square error (RMSE) and negative log predictive density (NLPD) metrics of CGLB, SGPR and Iterative GP
models computed on elevators dataset. The shaded area is IQR region, and the line is a median over five experiment trials with
different dataset splits.
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Figure 3. Test root mean square error (RMSE) and negative log predictive density (NLPD) metrics of CGLB, SGPR and Iterative GP
models computed on kin40k dataset. The shaded area is IQR region, and the line is a median over five experiment trials with different
dataset splits.
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Figure 4. Test root mean square error (RMSE) and negative log predictive density (NLPD) metrics of CGLB, SGPR and Iterative GP
models computed on poletele dataset. The shaded area is IQR region, and the line is a median over five experiment trials with different
dataset splits.
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Figure 5. Test root mean square error (RMSE) and negative log predictive density (NLPD) metrics of CGLB, SGPR and Iterative GP
models computed on keggundirected dataset. The shaded area is IQR region, and the line is a median over five experiment trials
with different dataset splits.
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Figure 6. Test RMSE and NLPD for the Iterative GP method with learning rates 0.01 and 0.1 and minimum likelihood noise constrained
at 1e−4 and 1e−6 on the bike dataset.
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Figure 7. Test RMSE and NLPD for the Iterative GP method with learning rates 0.01 and 0.1 and minimum likelihood noise constrained
at 1e−4 and 1e−6 on the elevators dataset.
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Figure 8. Test RMSE and NLPD for the Iterative GP method with learning rates 0.01 and 0.1 and minimum likelihood noise constrained
at 1e−4 and 1e−6 on the kin40k dataset.
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Figure 9. Test RMSE and NLPD for the Iterative GP method with learning rates 0.01 and 0.1 and minimum likelihood noise constrained
at 1e−4 and 1e−6 on the poletele dataset.
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Figure 10. Test RMSE and NLPD for the Iterative GP method with learning rates 0.01 and 0.1 and minimum likelihood noise constrained
at 1e−4 and 1e−6 on the protein dataset.
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Figure 11. Test RMSE and NLPD for CGLB with 2048 inducing points which trained with L-BFGS and Adam with 0.1 and 0.01 learning
rates on poletele dataset.
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Figure 12. Test RMSE and NLPD for CGLB with 2048 inducing points which trained with L-BFGS and Adam with 0.1 and 0.01 learning
rates on elevators dataset.



Supplement: Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression using Conjugate Gradients

0 200 400 600 800 1000 1200
time (sec)

0.00

0.02

0.04

0.06

0.08

0.10

R
M

S
E

CGLB-2048 Adam lr=0.1
CGLB-2048 Adam lr=0.01
CGLB-2048

0 200 400 600 800 1000 1200
time (sec)

−3

−2

−1

0
N

LP
D

CGLB-2048 Adam lr=0.1
CGLB-2048 Adam lr=0.01
CGLB-2048

Figure 13. Test RMSE and NLPD for CGLB with 2048 inducing points which trained with L-BFGS and Adam with 0.1 and 0.01 learning
rates on bike dataset.
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