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Abstract

We propose a lower bound on the log marginal
likelihood of Gaussian process regression models
that can be computed without matrix factorisation
of the full kernel matrix. We show that approxi-
mate maximum likelihood learning of model pa-
rameters by maximising our lower bound retains
many benefits of the sparse variational approach
while reducing the bias introduced into hyperpa-
rameter learning. The basis of our bound is a
more careful analysis of the log-determinant term
appearing in the log marginal likelihood, as well
as using the method of conjugate gradients to de-
rive tight lower bounds on the term involving a
quadratic form. Our approach is a step forward in
unifying methods relying on lower bound maximi-
sation (e.g. variational methods) and iterative ap-
proaches based on conjugate gradients for training
Gaussian processes. In experiments, we show im-
proved predictive performance with our model for
a comparable amount of training time compared
to other conjugate gradient based approaches.

1. Introduction
Scaling models involving Gaussian process priors to large
datasets is an important and well-researched problem
in Bayesian statistics and machine learning. In order
for a method to succeed in this task, it should provide
high-quality approximations to 1) the posterior mean and
(co-)variance over functions, 2) the log marginal likelihood
(LML). While only the former is needed for making predic-
tions, the latter is a useful tool for model selection; when the
kernel is differentiable with respect to hyperparameters, the
LML or an approximation to it can be optimised using gra-
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dient based methods in order to automatically select model
hyperparameters (Rasmussen & Williams, 2006, section 5).

We derive a lower bound on the LML of regression with
a Gaussian process prior and a Gaussian likelihood. We
refer to this bound as CGLB. Parameter learning with
CGLB combines many of the strengths of sparse variational
Gaussian process regression (SGPR) (Titsias, 2009) with
the strengths of conjugate gradient (CG) methods (Gibbs
& Mackay, 1997) for GP inference. We use an improved
bound on the log-determinant of the covariance matrix
as well as CG to tighten the SGPR evidence lower bound
(ELBO). We show empirically that this leads to less bias
in parameter selection than maximisation of the ELBO.
This reduced bias leads to improved performance on several
benchmark tasks involving large datasets.

Maximisation of our lower bound provides an alternative to
current CG-based GP inference schemes Gibbs & Mackay
(1997); Wang et al. (2019), which simplifies hyperparameter
learning. Recently, Wang et al. (2019) showed that CG-
based GP inference can scale impressively to large datasets,
and provide excellent performance on many regression tasks.
While Wang et al. (2019) argued that their method should be
considered ‘exact’, there are two caveats which complicate
training. First, gradient estimates provided by these meth-
ods are biased if conjugate gradients is stopped too early;
while this bias can be reduced by running more iterations of
CG, this comes at an additional computational cost. Second,
the estimates of the LML are stochastic. The variance of the
estimator provided can be reduced at the cost of needing to
solve more systems of equations. Following Davies (2015),
we refer to these approaches as ‘Iterative GPs’, to contrast
them with implementations using deterministic, direct meth-
ods (e.g. Cholesky decomposition) for computing the LML.

Building on work in Gibbs & Mackay (1997) and Davies
(2015) we derive a stopping criterion for our application of
CG that ensures more iterations of CG would not improve
the bound on the LML significantly. We also exploit old
solutions to CG from previous iterations of hyperparameter
learning. This approach allows us to often run zero or
one steps of CG per iteration of hyperparameter learning
without significantly impacting the approximate LML, even
on large datasets. Using a similar approach to Gardner et al.
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(2018); Wang et al. (2019) and Meanti et al. (2020) CGLB
can be implemented with memory complexity that is linear
in the number of training examples, n, by splitting up (and
parallelising) matrix-vector products (Charlier et al., 2021).

We empirically show that the combination of a deterministic
objective function and reduced number of CG steps per
iteration of hyperparameter optimisation leads to improved
stability and performance when performing model selection
(for comparable computational times) compared to existing
approximate methods for GP regression.

2. Background
In this section, we review Gaussian process regression with a
Gaussian likelihood. We then discuss the conjugate gradient
method for solving linear systems of equations, and how this
can be applied to scaling Gaussian process regression. We
conclude the section with a discussion of sparse variational
inference as a method for scalable approximate inference in
GP regression models.

2.1. Gaussian Process Regression

We assume a dataset has been observed and denote it by
D = {(xi, yi)}ni=1 with xi ∈ X where X denotes the set of
possible observed features and yi ∈ R. Let y ∈ Rn denote
the vector formed by concatenating the yi and x ∈ Xn
denote the tuple (xi)

n
i=1.

We take a Bayesian approach with prior f ∼ GP(0, k),
i.e. f is a Gaussian process with zero mean and covariance
function k, and likelihood Y |f(x) ∼ N (f(x), σ2I), where
Y is an Rn-valued random variable and by an abuse of
notation we use f(x) ∈ Rn to denote the Rn-valued random
variable formed by indexing f at each xi. Inference involves
computing the distribution of f |(Y = y). This is again a
Gaussian process with mean and covariance,

µ̃(x) = kfsK−1y, k̃(x, x′) = k(x, x′)− kfs
TK−1kfs′ ,

with x, x′ ∈ X , s = f(x), s′ = f(x′),K = Kff +σ
2I, Kff ∈

Rn×n with entries (Kff)ij = k(xi, xj), and kfs,kfs′ ∈ Rn

take values (kfs)i = k(xi, x) and (kfs′)i = k(xi, x
′).

We assume k is parameterised, and denote these hyperpa-
rameters together with σ2 as θ. The choice of θ has a
significant impact on the generalisation properties of the
posterior (Rasmussen & Williams, 2006, Chapter 5).

Type-II maximum likelihood is a heuristic that automates
selection of θ by maximising the LML, defined as the log
density of the prior probability distribution over Y evaluated
at Y = y, with respect to the hyperparameters θ. For this
model the LML is

log pY (y; θ) = c− 1

2
yTK−1y︸ ︷︷ ︸
quad. term

−1

2
log|K|︸ ︷︷ ︸

log-det. term

. (1)

with c = −n2 log 2π. Here and elsewhere, we suppress the
dependence of kernel matrices on θ. Common implemen-
tations of Gaussian process inference and hyperparameter
selection rely on a Cholesky factorisation of K in order to
evaluate log |K| and K−1y. The Cholesky decomposition is
usually implemented in a way that requires roughly n3/3
floating point operations and stores a matrix with n(n+1)/2
distinct entries in memory. This can be a prohibitive cost
for regression problems with many observations.

2.2. Conjugate Gradients

The conjugate gradient (CG) algorithm (Hestenes & Stiefel,
1952) is a method for solving systems of equations using
only matrix-vector multiplication and elementary vector op-
erations. Given a symmetric positive definite matrix K and a
vector y the goal of conjugate gradients is to find an vector
v satisfying Kv = y. Starting with an initial guess for
v, each iteration of the conjugate gradient method chooses
a search direction and updates the current guess for v by
adding a vector in the chosen direction. In exact arithmetic,
CG is guaranteed to solve an n× n system of equations in
n iterations, each of which involves a Θ(n2) matrix-vector
multiplication. Viewed as an iterative algorithm CG has
strong guarantees on the rate at which the error decreases, at
least for well-conditioned matrices (Hackbusch, 1994, Sec-
tion 10.2.3). The convergence of conjugate gradient is often
practically assessed by examining the residual r = y − Kv,
which is computed in each iteration of CG. If the residual
is 0, then the algorithm has converged. For computational
reasons, CG is often stopped when the residual has a suffi-
ciently small Euclidean norm.

2.3. Gaussian Process Regression with the Conjugate
Gradient Method

CG has been proposed as an efficient method for directly
approximating the gradient of eq. (1) (Gibbs & Mackay,
1997). An obstacle to this approach is the evaluation of the
gradient of the log-determinant, ∂

∂θi
log |K| = tr(K−1 ∂K

∂θi
).

Evaluating this trace directly is computationally expensive,
as it requires solving n, n× n systems of linear equations.
Hutchinson’s trace estimator (Hutchinson, 1989) provides a
stochastic estimate of this gradient. The estimator is formed
by first noting that for any Rn-valued random variable p

such that Ep

[
ppT

]
= I, tr(K−1 ∂K

∂θi
) = Ep

[
pTK−1 ∂K

∂θi
p
]
.

The expectation can be estimated with Monte Carlo, using
CG to approximate K−1pi, where pi is a sample of p.

This procedure results in a biased, stochastic estimate of the
gradient. The bias in this estimator can be decreased, and
practically removed, at the cost of increasing the number of
iterations of CG. The variance can be reduced by increasing
the number of samples of p, at the cost of needing to solve
more systems of equation. The variance of this estimator for



Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression using Conjugate Gradients

various distributions of p as well as high probability bounds
on the relative error are known (Avron & Toledo, 2011).

In cases when the log marginal likelihood itself is of interest,
for example if model comparison is performed with discrete
hyperparameters, approximations to the LML using CG and
related ideas have also been proposed (Ubaru et al., 2017).
Iterative GPs have been shown to be highly scalable with
modern computational architectures (Gardner et al., 2018;
Wang et al., 2019).

2.4. Gaussian Process Regression with Sparse Methods

An alternative approach, which avoids the computation of K
entirely, relies on sparsity assumptions in the data-domain
that lead to a low-rank approximation of Kff, (e.g. Williams
& Seeger, 2001; Snelson & Ghahramani, 2005). This ap-
proach reduces the computational requirement to O(nm2)
where m is a parameter that controls the rank of the approx-
imation to Kff. Titsias (2009) proposed an interpretation of
sparse methods as variational inference with a structured
family of posterior distributions. This framework defines
an evidence lower bound (ELBO), L(y; θ) ≤ log pY (y; θ),
where

L(y; θ)=c− 1

2
yTQ−1y︸ ︷︷ ︸

bound on
quad. term

−1

2

(
log |Q|+ tr(K− Q)

σ2

)
︸ ︷︷ ︸

bound on log-det. term

(2)

with Q = Qff + σ2I, Qff = KT
ufK
−1
uu Kuf, Kuu an m × m

matrix with (Kuu)ij = k(zi, zj), Kuf an m× n matrix with
(Kuf)ij = k(zi, xj), zi ∈ X and ui = f(zi).1 The zi
are variational parameters. The ELBO can be evaluated in
O(nm2), and is frequently jointly maximised with respect
to variational parameters z = (zi)

m
i=1 and hyperparameters

θ as a form of approximate maximum likelihood learning.
The variational posterior is then used for prediction. This is
a Gaussian process, with mean and covariance,

m̂(x) = kus
TK−1uu KufQ−1y and (3)

k̂(x, x′)=k(x, x′)− kus
TK−1uu KufQ−1KufK−1uu kus′ (4)

where kus,kus′ ∈ Rm have entries (kus)i = k(zi, x) and
(kus′)i = k(zi, x

′). When the number of training examples
is large, the kernel is sufficiently smooth, and the data is
not too spread out log pY (y; θ)− L(y; θ) is small for some
m� n (Burt et al., 2020), in which case one expects that
similar hyperparameters would be selected by maximising
the ELBO as would be selected by maximising the LML.
However, certain settings of θ, for example those for which
σ2 is very small, lead to large discrepancies between the
LML and ELBO, which results in significant bias in param-
eter selection and underfitting (Bauer et al., 2016).

1We assume here and throughout that Kuu is invertible.

3. Lower Bounds on the Log Marginal
Likelihood

In this section we present two new lower bounds on the
log marginal likelihood one of which can be computed in
O(nm2 + (t + 1)n2), and one that can be computed in
O(n2m+ (t+ 1)n2) where t is the number of steps of CG
run. We also present a mean function that can be used for
prediction in conjunction with these bounds.

3.1. Conjugate Gradient Lower Bound

We now state the lower bound:

Lemma 1. Let K as in eq. (1), Q as in eq. (2), c =
−n2 log 2π, then for any v ∈ Rn

log pY (y; θ) ≥ c− 1

2

(
rTQ−1r+2yTv−vTKv

)
− 1

2

(
log|Q|+ n log

(
tr(Q−1K)

n

))
, (5)

≥ c− 1

2

(
rTQ−1r+2yTv−vTKv

)
− 1

2

(
log|Q|+ n log

(
1 +

tr(K− Q)

nσ2

))
, (6)

where r = y − Kv.

Remark 1. When v = 0 or v = K−1y, the bounds in
lemma 1 are at least as tight as eq. (2). For general v, they
may be smaller than the lower bound in eq. (2). We address
this in section 3.5 by ensuring v ≈ K−1y in such a way
that the bounds in lemma 1 is no more than ε smaller than
eq. (2) (and in practice nearly always larger), where ε > 0
is a user-specified parameter.

We refer to eq. (6) as CGLB. The right hand side of eqs. (5)
and (6) can be maximised with respect to {θ,v, (zi)mi=1}
for hyperparameter learning. For fixed v, the right hand
side of eq. (5) can be computed in O(n2 + n2m), while
eq. (6) can be computed in O(n2 + nm2) using similar
computations to eq. (2) but with an additional n× n matrix-
vector product to compute Kv. If v = K−1y, then r = 0,
and the first term in the bounds becomes − 1

2yK−1y. This
choice of v maximises the lower bounds (CGLB) for any
choice of {θ, (zi)mi=1}, is independent of (zi)

m
i=1, and can be

approximated by running conjugate gradients on the system
of equation Kv = y.

In order to derive eqs. (5) and (6) on the log marginal likeli-
hood, it suffices to upper bound the quadratic term and the
log-determinant term from eq. (1).

3.2. Bounds on the Log-Determinant Term

Unlike previous Iterative GPs (Gibbs & Mackay, 1997;
Gardner et al., 2018), we aim for a deterministic estimate of
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the LML and its gradient. A simple approach is to combine
estimates of the term yTK−1y based on CG with the bound
log |K| ≤ log |Q|+ 1

σ2 tr(K− Q) from SGPR. This bound
is tight when tr(K−Q)/σ2 ≈ 0, but is loose otherwise. We
derive tighter bounds on log |K| using properties of Q.

First, we recall several matrix properties.

Proposition 1 (Horn & Johnson, 2012, page 11, 51). Let
A,B ∈ Rn×n and {λi}ni=1 denote the eigenvalues of A
(counted with multiplicity). Then 1. |A|=

∏n
i=1 λi 2. |AB|=

|A||B|, 3. tr(A)=
∑n
i=1 λi, 4. tr(AB)= tr(BA).

We say a symmetric matrix A ∈ Rn×n is positive semi-
definite (PSD) if for all w ∈ Rn,wTAw ≥ 0, and positive
definite if the inequality is strict. For any PSD matrix, we
have λi ≥ 0 where λi denotes an eigenvalue of A; for
positive definite matrices, this inequality is again strict.

Proposition 2 (Horn & Johnson, 2012, page 495). Let H
be a symmetric real matrix with H =

[ A B
BT C

]
with A non-

singular. Then H is PSD if and only if A and C− BTA−1B
are both PSD.

Consider H =
[

Kuu Kuf

KT
uf Kff

]
. Since the kernel is PSD, and

H is formed by evaluating the kernel at {z,x} H is PSD.
Proposition 2 implies that Kff − Qff = K− Q is PSD.

Proposition 3 (Horn & Johnson, 2012, page 431). Let A ∈
Rn×n be positive definite and B ∈ Rn×m. Then BTAB is
positive definite.

Proposition 4 (Horn & Johnson, 2012, Corollary 7.7.4).
Let A,B ∈ Rn×n such that A − B is PSD. If A and B are
invertible, B−1 − A−1 is PSD.

Proposition 5. Let A ∈ Rn×n PSD, then log |I + A| ≤
tr(A).

This is immediate from writing the log determinant as a
sum of the log-eigenvalues, and applying the inequality
log(1 + x) ≤ x to each term in the sum.

Proposition 6 (Tao, 2012, Exercise 1.3.9). Let A,B ∈
Rn×n PSD, then tr(AB) ≤ λ1(A)tr(B), where λ1(A) de-
notes the largest eigenvalue of A.

We now derive the SGPR bound log |K| ≤ log |Q| +
1
σ2 tr(K − Q); along the way we re-derive a tighter lower
bound on log |K| given in Shi et al. (2020, Appendix A)
with computational complexity O(n2m).

log|K| = log|Q|+ log|Q−1/2KQ−1/2|

= log|Q|+ log|I + Q−1/2(K− Q)Q−1/2|
≤ log|Q|+ tr

(
Q−1(K− Q)

)
. (7)

The first equality uses that the determinant is multiplica-
tive. The inequality combines proposition 5 with the cyclic
property of trace (proposition 1). Because, log(1 + x) ≤

x is only tight when x ≈ 0, this is only tight when
Q−1/2(K − Q)Q−1/2 has exclusively small eigenvalues.
Equation (7) coincides with the lower bound given in Shi
et al. (2020). We then can use proposition 6,

tr
(
Q−1(K− Q)

)
≤ λ1(Q−1)tr (K− Q)

≤ 1

σ2
tr (K− Q) . (8)

Equation (8) is the SGPR bound stated above, and can be
computed in O(nm2).

The bound on the log-determinant term we used in lemma 1
is derived by a modification of above argument. We would
like to replace the inequality in eq. (7) with a tighter in-
equality. We use a version of the arithmetic-geometric mean
inequality for positive definite matrices.

Proposition 7 (AM-GM inequality for log determinant;
Vakili et al., 2020, Lemma 1). For A ∈ Rn×n a positive
definite matrix,

log det(A) ≤ n log (tr(A)/n) (9)

This proposition can be proved by writing the log determi-
nant in terms of eigenvalues, then applying the arithmetic-
geometric mean inequality.

We now state the bound on the log-determinant, which is a
corollary of proposition 7.

Lemma 2. For K,Q ∈ Rn×n PSD such that K− Q is PSD
and Q− σ2I is PSD,

log|K| ≤ log|Q|+ n log

(
tr(Q−1K)

n

)
(10)

≤ log|Q|+ n log

(
1 +

tr(K− Q)

nσ2

)
. (11)

Remark 2. Equation (10) does not assume Q−σ2I is PSD,
but eq. (11) does. In our application Q− σ2I = Qff is PSD.

Remark 3. Equation (10) improves upon eq. (7), while
eq. (11) improves upon eq. (8). This can be seen by applying
log(1 + x) ≤ x in both cases.

Proof. We begin as in the proof of the proof of the SGPR
bound, but then apply proposition 7 in place of proposi-
tion 5:

log |K| = log |Q|+ log |Q−1/2KQ−1/2|

≤ log |Q|+ n log
(

tr(Q−1/2KQ−1/2)/n
)

= log |Q|+ n log
(
tr(Q−1K)/n

)
. (12)

This proves the first statement in the lemma. As in the
derivation of eq. (8) from eq. (7), we can apply the bound
tr(Q−1K) = n + tr(Q−1(K − Q)) ≤ n + 1

σ2 tr(K − Q).
This yields the second bound in the lemma.
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Like the SGPR bound on the log-determinant, in order to
compute eq. (11), we only need to compute log |Q| and
tr(K− Q). We could use lemma 2 together with the bound
on the quadratic form from SGPR, giving a lower bound
on the LML that can be computed in O(nm2), with only
minor modifications to standard implementations of SGPR.
This bound is included in fig. 1, under the name ‘CGLB-v0-
1024’.

In the supplement, we show that eq. (11) can be improved
while still maintaining a computational cost of O(nm2), by
phrasing the problem of upper bounding the log-determinant
of K as a constrained convex optimisation problem, subject
to the constraints that K − Q is PSD, and tr(K) as well as
the eigenvalues of Q are known.

3.3. Bounds on the Quadratic Term

We now turn our attention to an upper bound on the
quadratic form yTK−1y. In order to combine the benefits
of SGPR and iterative methods we derive an upper bound
on yTK−1y that is tight if either: 1) Q ≈ K, or 2) we are
able to find a v ∈ Rn such that v ≈ K−1y.

Lemma 3. Let K,Q ∈ Rn×n PD such that K− Q is PSD.
Then, for any v,y ∈ Rn,

2yTv − vTKv ≤ yTK−1y (13)

≤ rTQ−1r + 2yTv − vTKv, (14)

where r = y − Kv.

Remark 4. The lower bound is well-known, and yields the
popular interpretation of CG as optimisation of a quadratic
function, (e.g. Hackbusch, 1994, Section 9.1.1)

Choosing v = 0 results in the upper bound yTK−1y ≤
yTQ−1y, which corresponds to the quadratic term in the
SGPR bound. If we havem = 0 so that Q = σ2I, after some
rearranging we recover the upper bound considered in Gibbs
& Mackay (1997, eq. 50) for monitoring the convergence of
CG. On the other hand if v = K−1y, the upper and lower
bound coincide, implying we have recovered yTK−1y. This
is reminiscent of the approach taken in Van der Wilk et al.
(2020), in which an auxiliary matrix T is introduced yield-
ing a lower bound on the variational bound of Hensman
et al. (2015), that is tight when T = K−1uu .

Proof of lemma 3. We begin by expanding out the quadratic
form,

yTK−1y = (r + Kv)TK−1(r + Kv)

= rTK−1r + 2rTv + vTKv. (15)

Let w = K−1y. Then rTK−1r = wTKw ≥ 0. This
proves the lower bounds in lemma 3, as 2rTv + vTKv =
2yTv − vTKv .

Adding 0 to the term involving an inverse,

rTK−1r = rTQ−1r− rT(Q−1 − K−1)r. (16)

From proposition 4 and since K− Q is PSD Q−1 − K−1 is
PSD. Hence, rTK−1r ≤ rTQ−1r.

In fig. 1 we select hyperparameters for a Gaussian process
regression model on the poletele dataset using various
lower bounds on the LML formed by combining bounds
presented in this and the previous section, with m = 1024
inducing points. ‘SGPR’ and ‘CGLB-v0’ use the bound
yK−1y ≤ yQ−1y, while the other methods use eq. (14).
The figure indicates that introducing the auxiliary vector v
can lead to significantly improvements in the bound. Ad-
ditionally, comparing the three ‘CGLB’ bounds shows the
improvement from using eq. (10) or eq. (11) instead of
eq. (8).

3.4. Approximate Predictive Posterior

After selecting model hyperparameters, we must compute
a mean and (co-)variance at test points. We use the same
covariance calculation as in SGPR (eq. (4)). For the mean,
we would like to recover the exact GP mean if K = Q or
v = K−1y, as in both cases our bound estimates yTK−1y
exactly. We propose the estimator

m(x) = kfs
Tv + kus

TK−1uu KufQ−1(y − Kv), (17)

where kus is as in eq. (4) and kfs ∈ Rn with kfsi = k(xi, x).
The first term is the estimate given by running conjugate
gradient and replacing K−1y with its approximation. The
second term is a correction that is equivalent to the mean
of SGPR, but replacing y with the residual of the CG com-
putation. The mean predictor in eq. (17) is not sparse, but
the covariance we use is induced in the same way as in the
sparse variational framework. The CGLB predictive pos-
terior closely resembles ‘decoupled’ variational Gaussian

50 100 150 200 250 300 350
time (sec)

−8

−7

−6

−5

−4

N
LM

L

×103

SGPR-1024

CGLB-logdet-O(NM2)-1024

CGLB-logdet-O(N2M)-1024
CGLB-v0-1024
CGLB-1024

Figure 1. Comparison of the SGPR bound, the CGLB bound
with fixed zero v vector (CGLB-v0), and CGLB bounds with
log determinants from eq. (11) (CGLB-1024), eq. (12) (CGLB-
logdet-O(N2M)), and eq. (8) (CGLB-logdet-O(NM2)) on the
poletele dataset.
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process inference Cheng & Boots (2017), with the inducing
points used to determine the mean function z′ = {x, z}
and the inducing points, z, used to determine the covariance
function.

A worthwhile question is whether CGLB has a variational
interpretation, i.e. whether the gap between CGLB and the
LML is a Kullback-Leibler divergence between an approxi-
mate posterior and the posterior. A variational formulation
of the bounds would suggest an alternative, likely preferable,
predictive distribution to the one we describe in this section.

3.5. Optimisation with Conjugate Gradients

The vector v ∈ Rn is an auxiliary parameter in our lower
bound on the LML. From lemma 3, for fixed θ, CGLB is
maximized by v = K−1y. A simple approach is to treat v
as an additional parameter, and optimise the bound jointly
with respect to {θ,v, (zi)mi=1}. However, this introduces n
additional dimensions to the optimisation problem, and we
find it leads to slow parameter learning (fig. 2).

50 100 150 200 250 300 350
time (sec)

−7

−6

−5

−4

−3

N
LM

L

×103

CGLB-v0-1024
CGLB-vopt -1024
CGLB-1024

Figure 2. Negative log marginal likelihoods (NLML) for different
learning regimes of auxiliary v vector on the poletele dataset.
The CGLB-v0 corresponds to the constant zero vector, such that
SGPR quadratic term is recovered. The CGLB-vopt includes v
vector to the optimisation parameter set. The CGLB (without v
suffix) uses CG to tune v vector.

We instead select v by running conjugate gradient on the
system of equations Kv = y each time we evaluate the
lower bound on the LML. We make several design choices
when running conjugate gradients to improve and assess
convergence of the approximation.

Preconditioner We use Q as a preconditioner. This pre-
conditioner has been used previously in kernel methods
(Cutajar et al., 2016). In our case, this has computational
advantages: we can reuse some of the calculations used in
bounding the log-determinant.

Initializing CG We initialize CG using the value of v
found in the previous evaluation of the lower bound. As the

0 200 400 600 800 1000 1200 1400
Iteration

100

101

102

C
G

st
ep

100 101 102

CGLB-100
CGLB-512

CGLB-1024
CGLB-2048
Iterative GP

Figure 3. The number of CG iterations spent in CGLB and Iterative
GP to achieve a pre-set residual error (note the stopping criteria
for the methods is different) on the protein dataset. For CGLB
this number goes to zero (the plot uses log(x+ 1) scaling for the
CG step axis), and CGLB reuses the vector v in the subsequent
iterations. The figure shows the average number of steps (shaded
lines) spent per function evaluation during optimisation for five
experiments on a different data splits; solid lines are the smoothing
applied to the average number of steps for each model. The inner
box-whisker plot depicts IQRs of CG steps that CGLB and Iterative
GP models ran throughout 1500 iterations. The whiskers set to 95
percentile. The initial flat line for Iterative GP at 10 iterations is
due to a hard-coded constraint in the GPytorch code.

optimiser often evaluates similar settings of kernel hyper-
parameters in sequence and, as long as σ2 is not very close
to zero similar parameter settings result in similar optimal
values for v, this is often a good guess for the the solution
to K−1y. We show in section 4 for many datasets, after
the first handful of optimisation steps the old solution for v
is good enough and no iterations of CG are needed during
most steps of parameter optimisation.

Stopping Criterion We monitor upper and lower bounds
on yTK−1y in order to decide when to terminate CG, as ad-
vocated in Gibbs & Mackay (1997). Subtracting the upper
and lower bounds in lemma 3, we derive the stopping crite-
rion rTQ−1r ≤ 2ε. This ensures that the slack in our bound
introduced from not exactly computing the quadratic term is
at most ε. Because of our choice of preconditioner, we com-
pute rTQ−1r in every iteration, which allows this stopping
criterion used with almost no additional computation.

Previous methods (Gardner et al., 2018; Wang et al., 2019)
have used eq. (13) have used ‖r‖2 as a stopping criterion.
However, this can lead to significant biases in hyperparam-
eter selection. In particular, the bias in the lower bound
in eq. (13) is rTK−1r, which in the worst case can be as
large as ‖r‖22/(2σ2). Similarly, in the worst case and when
m = 0, the upper bound in lemma 3 can have a bias of
a similar magnitude in the opposite direction. By instead
ensuring rTQ−1r ≤ 2ε, we ensure the bias we introduce
into estimation of the LML through this term in CGLB is
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uniformly bounded by ε over all hyperparameter settings.
We therefore expect this bias to have a smaller impact on
the estimation of hyperparameters, in particular σ2.

3.6. Selecting Optimization Parameters with CGLB
versus Iterative Methods

An advantage of our approach compared to existing itera-
tive methods is that the quality of design and optimization
choices can be assessed directly through the approximation
to the log marginal likelihood, as is done in Cholesky-based
implementations of GPR and SGPR. Good choices of the
parameters {v, (zi)mi=1} result in tighter lower bounds on
the log marginal likelihood.

In contrast, when using Iterative GP any bias introduced
due to an insufficient number of iterations of CG may lead
to either over or under estimation of the log marginal like-
lihood. In this case, changes to optimization parameters
that increase the estimated log marginal likelihood could be
indicative of additional bias instead of improved hyperpa-
rameter selection. While methods considered in Gibbs &
Mackay (1997); Ubaru et al. (2017); Gardner et al. (2018);
Wang et al. (2019) are capable of having less bias when esti-
mating the LML than our method (at least for fixed m, θ),
any bias introduced is harder to assess. In the next section,
we find empirically this makes achieving good performance
with these methods more challenging.

4. Experiments
We now compare hyperparameter selection with CGLB
(lemma 1, eq. (6)), with sparse methods (SGPR) as well
as the conjugate gradient method considered in Wang et al.
(2019) (Iterative GP). We would like to determine which
method finds better hyperparameters, and how these hy-
perparameters effect predictive performance. We consider
several regression UCI datasets, and compare the methods
on the basis of root mean square error (RMSE) and negative
log predictive density (NLPD) on held-out data to assess
predictive performance. In order to assess the quality of the
hyperparameters found by the methods, for datasets where
it is computationally feasible, we compare the LML of the
model with the hyperparameters selected by each method,
computed directly with Cholesky decomposition. Our im-
plementation of CGLB, as well as code for experiments can
be found at https://github.com/awav/CGLB.

4.1. Data Preparation

We randomly split each dataset into a training set consisting
of 2/3 of examples, and a test set consisting of the remaining
1/3. We run 5 seeds in all experiments, with each seed
corresponding to a different random split of the dataset.
Each input dimension is normalised to have mean 0 and

variance 1 within the training set. Similarly, the training
outputs are normalised to have 0 mean and variance 1. We
apply the same normalisation to test data when making
predictions, using the statistics computed on the training
data. All metrics reported are on the standardised data, so
that we would expect a model predicting a constant mean
function to have RMSE near 1.0. Datasets are downloaded
using the Bayesian benchmarks package (Salimbeni, 2019).

4.2. Model Class and Initialisation of Parameters

We run experiments with a Matérn 3/2 kernel, with inde-
pendently learned lengthscales along each input dimension
(i.e. automatic relevance detection). While in the deriva-
tions we have assume the prior mean is 0, in experiments we
take the prior mean to be a constant function that is learned
as a hyperparameter. The changes to the predictive distri-
bution and lower bound presented in the previous section
to account for this are straightforward. This is the same
experimental setup considered in Wang et al. (2019).

All kernel lengthscales, the kernel variance and the like-
lihood variance are initialised at 1.0. The prior mean is
initialised at 0. We use soft-plus constraints on the length-
scales and likelihood, lower bounding them at 1e−6 for
SGPR and CGLB and 1e−4 for iterative GP, as we found
this was necessary for numerical stability. Experiments are
run using double precision.

4.3. Training Procedure

For CGLB and SGPR we vary the number of inducing points
between 512 and 4096. We train CGLB and SGPR with
the L-BFGS optimiser (Liu & Nocedal, 1989) for either
2000 steps or until the optimiser stops due to a small pro-
jected gradient norm or being unable to find a point that
improves upon the current value during line-search. We
initialise (zi)

m
i=1 using the ‘Greedy’ method advocated for

in Burt et al. (2020), then optimise them jointly with hy-
perparameters. Alternatives to joint optimisation, such as
reinitialisation of inducing points as suggested in Burt et al.
(2020) may lead to further improvements in the training pro-
cedure, though we do not explore those here. For CGLB we
stop CG when the residual r satisfied 1

2r
TQ−1r ≤ ε = 1.0

during training and when 1
2r

TQ−1r ≤ ε = 1e−3 when
selecting v for use in predictions. The criteria ε = 1.0 used
during training ensures that the additional slack introduced
into CGLB from estimating the quadratic term is at most
1.0, regardless of the current value of θ.

We follow the procedure described in Wang et al. (2019) to
train Iterative GP. We first pre-train the model on a subset
of 10000 observations with 10 iterations of L-BFGS. Then
we run 10 iterations of Adam optimiser (Kingma & Ba,
2015) on the same subset, followed by 2000 iterations of

https://github.com/awav/CGLB
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Figure 4. Test root mean square error (RMSE) and negative log predictive density (NLPD) metrics of CGLB, SGPR and Iterative GP
models computed on the protein dataset. The shaded area is IQR region, and the line is median over five experiment trials with
different dataset splits.

Adam with 0.1 learning rate on the full dataset. For forming
Hutchinson’s trace estimation, 10 vectors {pi}10i=1 are sam-
pled. In order to run L-BFGS, the vectors {pi}10i=1 are fixed
along each line search, as suggested in the documentation
for GPytorch (Gardner et al., 2018).

For experiments with SGPR we use GPflow (Matthews et al.,
2017). For small datasets (n < 20000), we use a GPflow
implementation of CGLB as we found this to be faster than
our GPytorch implementation. However, for larger datasets
we use GPytorch kernel abstractions with KeOps (Charlier
et al., 2021) to perform matrix-vector operations to reduce
memory requirements. For Iterative GPs we use the GPy-
torch implementation (Gardner et al., 2018). Following
Wang et al. (2019), we use the Lanczos variance estima-
tor (without kernel interpolation) introduced in Pleiss et al.
(2018) for computing the predictive NLPD for Iterative GPs.
We run all experiments on a single Tesla V100-32GB GPU.

4.4. Results

In fig. 3, we show that CGLB typically only needs a single
matrix-vector multiply with the kernel matrix, and reuses v
in most training steps. Adding more inducing points, which
results in a better preconditioner, decreases the number
of steps of optimisation before we use zero CG steps in
most subsequent parameter updates. Iterative GP requires
a considerably greater number of CG steps, particularly in
later training steps.

In fig. 4, we demonstrate the predictive performance of
CGLB during training and compare it with Iterative GP and
SGPR on the protein UCI dataset (Dua & Graff, 2017).
After splitting, the protein dataset has 29267 training
examples, 16463 testing examples and input dimensional-
ity 9. The predictive RMSE of CGLB is either better or
equal to Iterative GP and consistently outperforms SGPR.
Moreover, CGLB shows improved predictive uncertainty
estimations as measured by NLPD compared to Iterative GP

and SGPR. For CGLB and SGPR, increasing the number
of inducing points leads to large performance gains. SGPR
is faster per iteration than CGLB for a fixed m; however,
achieving comparable performance to CGLB requires many
more inducing points with SGPR on several datasets (bike,
kin40k, protein).

Results for other datasets are shown in table 1. For small
datasets where we can compute the log marginal likelihood
using Cholesky-based methods, we see that CGLB often
finds settings of hyperparameters with higher LML than
competing methods, suggesting that the gains in predictive
performance are attributable to improved hyperparameter
selection. On the bike dataset, Iterative GP significantly
overestimates the LML. We hypothesise this is due to the
interaction between bias and optimisation that can occur
when maximising an estimate that is not a lower bound.
The supplementary material shows model performance over
time for several more regression datasets.

For several datasets, we found that Iterative GP achieved
good test performance as measured by RMSE after a handful
of iterations, but that continuing to optimise the objective
led to a small drop in performance, e.g. fig. 4. We initially
thought this might be due to a high learning rate. However,
in the supplement, we show that even if the learning rate for
Adam is reduced from 0.1 to 0.01 the same phenomenon
occurs, but convergence is slower. In contrast, we do not
see this behaviour for SGPR or CGLB.

Further, we observed unusual behaviour of the Iterative
GP method on some datasets when the positive constraint
of likelihood noise is set to a low number. In Iterative
GP experiments, we used the GPytorch default noise value
1e−4. We attempted to lower this constraint to 1e−6 as the
noise variance on several datasets selected by other meth-
ods, particularly bike was generally below 1e−4, and this
low noise variance led to improved predictive performance.
However, Iterative GP training and predictive performance
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Table 1. Median LML, predictive NLPD and predictive RMSE over five datasets splits for Iterative GP, SGPR and CGLB. Cholesky
subcolumns represent the same metrics evaluated by using Cholesky-based GPR implementation with hyperparameters found by Iterative
GP, SGPR and CGLB models accordingly. The value of n listed in the right column, is the total number of datapoints, including both the
test and train set. CGLB with m = 4096 is missing for keggundirected due to the high memory requirement.

LML NLPD RMSE
Approx Cholesky Approx Cholesky Approx Cholesky

bike
n=17379, d=17

Iterative GP 30992.8 31319.1 -2.016 -3.257 0.020 0.014
SGPR-4096 30502.5 32814.2 -3.280 -3.336 0.010 0.010
CGLB-4096 37732.7 42023.0 -4.216 -4.329 0.004 0.004
CGLB-2048 34102.8 38936.7 -3.811 -3.972 0.003 0.003
CGLB-1024 30493.9 35351.8 -3.403 -3.615 0.005 0.005

elevators
n=16599, d=18

Iterative GP -4709.0 -4705.1 0.407 0.384. 0.353 0.353
SGPR-4096 -4675.3 -4653.3 0.386 0.386 0.354 0.354
CGLB-4096 -4669.8 -4659.1 0.386 0.386 0.354 0.354
CGLB-2048 -4677.9 -4656.4 0.387 0.387 0.355 0.355
CGLB-1024 -4712.0 -4670.0 0.392 0.391 0.356 0.356

poletele
n=15000, d=26

Iterative GP 13552.5 -7641.5 -0.935 1.217 0.079 0.078
SGPR-4096 9057.7 9624.0 -1.172 -1.180 0.078 0.078
CGLB-4096 9377.1 9862.2 -1.201 -1.203 0.077 0.077
CGLB-2048 8248.6 9248.0 -1.126 -1.145 0.080 0.080
CGLB-1024 7250.7 8694.2 -1.057 -1.098 0.083 0.083

kin40k
n=40000, d=8

Iterative GP 23859.0 — -0.454 — 0.087 —
SGPR-4096 7486.0 — -0.705 — 0.107 —
CGLB-4096 12244.2 — -0.919 — 0.086 —
CGLB-2048 10028.6 — -0.826 — 0.088 —
CGLB-1024 7260.0 — -0.714 — 0.093 —

protein
n=45730, d=9

Iterative GP -25703.9 — 0.897 — 0.531 —
SGPR-4096 -27714.6 — 0.798 — 0.541 —
CGLB-4096 -26570.7 — 0.749 — 0.522 —
CGLB-2048 -27442.0 — 0.771 — 0.529 —
CGLB-1024 -28243.7 — 0.790 — 0.535 —

keggundirected
n=63608, d=27

Iterative GP -21659.7 — 1.310 — 0.117 —
SGPR-4096 -29837.5 — -0.710 — 0.118 —
CGLB-4096 — — — — — —
CGLB-2048 -29751.7 — -0.708 — 0.119 —
CGLB-1024 -29728.9 — -0.707 — 0.120 —

became unstable in later optimisation steps. Neither CGLB
nor SGPR exhibited degradation in predictive performance
during optimisation, even in cases where the noise level was
near the lower bound of 1e−6. We hypothesise this is fur-
ther evidence that lower bound maximisation is more robust
as an optimisation procedure than other biased estimates of
the LML, especially methods that optimise an objective that
can overestimate the LML in ways that are non-uniform in
θ (c.f. discussion of stopping criteria in section 3.5).

5. Conclusion
CGLB combines benefits from sparse variational meth-
ods with iterative approaches for hyperparameter selection.
Maximising CGLB alleviates some of the hyperparameter
bias that results from ELBO maximisation with sparse meth-
ods. As CGLB is deterministic, optimisation is frequently
easier than using the stochastic approximations to the LML
given by existing Iterative GP methods. Additionally, as
the bias in CGLB results in a lower bound on the LML, we

can assess choices made regarding optimisation using only
training data, as higher lower bounds correlate well with
better hyperparameter selection.
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