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A. Related Work
Our work focuses on principled Bayesian exploration wherein an agent maintains a posterior distribution over its envi-
ronment (Chapelle & Li, 2011; Agrawal & Goyal, 2012; 2013; Russo & Van Roy, 2016). As complete knowledge of the
environment (the vector of mean rewards at each arm, for example) would endow an agent with prescience of optimal
actions, efficient exploration amounts to the resolution of an agent’s epistemic uncertainty about the environment. A natural
approach for resolving such uncertainty is Thompson sampling which employs probability matching in each time period
to sample actions according to the probability of being optimal (Thompson, 1933; Agrawal & Goyal, 2012; 2013; Russo
& Van Roy, 2016; Russo et al., 2018). Chapelle & Li (2011) kickstarted renewed interest in Thompson sampling through
empirical successes in online advertisement and news recommendation applications. While a corresponding regret bound
was developed in subsequent work (Agrawal & Goyal, 2012; 2013), our paper follows suit with Russo & Van Roy (2016)
who introduced an elegant, information-theoretic analysis of Thompson sampling; their technique has been subsequently
studied and extended to a variety of other problem settings (Russo & Van Roy, 2018a;b; Dong & Van Roy, 2018) and
applications (Lattimore & Szepesvári, 2019; Osband et al., 2019). In this work, we also leverage the information-theoretic
analysis of Russo & Van Roy (2016) while additionally incorporating ideas from rate-distortion theory (Shannon, 1959).
Unlike prior work exploring the intersection of sequential decision-making and rate-distortion theory, we are not concerned
with state abstraction (Abel et al., 2019) nor are we concerned with an agent exclusively targeting optimal actions through
some compressive statistic of the environment (Dong & Van Roy, 2018).

A core novelty of this paper is leveraging the Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972) for the efficient
computation of rate-distortion functions. The algorithm was originally developed for the dual problem of computing the
channel-capacity function (Arimoto, 1972) and was soon after extended to handle computation of the rate-distortion function
as well (Blahut, 1972). An initial study of the algorithm’s global convergence properties (for discrete random variables) was
done by Arimoto (1972) and further explored by Csiszár (1974); Csiszár & Tsunády (1984). While there have been many
variants of the Blahut-Arimoto algorithm introduced over the years (Sayir, 2000; Matz & Duhamel, 2004; Vontobel et al.,
2008; Naja et al., 2009; Yu, 2010), we find that the simplicity of the original algorithm is suitable both in theory and in
practice.

The goal of finding target actions with a tolerable degree of sub-optimality deviates from the more traditional objective of
identifying optimal actions. As previously mentioned, this setting can implicitly arise when faced with a continuous action
space (Bubeck et al., 2011; Kleinberg et al., 2008; Rusmevichientong & Tsitsiklis, 2010), a fixed time horizon (Ryzhov
et al., 2012; Deshpande & Montanari, 2012), or an infinite-armed bandit problem (Berry et al., 1997; Wang et al., 2008;
Bonald & Proutiere, 2013). Russo & Van Roy (2018b) attempt to rectify some shortcomings of these works by introducing
a discounted notion of regret that emphasizes initial stages of learning and measures performance shortfall relative to
satisficing actions, instead of optimal ones. Moreover, the analysis of their satisficing Thompson sampling algorithm inherits
the benefits of flexibility and generality from the analogous information-theoretic results for Thompson sampling (Russo &
Van Roy, 2016). In this work, we obviate the need for the manual specification of satisficing actions, instead relying on
direct computation of the rate-distortion function to adaptively compute the distribution over satisficing actions in each time
period that achieves the rate-distortion limit.

The idea of an agent that learns to designate and achieve its own goals bears close resemblance to hierarchical agents
studied in the reinforcement-learning literature (Kaelbling, 1993; Dayan & Hinton, 1993; Sutton et al., 1999; Barto &
Mahadevan, 2003). In recent years, the two most-popular paradigms for hierarchical reinforcement learning have been
feudal reinforcement learning (Dayan & Hinton, 1993; Nachum et al., 2018) and options (Sutton et al., 1999; Jong et al.,
2008; Bacon et al., 2017; Wen et al., 2020). Feudal reinforcement-learning agents are comprised of an internal managerial
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hierarchy wherein the action space of managers represents sub-goals for workers in the subsequent level of the hierarchy;
when workers can be quickly trained to follow the directed sub-goals of their managers (without regard for the optimality of
doing so) the top-most manager can more efficiently synthesize an optimal policy. Options provide a coherent abstraction
for expressing various temporally-extended behaviors or skills, typically replacing or augmenting the original action space
of the agent (Jong et al., 2008). While there is great empirical support for the performance of feudal learning and options
when the goal representation or option set is computed and fixed a priori, recent work in learning such components online
often relies on laborious tuning and heuristics to achieve success (Vezhnevets et al., 2017; Bacon et al., 2017; Harb et al.,
2018). In contrast, the main contribution of this work is to build a principled approach for learning such targets, albeit with a
restricted focus to the simpler setting of bandit learning. We leave the exciting question of how the ideas presented here may
scale up to tackle the challenges of hierarchical reinforcement learning to future work.

B. Blahut-Arimoto Satisficing Thompson Sampling
Here we present the full BLASTS algorithm with inline comments for clarity.

Algorithm 1 Blahut-Arimoto Satisficing Thompson Sampling (BLASTS)

Input: Lagrange multiplier β ∈ R≥0, Blahut-Arimoto iterations K ∈ N, Posterior samples Z ∈ N
H0 = {}
for t = 0 to T − 1 do
e1, . . . , eZ ∼ P(E ∈ ·|Ht) {Finite sample from current belief over E}
d(a, e|Ht) = E[(r(A?)− r(a))2|E = e,Ht]) {Distortion function for target action Ãt}
p̃0(a|ez) = 1

|A| ,∀a ∈ A, z ∈ [Z]

for k = 0 to K − 1 do
q̃k(a) = Et[p̃k(a|E)],∀a ∈ A {Run the Blahut-Arimoto algorithm}
p̃k+1(a|ez) = q̃k(a) exp(−βd(a,ez|Ht))∑

a′∈A q̃k(a′) exp(−βd(a,ez|Ht))
,∀a ∈ A, z ∈ [Z]

end for
ẑ ∼ Uniform(Z) {Select posterior sample uniformly at random}
At ∼ p̃K(a|eẑ){Probability matching}
Ht+1 = Ht ∪ {(At, Ot+1)}
Rt+1 = r(At, Ot+1)

end for

C. Regret Analysis
Abstracting away the precise details of BLASTS, we can consider a coarsely-defined algorithm that selects each action
At as follows: (1) identify a target action Ãt that minimizes a loss function Lβ(·|Ht) and (2) sample At ∼ P(Ãt = ·|Ht).
Recall that the loss function is defined, for any target action Ã, by

Lβ(Ã|Ht) = It(E ; Ã) + βEt
[
(r(A?)− r(Ã))2

]
.

The following result helps establish that the expected loss of any target action decreases as observations accumulate.

Lemma 1. For all β > 0, target actions Ã, and t = 0, 1, 2, . . .,

Et[Lβ(Ã|Ht+1)] = Lβ(Ã|Ht)− It(Ã; (At, Ot+1)).

Proof.

Recall that Ht+1 = (Ht, At, Ot+1). By definition of a target action, we have that ∀t,Ht ⊥ Ã|E , which implies
It((At, Ot+1); Ã|E) = 0. Thus,

It(E ; Ã) = It(E ; Ã) + It((At, Ot+1); Ã|E) = It(E , (At, Ot+1); Ã)
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by the chain rule of mutual information. Applying the chain rule once again, we have,

It(E ; Ã) = It(E , (At, Ot+1); Ã) = It(E ; Ã|At, Ot+1) + It(Ã; (At, Ot+1)).

It follows that

Et[Lβ(Ã|Ht+1)] =E[Lβ(Ã|Ht+1)|Ht]

=E
[
It(E ; Ã|At, Ot+1) + βE

[
(r(A?)− r(Ã))2|Ht, At, Ot+1

] ∣∣∣Ht

]
=Et

[
It(E ; Ã|At, Ot+1)

]
+ βEt

[
(r(A?)− r(Ã))2

]
=Et

[
It(E ; Ã)− It(Ã; (At, Ot+1))

]
+ βEt

[
(r(A?)− r(Ã))2

]
=It(E ; Ã) + βEt

[
(r(A?)− r(Ã))2

]
− It(Ã; (At, Ot+1))

=Lβ(Ã|Ht)− It(Ã; (At, Ot+1)).

As a consequence of the above, the following lemma assures that expected loss decreases as target actions are adapted. It
also suggests that there are two sources of decrease in loss: (1) a possible decrease in shifting from target Ãt to Ãt+1 and
(2) a decrease of It(Ãt; (At, Ot+1)) from observing the interaction (At, Ot+1). The former reflects the agent’s improved
ability to select a suitable target, and the latter captures information gained about the previous target. We omit the proof as
the lemma follows immediately from Lemma 1 and the fact that Ãt+1 minimizes Lβ(Ãt+1|Ht+1), by definition.

Lemma 2. For all β > 0, target actions Ã, and t = 0, 1, 2, . . .,

E[Lβ(Ãt+1|Ht+1)|Ht] ≤ E[Lβ(Ãt|Ht+1)|Ht] = Lβ(Ãt|Ht)− It(Ãt; (At, Ot+1)).

Note that, for all t, loss is non-negative and bounded by mutual information between the optimal action and the environment
(since optimal actions incur a distortion of 0):

Lβ(Ãt|Ht) ≤ Lβ(A?|Ht) = It(E ;A?).

We therefore have the following corollary.

Corollary 1. For all β > 0 and τ = 0, 1, 2, . . .,

E

[ ∞∑
t=τ

It(Ãt; (At, Ot+1))
∣∣∣Hτ

]
≤ Iτ (E ;A?).

We omit the proof of Corollary 1 as it follows directly by applying the preceding inequality to the following generalization
that applies to any target action.

Corollary 2. For all β > 0, target actions Ã, and τ = 0, 1, 2, . . .,

Eτ

[ ∞∑
t=τ

It(Ãt; (At, Ot+1))

]
≤ Lβ(Ã|Hτ ).

Proof.
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Eτ

[ ∞∑
t=τ

It(Ãt; (At, Ot+1))

]
≤ Eτ

[ ∞∑
t=τ

Lβ(Ãt|Ht)− Et
[
Lβ(Ãt+1|Ht+1)

]]

=

∞∑
t=τ

Eτ
[
Lβ(Ãt|Ht)

]
− Eτ

[
Et
[
Lβ(Ãt+1|Ht+1)

]]
= Eτ

[
Lβ(Ãτ |Hτ )

]
+

∞∑
t=τ+1

Eτ
[
Lβ(Ãt|Ht)

]
−
∞∑
t=τ

Eτ
[
Lβ(Ãt+1|Ht+1)

]
= Lβ(Ãτ |Hτ ) +

∞∑
t=τ+1

Eτ
[
Lβ(Ãt|Ht)

]
−

∞∑
t=τ+1

Eτ
[
Lβ(Ãt|Ht)

]
= Lβ(Ãτ |Hτ ) ≤ Lβ(Ã|Hτ )

where the steps follow as Lemma 2, linearity of expectation, the tower property, and the fact that Ãτ is the minimizer
of Lβ(·|Hτ ), by definition.

Let Γ be a constant such that

Γ ≥ Et[r(Ã)− r(A)]2

It(Ã;A,O)
,

for all histories Ht, target actions Ã, if the executed action A is an independent sample drawn from the marginal distribution
of Ã, and O is the resulting observation. Thus, Γ is an upper bound on the information ratio (Russo & Van Roy, 2014; 2016;
2018a) for which existing information-theoretic analyses of worst-case finite-arm bandits and linear bandits provide explicit
values of Γ that satisfy this condition.

We can now establish our main results. We omit the proof of Theorem 1 as it is a special case of our subsequent result.

Theorem 1. If β = 1−γ2

(1−γ)2Γ then, for all τ = 0, 1, 2, . . .,

Eτ

[ ∞∑
t=τ

γt−τ (r(A?)− r(At))

]
≤ 2

√
ΓIτ (E ;A?)

1− γ2
.

In a complex environment with many actions, I(E ;A?) can be extremely large, rendering the above result somewhat vacuous
under such circumstances. The next result offers a generalization, establishing a regret bound that can depend on the
information content of any target action, including of course those that are much simpler than A?.

Theorem 2. If β = 1−γ2

(1−γ)2Γ then, for all target actions Ã and τ = 0, 1, 2, . . .,

Eτ

[ ∞∑
t=τ

γt−τ (r(A?)− r(At))

]
≤ 2

√
ΓIτ (E ; Ã)

1− γ2
+

2ε

1− γ
,

where ε =
√
Eτ [(r(A?)− r(Ã)2].

Proof.
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From the inequalities satisfied by Γ, the Cauchy-Schwartz inequality, and Corollary 2, we have

Eτ

[ ∞∑
t=τ

γt−τ (r(Ãt)− r(At))

]
≤Eτ

[ ∞∑
t=τ

γt−τ
√

ΓIτ (Ãt; (At, Ot+1))

]

≤
∞∑
t=τ

√
γ2(t−τ)Γ

√√√√ ∞∑
t=τ

Eτ
[
Iτ (Ãt; (At, Ot+1))

]

≤

√√√√ΓLβ(Ã|Hτ )

∞∑
t=0

γ2t

=

√
ΓLβ(Ã|Hτ )

1− γ2
.

Since Lβ(Ãt|Ht) ≥ 0, √
Et
[
(r(A?)− r(Ãt))2

]
≤ (1− γ)

√
ΓLβ(Ãt|Ht)

1− γ2
.

Further, applying Jensen’s inequality to the left-hand side and using the fact that Ãt minimizes Lβ(Ãt|Ht) on the
right-hand side,

Et
[
r(A?)− r(Ãt)

]
≤ (1− γ)

√
ΓLβ(Ã|Ht)

1− γ2
.

Lemma 1 implies that
Eτ [Lβ(Ã|Ht)] ≤ Lβ(Ã|Hτ ),

for all t ≥ τ , and therefore, by Jensen’s inequality,

Eτ
[
r(A?)− r(Ãt)

]
≤ (1− γ)Eτ

√ΓLβ(Ã|Ht)

1− γ2

 ≤ (1− γ)

√√√√ΓEτ
[
Lβ(Ã|Ht)

]
1− γ2

≤ (1− γ)

√
ΓLβ(Ã|Hτ )

1− γ2
.

It follows that

Eτ

[ ∞∑
t=τ

γt−τ (r(A?)− r(Ãt))

]
≤

√
ΓLβ(Ã|Hτ )

1− γ2

≤

√
Γ(Iτ (E ; Ã) + βε2)

1− γ2

≤

√
ΓIτ (E ; Ã)

1− γ2
+

ε

1− γ
.

Applying these same steps, we complete the above bound as

Eτ

[ ∞∑
t=τ

γt−τ (r(Ãt)− r(At))

]
≤

√
ΓIτ (E ; Ã)

1− γ2
+

ε

1− γ
.

Putting everything together, we have
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Eτ

[ ∞∑
t=τ

γt−τ (r(A?)− r(At))

]
= Eτ

[ ∞∑
t=τ

γt−τ (r(A?)− r(Ãt) + r(Ãt)− r(At))

]

= Eτ

[ ∞∑
t=τ

γt−τ (r(A?)− r(Ãt))

]
+ Eτ

[ ∞∑
t=τ

γt−τ (r(Ãt)− r(At))

]

≤ 2

√
ΓIτ (E ; Ã)

1− γ2
+

2ε

1− γ
.

D. Undiscounted Regret Analysis
In this section, we derive a variant of Theorem 2 where performance shortfall is measured by the expected cumulative regret
across a finite horizon. Consider a fixed time horizon T and observe the analogous result to Corollary 2:

Corollary 3. For all β > 0, target actions Ã, and τ = 0, 1, 2, . . .,

Eτ

[
T+τ∑
t=τ

It(Ãt; (At, Ot+1))

]
≤ Lβ(Ã|Hτ ).

Proof.

Eτ

[
T+τ∑
t=τ

It(Ãt; (At, Ot+1))

]
≤ Eτ

[
T+τ∑
t=τ

Lβ(Ãt|Ht)− Et
[
Lβ(Ãt+1|Ht+1)

]]

=

T+τ∑
t=τ

Eτ
[
Lβ(Ãt|Ht)

]
− Eτ

[
Et
[
Lβ(Ãt+1|Ht+1)

]]
= Eτ

[
Lβ(Ãτ |Hτ )

]
+

T+τ∑
t=τ+1

Eτ
[
Lβ(Ãt|Ht)

]
−
T+τ∑
t=τ

Eτ
[
Lβ(Ãt+1|Ht+1)

]

= Lβ(Ãτ |Hτ ) +

T+τ∑
t=τ+1

Eτ
[
Lβ(Ãt|Ht)

]
−
T+τ+1∑
t=τ+1

Eτ
[
Lβ(Ãt|Ht)

]
= Lβ(Ãτ |Hτ )− Eτ

[
Lβ(ÃT+τ+1|HT+τ+1)

]
≤ Lβ(Ãτ |Hτ ) ≤ Lβ(Ã|Hτ )

where the steps follow as Lemma 2, linearity of expectation, the tower property, the non-negativity ofLβ(Ãt|Ht) ≥ 0,
and the fact that Ãτ is the minimizer of Lβ(·|Hτ ), by definition.

With Corollary 3, we may introduce the undiscounted analog to Theorem 2:

Theorem 3. If β = T
Γ then, for all target actions Ã and τ = 0, 1, 2, . . .,

Eτ

[
T+τ∑
t=τ

r(A?)− r(At)

]
≤ 2

√
ΓT Iτ (E ; Ã) + 2Tε,
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where ε =
√

Eτ [(r(A?)− r(Ã)2].

Proof.

From the inequalities satisfied by Γ, the Cauchy-Schwartz inequality, and Corollary 3, we have

Eτ

[
T+τ∑
t=τ

r(Ãt)− r(At)

]
≤
√

ΓEτ

[
T+τ∑
t=τ

√
Iτ (Ãt; (At, Ot+1))

]

≤

√√√√ΓT

T+τ∑
t=τ

Eτ
[
Iτ (Ãt; (At, Ot+1))

]
≤
√

ΓTLβ(Ã|Hτ )

Since Lβ(Ãt|Ht) ≥ 0, √
Et
[
(r(A?)− r(Ãt))2

]
≤ T−1

√
ΓTLβ(Ãt|Ht).

Further, applying Jensen’s inequality to the left-hand side and using the fact that Ãt minimizes Lβ(Ãt|Ht) on the
right-hand side,

Et
[
r(A?)− r(Ãt)

]
≤ T−1

√
ΓTLβ(Ã|Ht).

Lemma 1 implies that
Eτ [Lβ(Ã|Ht)] ≤ Lβ(Ã|Hτ ),

for all t ≥ τ , and therefore, by Jensen’s inequality,

Eτ
[
r(A?)− r(Ãt)

]
≤ T−1Eτ

[√
ΓTLβ(Ã|Ht)

]
≤ T−1

√
ΓTEτ

[
Lβ(Ã|Ht)

]
≤ T−1

√
ΓTLβ(Ã|Hτ ).

It follows that

Eτ

[
T+τ∑
t=τ

r(A?)− r(Ãt)

]
≤
√

ΓTLβ(Ã|Hτ )

≤
√

ΓT (Iτ (E ; Ã) + βε2)

≤
√

ΓT Iτ (E ; Ã) + Tε.

Applying these same steps, we complete the above bound as

Eτ

[
T+τ∑
t=τ

r(Ãt)− r(At)

]
≤
√

ΓT Iτ (E ; Ã) + Tε.

Putting everything together, we have
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Eτ

[
T+τ∑
t=τ

r(A?)− r(At)

]
= Eτ

[
T+τ∑
t=τ

r(A?)− r(Ãt) + r(Ãt)− r(At)

]

= Eτ

[
T+τ∑
t=τ

r(A?)− r(Ãt)

]
+ Eτ

[
T+τ∑
t=τ

r(Ãt)− r(At)

]

≤ 2

√
ΓT Iτ (E ; Ã) + 2Tε.
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