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Appendix

A. Convergence of SGD and AdaGrad with biased gradients estimates
For the sake of our analysis, we find it helpful to first study the convergence of SGD and AdaGrad when the stochastic
estimates of the subgradients may be biased and noisy (Algorithms 4 and 5.)

Algorithm 4 Biased SGD
Require: Dataset S = (z1, . . . , zn) 2 Z

n, convex set X , mini-batch size b, number of iterations T .
1: Choose arbitrary initial point x0

2 X ;
2: for k = 0; k  T � 1; k = k + 1 do
3: Sample a batch Dk := {zk

i
}
b

i=1 from S uniformly with replacement;
4: Set gk := 1

b

P
b

i=1 g
k,i where gk,i 2 @F (xk; zk

i
);

5: Set g̃k be the biased estimate of gk;
6: Set ĝk := g̃k + ⇠k where ⇠k is a zero-mean random variable, independent from previous information;
7: xk+1 := proj

X
(xk

� ↵kĝk);
8: end for
9: Return: xT := 1

T

P
T

k=1 x
k.

Algorithm 5 Biased Adagrad
Require: Dataset S = (z1, . . . , zn) 2 Z

n, convex set X , mini-batch size b, number of iterations T .
1: Choose arbitrary initial point x0

2 X ;
2: for k = 0; k  T � 1; k = k + 1 do
3: Sample a batch Dk := {zk

i
}
b

i=1 from S uniformly with replacement;
4: Set g̃k be the biased estimate of gk;
5: Set ĝk := g̃k + ⇠k where ⇠k is a zero-mean random variable, independent from previous information;

6: Set Hk = diag
⇣P

k

i=1 ĝ
iĝi

T
⌘ 1

2
/diam1(X );

7: xk+1 = proj
X
(xk

�H�1
k

ĝk) where the projection is with respect to k·k
Hk

;
8: end for
9: Return: xT := 1

T

P
T

k=1 x
k.

Also, let
biask·k(g̃

k) = EDk

⇥��g̃k � gk
��⇤

be the bias of g̃k with respect to a general norm k·k. The next two theorems characterize the convergence of these two
algorithms using this term.
Theorem 6. Consider the biased SGD method (Algorithm 4) with a non-increasing sequence of stepsizes {↵k}

T�1
k=0 . Then

for any x?
2 argmin

X
f , we have

E[f(xT )� f(x?)] 
diam2(X )2

2T↵T�1
+

1

2T

T�1X

k=0

E[↵k

��ĝk
��2
2
] +

diamk·k⇤
(X )

T

T�1X

k=0

biask·k(g̃
k).

Proof We first consider the progress of a single step of the gradient-projected stochastic gradient method. We have

1

2
kxk+1

� x?
k
2
2 

1

2
kxk

� x?
k
2
2 � ↵khĝ

k, xk
� x?

i+
↵2
k

2
kĝkk22

=
1

2
kxk

� x?
k
2
2 � ↵khf

0(xk), xk
� x?

i+ ↵kEk +
↵2
k

2
kĝkk22,

where the error random variable Ek is given by

Ek := hf 0(xk)� gk, xk
� x?

i+ hgk � g̃k, xk
� x?

i+ hg̃k � ĝk, xk
� x?

i.
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Using that hf 0(xk), xk
� x?

i  f(xk)� f(x?) then yields

f(xk)� f(x?) 
1

2↵k

�
kxk

� x?
k
2
2 � kxk+1

� x?
k
2
2

�
+

↵k

2
kĝkk22 + Ek.

Summing for k = 0, . . . , T � 1, by rearranging the terms and using that the stepsizes are non-increasing, we obtain

TX

k=1

[f(xk)� f(x?)] 
diam(X )2

2↵T�1
+

T�1X

k=0

↵k

2
kĝkk22 +

T�1X

k=0

Ek. (12)

Taking expectations from both sides, we have

E[Ek] = E
⇥
hf 0(xk)� gk, xk

� x?
i
⇤
+ E

⇥
hgk � g̃k, xk

� x?
i
⇤
+ E

⇥
hg̃k � ĝk, xk

� x?
i
⇤

= E
⇥
hgk � g̃k, xk

� x?
i
⇤

 biask·k(g̃
k) · diamk·k⇤

(X ),

where the second equality comes from the fact that the two other expectations are zero and the last inequality follows from
the Holder’s inequality.
Remark This result holds in the case that ↵k’s are adaptive and depend on observed gradients.

Next theorem states the convergence of biased Adagrad (Algorithm 5).

Theorem 7. Consider the biased Adagrad method (Algorithm 5). Then for any x?
2 argmin

X
f , we have

E[f(xT )� f(x?)] 
diam1(X )

T

dX

j=1

E

2

4

vuut
T�1X

k=0

(ĝk
j
)2

3

5+
diamk·k⇤

(X )

T

T�1X

k=0

biask·k(g̃
k).

Proof Recall that xk+1 is the projection of xk
� H�1

k
ĝk into X with respect to k.kHk . Hence, since x?

2 X and
projections are non-expansive, we have

��xk+1
� x?

��2
Hk


��xk

�H�1
k

ĝk � x?
��2
Hk

. (13)

Now, expanding the right hand side yields

1

2

��xk+1
� x?

��2
Hk


1

2

��xk
� x?

��2
Hk

� hĝk, xk
� x?

i+
1

2

��ĝk
��2
H

�1
k

=
1

2

��xk
� x?

��2
Hk

� hgk, xk
� x?

i+ hgk � ĝk, xk
� x?

i+
1

2

��ĝk
��2
H

�1
k

.

Taking expectation and using that E
⇥
hgk, xk

� x?
i
⇤
� E

⇥
f(xk)� f(x?)

⇤
from convexity along with the fact that

E
⇥
hgk � ĝk, xk

� x?
i
⇤
= E

⇥
hgk � g̃k, xk

� x?
i
⇤
, we have

1

2
E
h��xk+1

� x?
��2
Hk

i

 E

1

2

��xk
� x?

��2
Hk

� (f(xk)� f(x?)) +
1

2

��ĝk
��2
H

�1
k

�
+ E

⇥
hgk � g̃k, xk

� x?
i
⇤
.

Thus, using Holder’s inequality, we have

f(xk)� f(x?) 
1

2
E
h��xk

� x?
��2
Hk

�
��xk+1

� x?
��2
Hk

+
��ĝk
��2
H

�1
k

i
+ biask·k(g̃

k) · diamk·k⇤
(X ).

Now the claim follows using standard techniques for Adagrad (as for example Corollary 4.3.8 in (Duchi, 2018)).
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B. Proofs of Section 3
B.1. Proof of Lemma 3.1

The proof mainly follows from Theorem 1 in (Abadi et al., 2016) where the authors provide a tight privacy bound for
mini-batch SGD with bounded gradient using the Moments Accountant technique. Here we do not have the bounded
gradient assumption. However, recall that we have

ĝk =
1

b

bX

i=1

g̃k,i +

p
log(1/�)

b"
⇠k, g̃k,i = ⇡Ak(g

k,i),

where
��g̃k,i

��
Ak

 1 and ⇠k
iid
⇠ N(0, A�1

k
). Note that for any Borel-measurable set O ⇢ Rd, A1/2

k
O is also Borel-measurable,

and furthermore, we have

P
�
ĝk 2 O

�
= P

⇣
A1/2

k
ĝk 2 A1/2

k
O
⌘
= P

 
1

b

bX

i=1

A1/2
k

g̃k,i +

p
log(1/�)

b"
A1/2

k
⇠k 2 A1/2

k
O

!
,

where, now,
���A1/2

k
g̃k,i
���
2
 1 and A1/2

k
⇠k

iid
⇠ N(0, Id) and we can use Theorem 1 in (Abadi et al., 2016).

B.2. The proof deferred from Example 1

Note that rF (x; z) = rg(x) + Z, and hence we could take G(Z,C) = sup
x2X

krg(x)kC + kZkC . As a result, by
Minkowski inequality, we have

E [G(Z,C)p]1/p  sup
x2X

krg(x)kC + E [kZk
p

C
]
1/p

 µ+ sup
x2X

E [kZk
p

C
]
1/p

. (14)

Now note that C1/2Z is (C11�2
1 , . . . , Cdd�2

d
) sub-Gaussian. Also, we also know that if X is �2 sub-gaussian, then

E[|X|
p]1/p  O(�

p
p), which implies the desired result.

B.3. Intermediate Results

Before discussing the proofs of Theorems 1 and 2, we need to state a few intermediate results which will be used in our
analysis.

First, recall the definition of biask·k(g̃k) from Section A:

biask·k(g̃
k) = EDk

⇥��g̃k � gk
��⇤

Here, we first bound the bias term. To do so, we use the following lemma:

Lemma B.1 (Lemma 3, (Barber & Duchi, 2014)). Consider the ellipsoid projection operator ⇡D. Then, for any random
vector X with E[kXk

p

C
]1/p  G, we have

EX [k⇡D(X)�Xk
C
] 

Gp

(p� 1)Bp�1
.

We will find this lemma useful in our proofs. Another useful lemma that we will use it is the following:

Lemma B.2. Let a1, a2, . . . be an arbitrary sequence in R. Let a1:k = (a1, . . . , ai) 2 Ri. Then

nX

k=1

a2
k

ka1:kk2
 2 ka1:nk2 .

Proof We proceed by induction. The base case that n = 1 is immediate. Now, let us assume the result holds through
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index n� 1, and we wish to prove it for index n. The concavity of
p
· guarantees that

p
b+ a 

p
b+ 1

2
p

b
a, and so

nX

k=1

a2
k

ka1:kk2
=

n�1X

k=1

a2
k

ka1:kk2
+

a2
n

ka1:nk2

 2 ka1:n�1k2 +
a2
n

ka1:nk2
= 2
q
ka1:nk

2
2 � a2

n
+

a2
n

ka1:nk2
 2 ka1:nk2 ,

where the first inequality follows from the inductive hypothesis and the second one uses the concavity of
p
·.

B.4. Proof of Theorem 1

We first state a more general version of the theorem here:
Theorem 8. Let S be a dataset with n points sampled from distribution P . Let C also be a diagonal and positive definite
matrix. Consider running Algorithm 1 with T = cn2/b2, Ak = C/B2 where B > 0 is a positive real number and c is given
by Lemma 3.1. Then, with probability 1� 1/n, we have

E[f(xT ;S)�min
x2X

f(x;S)]  O(1)

0

@diam2(X )

T

vuut
TX

k=1

E[kgkk22]

+
diam2(X )B

p
tr(C�1) log(1/�)

n"
+

diamk·kC�1
(X ) (2G2p(C))p

(p� 1)Bp�1

!
,

where the expectation is taken over the internal randomness of the algorithm.

Proof Let x?
2 argmin

x2X
f(x;S). Also, for simplicity, we suppress the dependence of f on S throughout the proof.

First, by Lemma 3.2, we know that with probability at least 1� 1/n, we have

Ĝp(S;C)  2G2p(C),

We consider the setting that this bound holds. Now, note that by Theorem 6 we have

E[f(xT )� f(x?)] 
diam2(X )2

2T↵T�1
+

1

2T

T�1X

k=0

E[↵k

��ĝk
��2
2
] +

diamk·kC�1
(X )

T

T�1X

k=0

biask·kC
(g̃k). (15)

Using Lemma B.1, we immediately obtain the following bound

biask·kC
(g̃k) = E

⇥��g̃k � gk
��
C

⇤


Ĝp(S;C)p

(p� 1)Bp�1


(2G2p(C))p

(p� 1)Bp�1
(16)

Plugging (16) into (15), we obtain

E[f(xT )� f(x?)] 
diam2(X )2

2T↵T�1
+

1

2T

T�1X

k=0

E[↵k

��ĝk
��2
2
] +

diamk·kC�1
(X ) (2G2p(C))p

(p� 1)Bp�1
. (17)

Next, we substitute the value of ↵k and use Lemma B.2 to obtain

T�1X

k=0

E[↵k

��ĝk
��2
2
]  2diam2(X )

vuut
TX

k=1

E[kĝkk22],

and by replacing it in (17), we obtain

E[f(xT )� f(x?)] 
3diam2(X )

2T

vuut
TX

k=1

E[kĝkk22] +
diamk·kC�1

(X ) (2G2p(C))p

(p� 1)Bp�1
. (18)
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Finally, note that

vuut
TX

k=1

E[kĝkk22] =

vuut
TX

k=1

E[kg̃kk22] +
log(1/�)

b2✏2

T�1X

k=0

tr(A�1
k

)

=

vuut
TX

k=1

E[kg̃kk22] + T
B2 log(1/�) tr(C�1)

b2✏2


p
2

0

@

vuut
TX

k=1

E[kg̃kk22] +
B
p
log(1/�) tr(C�1)

b✏

p

T

1

A , (19)

where the last inequality follows from the fact that
p
x+ y 

p
2
�p

x+
p
y
�

for nonnegative real numbers x and y.
Plugging (19) into (18) completes the proof.

B.5. Proof of Theorem 2

We first state the more general version of theorem:

Theorem 9. Let S be a dataset with n points sampled from distribution P . Let C also be a diagonal and positive definite
matrix. Consider running Algorithm 1 with T = cn2/b2 Ak = C/B2 where B > 0 is a positive real number and c is given
by Lemma 3.1. Then, with probability 1� 1/n, we have

E[f(xT ;S)�min
x2X

f(x;S)]  O(1)

0

@diam1(X )

T

dX

j=1

E

2

4

vuut
TX

k=1

(gk
j
)2

3

5

+
diam1(X )B

p
log(1/�)(

P
d

j=1 C
�

1
2

jj
)

n"
+

diamk·kC�1
(X )(2G2p(C))p

(p� 1)Bp�1

1

A ,

where the expectation is taken over the internal randomness of the algorithm.

Proof Similar to the proof of Theorem 1, we choose x?
2 argmin

x2X
f(x;S). We suppress the dependence of f on S

throughout this proof as well. Again, we focus on the case that the bound

Ĝp(S;C)  2G2p(C),

which we know its probability is at least 1� 1/n.

Using Theorem 7, we have

E[f(xT )� f(x?)] 
diam1(X )

T

dX

j=1

E

2

4

vuut
T�1X

k=0

(ĝk
j
)2

3

5+
diamk·kC�1

(X )

T

T�1X

k=0

biask·kC
(g̃k).

Similar to the proof of Theorem 1, and by using Lemma B.1, we could bound the second term with

diamk·kC�1
(X )(2G2p(C))p

(p� 1)Bp�1
.
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Now, it just suffices to bound the first term. Note that

dX

j=1

E

2

4

vuut
TX

k=1

(ĝk
j
)2

3

5 =
dX

j=1

E

2

4

vuut
TX

k=1

(g̃k
j
+ ⇠k

j
)2

3

5



dX

j=1

E

2

4

vuut
TX

k=1

2
�
(g̃k

j
)2 + (⇠k

j
)2
�
3

5

 2
dX

j=1

0

@E

2

4

vuut
TX

k=1

(g̃k
j
)2

3

5+ E

2

4

vuut
TX

k=1

(⇠k
j
)2

3

5

1

A (20)

 2
dX

j=1

0

@E

2

4

vuut
TX

k=1

(g̃k
j
)2

3

5+

vuutE
"

TX

k=1

(⇠k
j
)2

#1

A (21)

 2
dX

j=1

E

2

4

vuut
TX

k=1

(g̃k
j
)2

3

5+ 2B
p

T log(1/�)

P
d

j=1 C
�1/2
jj

b✏
, (22)

where (20) is obtained by using
p
x+ y 

p
2
�p

x+
p
y
�

with x =
P

T

k=1(g̃
k

j
)2 and y =

P
T

k=1(⇠
k

j
)2, and (21) follows

from E [X] 
p
E [X2] with X =

qP
T

k=1(⇠
k

j
)2.

C. Proof of Theorem 3
We begin with the following lemma, which upper bounds the bias from truncation.
Lemma C.1. Let Z be a random vector satisfying Definition 4.1. Let �2

j
= E[z2

j
] and � � 4r�j log r. Then we have

|E[min(z2
j
,�2)]� E[z2

j
]|  �2

j
/8.

Proof Let �2
j
= E[z2

j
]. To upper bound the bias, we need to upper bound P (z2

j
� t�2). We have that zj is r2�2

j
-sub-

Gaussian therefore
P (z2

j
� tr2�2

j
)  2e�t.

Thus, if Y = |min(z2
j
,�2)� z2

j
| then P (Y � tr2�2

j
)  2e�t hence

E[Y ] =

Z
1

0
P (Y � t)dt

=

Z
1

0
P (z2

j
� �2 + t)dt



Z
1

0
2e�(�2+t)/r2�2

j dt

 2r2�2
j
e��2

/r
2
�
2
j  �2

j
/8,

where the last inequality follows since � = 4r�j log r.

The following lemma demonstrates that the random variable Yi = min(z2
i,j
,�2) quickly concentrates around its mean.

Lemma C.2. Let Z be a random vector satisfying Definition 4.1. Then with probability at least 1� �,
�����
1

n

nX

i=1

min(z2
i,j
,�2)� E[min(z2

j
,�2)]

����� 
2r2�2

j

p
log(2/�)

p
n

.
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Proof Let Yi = min(z2
i,j
,�2). Since zj is r2�2

j
-sub-Gaussian, we get that z2

j
is r4�4

j
-sub-exponential, meaning that

E[(z2
j
)k]1/k  O(k)r2�2

j
for all k � 1. Thus Yi is also r4�4

j
-sub-exponential, and using Bernstein’s inequality (Vershynin,

2019, Theorem 2.8.1), we obtain

P

 �����
1

n

nX

i=1

Yi � E[Yi]

����� � t

!
 2 exp

 
�min

(
nt2

2r4�4
j

,
nt

r2�2
j

)!
.

Setting t = r2�2
j

2
p

log(2/�)
p
n

yields the result.

Given Lemmas C.1 and C.2, we are now ready to finish the proof of Theorem 3.

Proof of Theorem 3 First, privacy follows immediately, as each iteration t is ("/T, �/T )-DP (using standard properties
of the Gaussian mechanism (Dwork & Roth, 2014)), so basic composition implies that the final output is (", �)-DP. We
now proceed to prove the claim about utility. Let ⇢2

t
be the truncation value at iterate t, i.e., ⇢t = 4r log r/2t�1. First, note

that Lemma C.2 implies that with probability 1� �/2 for every j 2 [d]
�����
1

n

nX

i=1

min(z2
i,j
, ⇢2

t
)� E[min(z2

j
, ⇢2

t
)]

����� 
2r2�2

j

p
log(8d/�)
p
n

 �2
j
/10,

and similar arguments show that
������

2
j
�

1

n

nX

i=1

z2
i,j

����� 
2r2�2

j

p
log(8d/�)
p
n

 �2
j
/10,

where the last inequality follows since n � 400r4 log(8d/�). Moreover, for �j such that ⇢t � 4r�j log r, Lemma C.1
implies that

|E[min(z2
j
, ⇢2

t
)� �2

j
|  �2

j
/8.

Let us now prove that if �j = 2�k then its value will be set at most at iterate t = k. Indeed at iterate t = k we have
⇢t = 4r2�k log r � 4r�j log r hence we have that using the triangle inequality and standard concentration resutls for
Gaussian distributions that with probability 1� �/2

|�̂2
k,j

� �2
j
|  �2

j
/5 +

16r2T
p
d log2 r log(T/�) log(4d/�)

22kn"
 �2

j
/4,

where the last inequality follows since n" � 1000r2T
p
d log2 r log(T/�) log(4d/�). Thus, in this case we get that

�̂2
k,j

� �2
j
/2 � 2�k�1 hence the value of coordinate j will best set at most at iterate k hence �̂j � �j/2.

On the other hand, we now assume that �j = 2�k and show that the value of �̂j cannot be set before the iterate t = k�3 and
hence �̂j  2�k+3

 8�j . The above arguments show that at iterate t we have �̂2
t,j

 3/2�2
j
+ 1

10·22k  2�2k+1+ 1
10·22k 

2�2k+2 hence the first part of the claim follows.

To prove the second part, first note that zj is r�j-sub-Gaussian, hence using Theorem 2, it is enough to show that
G2p(Ĉ)  O(G2p(C)) and that

P
d

j=1 Ĉ
�1/2
j

 O(1) ·
P

d

j=1 C
�1/2
j

where C = (r�j)�4/3 is the optimal choice of C as
in the bound (6). The first condition immediately follows from the definition of G2p since Ĉj  Cj for all j 2 [d]. The
latter condition follows immediately since 1

2 max(�j , 1/d2)  �̂j , implying

dX

j=1

Ĉ�1/2
j

 O(r�2/3)
dX

j=1

�̂�2/3
j

 O(r�2/3)
dX

j=1

��2/3
j

+ 1/d  O(r�2/3)
dX

j=1

��2/3
j

.

D. Proofs of Section 5 (Lower bounds)
D.1. Proof of Proposition 1

We begin with the following lemma which gives a lower bound for the sign estimation problem when �j = � for all
j 2 [d]. Asi et al. (2021) use similar result to prove lower bounds for private optimization over `1-bounded domains. For
completeness, we give a proof in Section D.2.
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Lemma D.1. Let M be (", �)-DP and S = (z1, . . . , zn) where zi 2 Z = {��,�}d. Then

sup
S2Zn

E

2

4
dX

j=1

|z̄j |1{sign(Mj(S)) 6= sign(z̄j)}

3

5 � min

✓
�d,

�d3/2

n" log d

◆
.

We are now ready to complete the proof of Proposition 1 using bucketing-based techniques. First, we assume without loss of
generality that �j  1 for all 1  j  d (otherwise we can divide by max1jd �j). Now, we define buckets of coordinates
B0, . . . , BK such that

Bi = {j : 2�i�1
 �j  2�i

}.

For i = K, we set BK = {j : �j  2�K
}. We let �max(Bi) = maxj2Bi �j denote the maximal value of �j inside

Bi. Similarly, we define �min(Bi) = minj2Bi �j . Focusing now on the i’th bucket, since �j � �min(Bi) for all j 2 Bi,
Lemma D.1 now implies (as d log2 d  (n")2) the lower bound

sup
S2Zn

E

2

4
X

j2Bi

|z̄j |1{sign(Mj(S)) 6= sign(z̄j)}

3

5 �
�min(Bi)|Bi|

3/2

n" log d
.

Therefore this implies that

sup
S2Zn

E

2

4
dX

j=1

|z̄j |1{sign(Mj(S)) 6= sign(z̄j)}

3

5 � max
0iK

�min(Bi)|Bi|
3/2

n" log d
.

To finish the proof of the theorem, it is now enough to prove that

dX

j=1

�2/3
j

 O(1) log d max
0iK

�min(Bi)
2/3

|Bi|.

We now have

dX

j=1

�2/3
j



KX

i=0

|Bi|�max(Bi)
2/3

 K max
0iK�1

|Bi|�max(Bi)
3/2

 4K max
0iK�1

|Bi|�min(Bi)
3/2,

where the second inequality follows since the maximum cannot be achieved for i = K given our choice of K = 10 log d,
and the last inequality follows since �max(Bi)  2�min(Bi) for all i  K � 1. This proves the claim.

D.2. Proof of Lemma D.1

Instead of proving lower bounds on the error of private mechanisms, it is more convenient for this result to prove lower
bounds on the sample complexity required to achieve a certain error. Given a mechanism M and data S 2 Z

n, define the
error of the mechanism to be:

Err(M,S) = E

2

4
dX

j=1

|z̄j |1{sign(Mj(S)) 6= sign(z̄j)}

3

5 .

The error of a mechanism for datasets of size n is Err(M,n) = sup
S2Zn Err(M,S).

We let n?(↵, ") denote the minimal n such that there is an (", �)-DP (with � = n�!(1)) mechansim M such that
Err(M,n?(↵, "))  ↵. We prove the following lower bound on the sample complexity.
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Proposition 3. If kzk
1

 1 then

n?(↵, ") � ⌦(1) ·
d3/2

↵" log d
.

To prove this result, we first state the following lower bound for constant ↵ and " which follows from Theorem 3.2 in (Talwar
et al., 2015).

Lemma D.2 (Talwar et al. (2015), Theorem 3.2). Under the above setting,

n?(↵ = d/4, " = 0.1) � ⌦(1) ·

p
d

log d
.

We now prove a lower bound on the sample complexity for small values of ↵ and " which implies Proposition 3.

Lemma D.3. Let "0  0.1. For ↵  ↵0/2 and "  "0/2,

n?(↵, ") �
↵0"0
↵"

n?(↵0, "0).

Proof Assume there exists an (", �)-DP mechanism M such that Err(M,n)  ↵. Then we now show that there is M 0 that
is ("0, 2"0

"
�)-DP with n0 = ⇥( ↵"

↵0"0
n) such that Err(M 0, n0)  ↵0. This proves the claim. Let us now show how to define

M 0 given M . Let k = blog(1 + "0)/"c. For S 0
2 Z

n
0
, we define S to have k copies of S 0 and (n� kn0)/2 users which

have zi = (�, . . . ,�) and (n � kn0)/2 users which have zi = (��, . . . ,��). Then we simply define M 0(S 0) = M(S).
Notice that now we have

z̄ =
kn0

n
z̄0.

Therefore for a given S
0 we have that:

Err(M 0,S 0) =
n

kn0
Err(M,S) 

n↵

kn0

Thus if n0
�

2n↵
k↵0

then
Err(M 0,S 0)  ↵0.

Thus it remains to argue for the privacy of M 0. By group privacy, M 0 is (k", e
k"

�1
e"�1 �)-DP, hence our choice of k implies that

k"  "0 and e
k"

�1
e"�1 � 

2"0
"
�.

D.3. Proof of Theorem 5

We assume without loss of generality that �j  1 for all 1  j  d (otherwise we can divide by max1jd �j). We follow
the bucketing-based technique we had in the proof of Proposition 1. We define buckets of coordinates B0, . . . , BK such that

Bi = {j : 2�i�1
 �j  2�i

}.

For i = K, we set BK = {j : �j  2�K
}. We let �max(Bi) = maxj2Bi �j denote the maximal value of �j inside

Bi. Similarly, we define �min(Bi) = minj2Bi �j . Focusing now on the i’th bucket, since �j � �min(Bi) for all j 2 Bi,
Proposition 2 now implies the lower bound

sup
S2Zn

E [f(M(S);S)� f(x?

S
;S)] � min

✓
�min(Bi)

p
|Bi|,

|Bi|�min(Bi)

n"

◆
.

Since d  (n")2, taking the maximum over buckets, we get that the error of any mechanism is lower bounded by:

sup
S2Zn

E [f(M(S);S)� f(x?

S
;S)] � max

0iK

|Bi|�min(Bi)

n"
.
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To finish the proof, we only need to show now that
P

d

j=1 �j

log d
 O(1) max

0iK

|Bi|�min(Bi).

Indeed, we have that

dX

j=1

�j 

KX

i=0

|Bi|�max(Bi)

 K max
0iK�1

|Bi|�max(Bi)

 2K max
0iK�1

|Bi|�min(Bi),

where the second inequality follows since the maximum cannot be achieved for i = K given our choice of K = 10 log d,
and the last inequality follows since �max(Bi)  2�min(Bi) for all i  K � 1. The claim follows.


