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Abstract

We study adaptive methods for differentially pri-
vate convex optimization, proposing and analyz-
ing differentially private variants of a Stochastic
Gradient Descent (SGD) algorithm with adaptive
stepsizes, as well as the AdaGrad algorithm. We
provide upper bounds on the regret of both algo-
rithms and show that the bounds are (worst-case)
optimal. As a consequence of our development,
we show that our private versions of AdaGrad out-
perform adaptive SGD, which in turn outperforms
traditional SGD in scenarios with non-isotropic
gradients where (non-private) Adagrad provably
outperforms SGD. The major challenge is that
the isotropic noise typically added for privacy
dominates the signal in gradient geometry for
high-dimensional problems; approaches to this
that effectively optimize over lower-dimensional
subspaces simply ignore the actual problems that
varying gradient geometries introduce. In con-
trast, we study non-isotropic clipping and noise
addition, developing a principled theoretical ap-
proach; the consequent procedures also enjoy sig-
nificantly stronger empirical performance than
prior approaches.

1. Introduction

While the success of stochastic gradient methods for solving
empirical risk minimization has motivated their adoption
across much of machine learning, increasing privacy risks
in data-intensive tasks have made applying them more chal-
lenging (Dwork et al., 2006b): gradients can leak users’
data, intermediate models can compromise individuals, and
even final trained models may be non-private without sub-
stantial care. This motivates a growing line of work devel-
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oping private variants of stochastic gradient descent (SGD),
where algorithms guarantee differential privacy by perturb-
ing individual gradients with random noise (Duchi et al.,
2013; Smith & Thakurta, 2013a; Abadi et al., 2016; Duchi
et al., 2018; Bassily et al., 2019; Feldman et al., 2020). Yet
these noise addition procedures typically fail to reflect the
geometry underlying the optimization problem, which in
non-private cases is essential: for high-dimensional prob-
lems with sparse parameters, mirror descent and its vari-
ants (Beck & Teboulle, 2003; Nemirovski et al., 2009)
are essential, while in the large-scale stochastic settings
prevalent in deep learning, AdaGrad and other adaptive
variants (Duchi et al., 2011) provide stronger theoretical
and practical performance. Even more, methods that do
not adapt (or do not leverage geometry) can be provably
sub-optimal, in that there exist problems where their con-
vergence is much slower than adaptive variants that reflect
appropriate geometry (Levy & Duchi, 2019).

To address these challenges, we introduce PAGAN (Private
AdaGrad with Adaptive Noise), a new differentially pri-
vate variant of stochastic gradient descent and AdaGrad.
Our main contributions center on a few ideas. Standard
methods for privatizing adaptive algorithms that add iso-
metric (typically Gaussian) noise to gradients necessarily
reflect the worst-case behavior of functions to be optimized
and eliminate the geometric structure one might leverage
for improved convergence. By carefully adapting noise
to the actual gradients at hand, we can both achieve con-
vergence rates that reflect the observed magnitude of the
gradients—similar to the approach of Bartlett et al. (2007)
in the non-private case—which can yield marked improve-
ments over the typical guarantees that depend on worst-case
magnitudes. (Think, for example, of a standard normal vari-
able: its second moment is 1, while its maximum value is
unbounded.) Moreover, we propose a new private adaptive
optimization algorithm that analogizes AdaGrad, showing
that under certain natural distributional assumptions for the
problems—similar to those that separate AdaGrad from
non-adaptive methods (Levy & Duchi, 2019)—our private
versions of adaptive methods significantly outperform the
standard non-adaptive private algorithms. Additionally, we
prove several lower bounds that both highlight the impor-
tance of geometry in the problems and demonstrate the
tightness of the bounds our algorithms achieve.
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1.1. Related Work

Since the introduction of differential privacy (Dwork et al.,
2006b;a), differentially private empirical risk minimization
has been a subject of intense interest (Chaudhuri et al., 2011;
Bassily et al., 2014; Duchi et al., 2013; Smith & Thakurta,
2013b). The current standard approach to solving this prob-
lem is noisy SGD (Bassily et al., 2014; Duchi et al., 2013;
Abadi et al., 2016; Bassily et al., 2019; Feldman et al., 2020).
Current bounds focus on the standard Euclidean geometries
familiar from classical analyses of gradient descent (Zinke-
vich, 2003; Nemirovski et al., 2009), and the prototypical
result (Bassily et al., 2014; 2019) is that, for Lipschitz con-
vex optimization problems on the ¢5-ball in d-dimensions,
an e-differentially private version of SGD achieves excess
empirical loss O(%) given a sample of size n; this is mini-
max optimal. Alternative approaches use the stability of em-
pirical risk minimizers of (strongly) convex functions, and
include both output perturbation, where one adds noise to a
regularized empirical minimizer, and objective perturbation,
where one incorporates random linear noise in the objective
function before optimization (Chaudhuri et al., 2011). It
is worth noting that, although objective perturbation may
provide certain adaptivity properties to the geometry of the
problem, its privacy guarantees are limited to the smooth
and convex setting, hence it cannot be used in nonconvex
applications such as deep neural networks.

Given the success of private SGD for such Euclidean cases
and adaptive gradient algorithms for modern large-scale
learning, it is unsurprising that recent work attempts to in-
corporate adaptivity into private empirical risk minimization
(ERM) algorithms (Zhou et al., 2020; Kairouz et al., 2020).
In this vein, Zhou et al. (2020) propose a private SGD algo-
rithm where the gradients are projected to a low-dimensional
subspace—which is learned using public data—and Kairouz
et al. (2020) developed an e-differentially private variant of
Adagrad which (similarly) projects the gradient to a low rank
subspace. These works show that excess loss 6(7%6) < g—g
is possible whenever the rank of the gradients is small. Yet
these both work under the assumption that gradient lie in
(or nearly in) a low-dimensional subspace; this misses the
contexts for which adaptive algorithms (AdaGrad and its
relations) are designed (Duchi et al., 2011; McMahan &
Streeter, 2010). Indeed, most stochastic optimization algo-
rithms rely on particular dualities between the parameter
space and gradients; stochastic gradient descent requires
Euclidean spaces, while mirror descent works in an ¢; /£,
duality (that is, it is minimax optimal when optimizing over
an ¢;-ball while gradients belong to an ¢, ball). AdaGrad
and other adaptive algorithms, in contrast, are optimal in an
(essentially) dual geometry (Levy & Duchi, 2019), so that
for such algorithms, the interesting geometry is when the
parameters belong (e.g.) to an ¢, box and the gradients are
sparse—but potentially from a very high-rank space. Indeed,

as Levy & Duchi (2019) show, adaptive algorithms achieve
benefits only when the sets over which one optimizes are
quite different from ¢, balls; the private projection algo-
rithms in the papers by Kairouz et al. (2020) and Zhou
et al. (2020) achieve bounds that scale with the ¢5-radius of
the underlying space, suggesting that they may not enjoy
the performance gains one might hope to achieve using an
appropriately constructed and analyzed adaptive algorithm.

In more recent work, Yu et al. (2021) use PCA to decom-
pose gradients into two orthogonal subspaces, allowing sep-
arate learning rate treatments in the subspaces, and achieve
promising empirical results, but they provide no provable
convergence bounds. Also related to the current paper is
Pichapati et al.’s AdaClip algorithm (2020); they obtain par-
allels to the non-private convergence guarantees of Bartlett
et al. (2007) for private SGD. In contrast to our analysis here,
their analysis applies to smooth non-convex functions, while
our focus on convex optimization allows more complete con-
vergence guarantees and associated optimality results.

2. Preliminaries and notation

Before proceeding to the paper proper, we give notation.
Let Z be a sample space and P a distribution on Z. Given a
function F' : X x Z — R, convex in its first argument, and
adataset S = (z1,...,2,) € Z" of n points drawn i.i.d. P,
we wish to privately find the minimizer of the empirical loss

n

argmin f(x;S) = %ZF(LZ@) (1)

zeX i—1

We suppress dependence on S and simply write f(z) when
the dataset is clear from context. We use the standard defini-
tions of differential privacy (Dwork et al., 2006b;a):

Definition 2.1. A randomized algorithm M is (g,9)-
differentially private if for all neighboring datasets S, S’ €
Z" and all measurable O in the output space of M,

P(M(S) € O) <e"P(M(S') € O) +6.
If § =0, then M is e-differentially private.

It will also be useful to discuss the tail properties of random
variables and vectors:

Definition 2.2. A random variable X is o sub-Gaussian if
Elexp(s(X — E[X]))] < exp((0?s?)/2) forall s € R. A
zero-mean random vector X € RY is X-sub-Gaussian if for
any vector a € R, o' X is a" Ya sub-Gaussian.

We also frequently use different norms and geometries, so it
is useful to recall the definition of Lipschitz functions:

Definition 2.3. A function ® : R? — R is G-Lipschitz with
respect to norm ||-|| over W if for every wy,wa € W,

|®(w1) — ®(ws)| < G[Jwy — wall.
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A convex function ® is G-Lipschitz over an open set W if
and only if ||®'(w)||. < G for any w € W and ®'(w) €
O®(w), where ||y||, = sup{z "y | ||=|| < 1} is the dual
norm of ||-|| (Hiriart-Urruty & Lemaréchal, 1993).

Notation We define diag(ay,...,aq) as a diagonal ma-
trix with diagonal entries ay,...,aq. To state matrix A
is positive (semi)definite, we use the notation A > Ogxq
(A = 04xq). For A = 04«4, let E 4 denote the ellipsoid
{z : ||lz||, < 1} where ||z| , = VaT Az is the Maha-
lanobis norm, and 74 (z) = argmin, {|ly — z[|, | y € Ea}
is the projection of x onto E 4. For a set X, diam . (X) =
sup, ,cx ||* — y|| denotes the diameter of X’ with respect
to the norm ||-||. For the special case of ||-||,, we write
diam,, () for simplicity. For an integer n € N, we let

[n] ={1,...,n}

3. Private Adaptive Gradient Methods

In this section, we study and develop PASAN and PAGAN,
differentially private versions of Stochastic Gradient De-
scent (SGD) with adaptive stepsize (Algorithm 1) and Ada-
grad (Duchi et al., 2011) (Algorithm 2). The challenge in
making these algorithms private is that adding isometric
Gaussian noise—as is standard in the differentially private
optimization literature—completely eliminates the geomet-
rical properties that are crucial for the performance of adap-
tive gradient methods. We thus add noise that adapts to
gradient geometry while maintaining privacy.

More precisely, our private version of adaptive optimization
algorithms proceed as follows: to privatize the gradients, we
first project them to an ellipsoid capturing their geometry,
then adding non-isometric Gaussian noise whose covariance
corresponds to the positive definite matrix A that defines the
ellipsoid. Finally, we apply the adaptive algorithm’s step
with the private gradients. We present our private versions of
SGD with adaptive stepsizes and Adagrad in Algorithms 1
and 2, respectively.

Before analyzing the utility of these algorithms, we pro-
vide their privacy guarantees in the following lemma (see
Appendix B.1 for its proof).

Lemma 3.1. There exist constants € and c such that, for any
e<g andwithT = cng/b2, Algorithm I and Algorithm 2
are (g, 0)-differentially private.

Having established the privacy guarantees of our algorithms,
we now proceed to demonstrate their performance. To do so,
we introduce an assumption to that, as we shall see presently,
will allow us to work in gradient geometries different than
the classical Euclidean (£2) one common to current private
optimization analyses.

Assumption 1. There exists a function G : Z x R*4 —
R such that for any diagonal C + 0, the function F(-; z)

Algorithm 1 Private Adaptive SGD with Adaptive Noise

(PASAN)

Require: Dataset S = (z1,...,2,) € Z", convex set X,
mini-batch size b, number of iterations 7', privacy pa-
rameters ¢, ¢;

1: Choose arbitrary initial point z° € X;

2: fork=0toT —1 do

3:  Sample a batch Dy, := {2F}?_, from S uniformly
with replacement;

: Choose ellipsoid Ay;

50 Set gt = P ma(g") where g €
OF (xF; 2F);

6 Set g* = §* + \/log(1/9)/(be)&* where ¢k ¢
N(0, A;1);

7 Setay = afy\/ Y, 19703
8 xFtl = proj . (aF — arg®);
9: end for
10: Return: 77 := L 570 o

is G(z; C)-Lipschitz with respect to the Mahalanobis norm
I.llc-1 over X, i.e, |V f(z;2)||o < G(2;,C) forall x €
X.

The moments of the this Lipschitz constant G will be central
to our convergence analyses, and to that end, for p > 1 we
define the shorthand

Go(C) :=E.p [G(z;C))" . )

The quantity G,,(C') are the pth moments of the gradients in
the Mahalanobis norm ||-|| ; they are the key to our stronger
convergence guarantees and govern the error in projecting
our gradients. In most standard analyses of private opti-
mization (and stochastic optimization more broadly), one
takes C' = I and p = oo, corresponding to the assumption
that F'(-, z) is G-Lipschitz for all z and that subgradients
F'(x, z) are uniformly bounded in both z and z. Even when
this is the case—which may be unrealistic—we always have
Gp(C) < G (C), and in realistic settings there is often a
significant gap; by depending instead on appropriate mo-
ments p, we shall see it is often possible to achieve far better
convergence guarantees than would be possible by relying
on uniformly bounded moments. (See also the discussion
of Barber & Duchi (2014) on these issues in the context of
mean estimation.)

An example may be clarifying:

Example 1: Letg : R? — R be aconvex and differentiable
function, let F(x; Z) = g(z) + (x, Z) where Z € R and
the coordinates Z; are independent a?-subgaussian, and
C > 0 be diagonal. Then by standard moment bounds, if
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Algorithm 2 Private Adagrad with Adaptive Noise

(PAGAN)

Require: Dataset S = (z1,...,2,) € Z", convex set X,
mini-batch size b, number of iterations 7', privacy pa-
rameters ¢, ¢;

1: Choose arbitrary initial point z° € X;

2: fork=0toT —1 do

3:  Sample a batch Dy, := {2F}?_, from S uniformly
with replacement;

: Choose ellipsoid Ay;

50 Set gF = FYI ma (") where gt €
OF (xF; 2F);

6 Set g* = §* + \/log(1/9)/(be)&* where ¢k ¢
N(0, A1)

1
7. Set Hy, — diag (Zf:o gig”) ? g
8  a"*! = projy(z* — H; '§*) where the projection
is with respect to [|[| z, ;
9: end for
10: Return: 77 = £ ZZ:1 zk

IVg(z)||c < u we have

Gp(C) < p+O(1)vp

d
ZijO’?. (3)
j=1

(See Appendix B.2 for the proof.) As this bound shows,
while G is infinite in this example, G, is finite. As a re-
sult, our analysis extends to settings in which the stochastic
gradients are not uniformly bounded. <

While we defined G\, (C') by taking expectation with respect
to the original distribution P, we mainly focus on empirical
risk minimization and thus require the empirical Lipschitz
constant for a given dataset S:

n 1/p

A 1

Gy(S:C) = (nZGwcy’) @
i=1

A calculation using Chebyshev’s inequality and that p-
norms are increasing immediately gives the next lemma:

Lemma 3.2. Let S be a dataset with n points sampled from
distribution P. Then with probability at least 1 — 1/n, we
have

Gp(S;C) < Gp(C) + G2y (C) < 2G2p(O),

It is possible to get bounds of the form G, (S; C) < G, (C)
with probability at least 1 —1/n* using Khintchine’s inequal-
ities, but this is secondary for us.

Given these moment bounds, we can characterize the con-
vergence of both algorithms, defering proofs to Appendix B.

3.1. Convergence of PASAN

We first start with PASAN (Algorithm 1). Similarly to the
non-private setting where SGD (and its adaptive variant)
are most appropriate for domains X with small ¢5-diameter
diamy(X'), our bounds in this section mostly depend on
diamy ().

Theorem 1. Let S € Z™ and C = 0 be diagonal, p > 1,
and assume that G, (S; C) < Gy,(C). Consider running
PASAN (Algorithm 1) with o = diamy(X), T = en?/b?,
A = %C, where!

diam‘|.”071 (X)na )1/p
diamy(X)+/tr(C~1)/log(1/0)

and c is the constant in Lemma 3.1. Then

B = 2G,(C) (

E[f(=";S) — min f(z; )]

tr(C_l)ln% (diam||_|cl (X))Il’

ne diamy (X)

where the expectation is taken over the internal randomness
of the algorithm.

To gain intuition for these bounds, note that for large enough
p, the bound from Theorem 1 is approximately

dimm(; S =gt
k=1
=:Rua(T) (5)
+Ga(C). tr(C—1) log(1 /5)) |

The term Rgq(7T) in (5) is the standard non-private conver-
gence rate for SGD with adaptive stepsizes (Bartlett et al.,
2007; Duchi, 2018) and (in a minimax sense) is unimprov-
able even without privacy; the second term is the cost of pri-
vacy. In the standard setting of gradients uniformly bounded
in £5-norm, where C' = I and p = oo, this bound recovers

the standard rate diams (X')G oo (1) 7”%5(1/6)' However, as
we show in our examples, this bound can offer significant
improvements whenever C' # I such that tr(C~!) < d or
Gap(C) <« G for some p < oo.

"'We provide the general statement of this theorem for positive
B in Appendix B.4
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3.2. Convergence of PAGAN

Having established our bounds for PASAN, we now pro-
ceed to present our results for PAGAN (Algorithm 2). In
the non-private setting, adaptive gradient methods such as
Adagrad are superior to SGD for constraint sets such as
X = [-1,1]% where diam, (X) < diamy(X). Following
this, our bounds in this section will depend on diamq, (X').
Theorem 2. Let S € Z™ and C > 0 be diagonal, p > 1,
and assume that G,(S; C) < Gy,(C). Consider running
PAGAN (Algorithm 2) with o = diam.(X), T = cn?/b?,
A = éC, where

diamH,”c_l (X)ns Y/
diam (X)+/log(1/6) tr(C~2)

B = 2G,(C) <

and c is the constant in Lemma 3.1. Then

E[f(z";S) — min f(z; )]

Jj=1
o Inttr(C-2) diam | __, (X) ’
p(C) | (dlamoo(X)) ’

where the expectation is taken over the internal randomness
of the algorithm.

To gain intuition, we again consider the large p case, where
Theorem 2 simplifies to roughly

=:Rada (T)

ne

G (©) ( log(1/5) tr(c—é)> >

In analogy with Theorem 1, the first term R,q,(7") is the stan-
dard error for non-private Adagrad after T iterations (Duchi
et al., 2011)—and hence unimprovable (Levy & Duchi,
2019)—while the second is the privacy cost. In some cases,
we may have diam (X') = diamy(X')/v/d, so private Ada-
grad can offer significant improvements over SGD whenever
the matrix C has polynomially decaying diagonal.

To clarify the advantages and scalings we expect, we
may consider an extremely stylized example with sub-
Gaussian distributions. Assume now—in the context of
Example 1—that we are optimizing the random linear func-
tion F'(x; Z) = (x, Z), where Z has independent o7 -sub-
Gaussian compoments. In this case, by assuming that

p = log d and taking C;; = 0;4/3 and b = 1, Theorem 2
guarantees that PAGAN (Algorithm 2) has convergence

E[f(z";S) — min f(2;5)] < (6)

d 2/313/2
10, d
(Z]_l J ) 1 ]

O(1)diamee (X) | Ruaa(T) + — ;
(7

On the other hand, for PASAN (Algorithm 1), with p = log d,
b = 1, the choice Cj; = o ! optimizes the bound of
Theorem 1 and yields

J

E[f(@";8) — min f(z;S)] < (®)
d .
Ot )diams ) | ™) + =2 %1054 )

Comparing these results, two differences are salient:
diam, (X) replaces diams(X) in Eq. (??), which can be

d 2/3)3/2

an improvement by as much as v/d, while (3 =10

replaces Z?Zl 0, and Holder’s inequality gives

d d 3/2 d
\/&Zajz ZU?/?) ZZO’]'.
j=1 j=1 j=1

Depending on gradient moments, there are situations in
which PAGAN offers significant improvements; these evi-
dently depend on the expected magnitudes of the gradients
and noise, as the o; terms evidence. As a special case, con-
sider X = [—1, +1]% and assume {0 }_, decrease quickly,
e.g. o = 1/5%/%. In such a setting, the upper bound of PA-
GAN is roughly %zgd) while PASAN achieves ¥4

ne "’

4. Some approaches to unknown moments

As the results of the previous section demonstrate, bounding
the gradient moments allows us to establish tighter con-
vergence guarantees; it behooves us to estimate them with
accuracy sufficient to achieve (minimax) optimal bounds.

4.1. Unknown moments for generalized linear models

Motivated by the standard practice of training the last layer
of a pre-trained neural network (Abadi et al., 2016), in
this section we consider algorithms for generalized linear
models, where we have losses of the form F'(x; z) = £(z7x)
for z,2 € R¥and £ : R — R is a convex and 1-Lipschitz
loss. As VF(x; 2) = ¢'(2Tx)z, bounds on the Lipschitzian
moments (2) follow from moment bounds on z itself, as
IVF (s 2)] < |z

The results of Section 3 suggest optimal choices for C' under
sub-Gaussian assumptions on the vectors z, where in our
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. . . —4/3
stylized cases of o;-sub-Gaussian entries, C; = o, /

minimizes our bounds. Unfortunately, it is hard in general to
estimate o; even without privacy (Duchi, 2019). Therefore,
we make the following bounded moments ratio assumption,
which relates higher moments to lower moments to allow
estimation of moment-based parameters (even with privacy).

Definition 4.1. A random vector z € R® has moment ratio
r<ooifforalll <p<2logdand1 <j<d

E[£]*/P < r?p - E[23].

When z satisfies Def. 4.1, we can provide a private proce-
dure (Algorithm 3) that provides good approximation to the
second moment of coordinates of z;—and hence higher-
order moments—allowing the application of a minimax op-
timal PAGAN algorithm. We defer the proof to Appendix C.

Theorem 3. Let z have moment ratio r (Def. 4.1) and let
0 =E[2}]. Let >0, T = 3 logd,

J
8&d TV dlog® rlog L
n21000r210gﬂmax{\[g6g5,r2},

and maxi<j<qoj = 1. Then Algorithm 3 is (¢,0)-DP and
outputs & such that with probability 1 — 3,

1
5ma;c{gj,cﬁ/?}gerj <20 forallj€[d. (10)

Moreover, when condition (10) holds, PAGAN (Alg. 2) with
C; = (r6;)~%3/4, p=logd and b = 1 has convergence

Elfz";S) - min f(2; )] < Raaa(T)+

(2?21 OJ2_/3>3/2 ]

O(1)diame, (X)r log 5

ne

S. Lower bounds for private optimization

To give a more complete picture of the complexity of private
stochastic optimization, we now establish (nearly) sharp
lower bounds, which in turn establish the minimax optimal-
ity of PAGAN and PASAN. We establish this in two parts,
reflecting the necessary dependence on geometry in the prob-
lems (Levy & Duchi, 2019): in Section 5.1, we show that
PAGAN achieves optimal complexity for minimization over
Xoo = {2z € R?: ||z||, < 1}. Moreover, in Section 5.2
we show that PASAN achieves optimal rates in the Euclidean
case, that is, for domain Xy = {z € R? : ||z, < 1}.

As one of our foci here is for data with varying norms, we
prove lower bounds for sub-Gaussian data—the strongest
setting for our upper bounds. In particular, we shall consider
linear functionals F'(x; z) = z” 'z, where the entries z; of 2
satisfy |z;| < o for a prescribed o ; this is sufficient for the

Algorithm 3 Private Second Moment Estimation

Require: Dataset S = (z1,...,2,) € 2™, number of iter-
ations 7', privacy parameters €, J;
1: Set A =1and S = [d]
2: fort=1toT do
3: forje S do

4: pt — drAlogr

5: 6% — % S min(zij,pf) + & where & ; ~
N(0, pi T2 d log(T/6) /n2<?)

6 if 61 ; > 27! then

7. 5']‘ «— 27t

8 S+ S\ {j}

9 end if

10:  end for

11: A<+ A/2

12: end for

13: for j € S do
14 65277
15: end for

16: Return: (61,...,54)

ag

2
data Z to be —/--sub-Gaussian (Vershynin, 2019). Moreover,
our upper bounds are conditional on the observed sample S,
and so we focus on this setting in our lower bounds, where

lg;| < o; for all subgradients g € OF (z; z) and j € [d].

5.1. Lower bounds for /..-box

The starting point for our lower bounds for stochastic op-
timization over X, is the following lower bound for the
problem of estimating the sign of the mean of a dataset. This
will then imply our main lower bound for private optimiza-
tion. We defer the proof of this result to Appendix D.1.

Proposition 1. Let M be (¢,0)-DP and S = (z1,. .., 2zn)
where z; € Z={z € R : |z;| <o} Letz=1%" 2
be the mean of the dataset S. If v/dlog d < ne, then

d
sup B | |z;[1{sign(M;(S)) # sign(z;)}
sezn |14
d 2/3
, i

~ nelog®?d
We can now use this lower bound to establish a lower bound
for private optimization over the /,-box by an essentially
straightforward reduction. Consider the problem

L BN .

minimize f(z;S) == —— g alz; = —a"z,
TEX oo n“ 1
im

where z = 1 3" | z; is the mean of the dataset. Letting
r§ € argmin,c y _ f(2;S), we have the following result.
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Theorem 4. Let M be (¢,5)-DP and S € Z", where Z =
{z € R?: || < o;}. If Vdlogd < ne, then

(Zd 0_2/3)3/2
sup E[f(M(S);S) — f(25;:S)] > “—5/2
Sezn nelog®“d
Proof For a given dataset S, the minimizer x}* =

sign(Zz;). Therefore for every x we have
f(@;8) = f(a*;8) = ||zll, -

d

> |71 {sign(x;) # sign(;)} -
j=1

As sign(M(S)) is (g, §)-DP by post-processing, the claim

follows from Proposition 1 by taking expectations. O

Recalling the upper bounds that PAGAN achieves in Sec-
tion 3.2, Theorem 4 establishes the tightness of these bounds
to within logarithmic factors.

5.2. Lower bounds for /5-ball

Having established PAGAN’s optimality for /.,-box con-
straints, in this section we turn to proving lower bounds
for optimization over the /5-ball, which demostrate the op-
timality of PASAN. The lower bound builds on the lower
bounds of Bassily et al. (2014). Following their arguments,
let X = {z e R?: |jz|, < 1} and consider the problem

minimize f(x;S) = —— E alz =
TE€Xo

The following bound follows by appropriate re-scaling of
the data points in Theorem 5.3 in (Bassily et al., 2014)
Proposition 2. Let M be (¢,0)-DP and S = (z1, ...
where z; € Z ={z € R?: ||z|| . < 0,}. Then

+%n)

sup E[f(
Sezn

d
M(S);S) — f(z%;S)] > min <a\/&, "> .

ne
Using Proposition 2, we can establish the tight lower
bounds—to within logarithmic factors—for PASAN (Sec-
tion 3). We defer the proof to Appendix D.3.

Theorem 5. Let M be (¢,0)-DP and S = (z1,...,2n)
where z; € Z = {z € R? : |z;] < o IfVd < ne, then
2471 0j
E[f(M(S);S) — f(z5:S)] > =——.
Sup. [f(M(S);S) — fas:S)] = nelog d

6. Experiments

We conclude the paper with several experiments to demon-
strate the performance of PAGAN and PASAN algorithms.
We perform experiments both on synthetic data, where we
may control all aspects of the experiment, and a real-world
example training large-scale private language models.

6.1. Regression on Synthetic Datasets

If our PAGAN algorithm indeed captures the aspects of Ada-
Grad and other adaptive methods, we expect it to outperform
other private stochastic optimization methods at the least
in those scenarios where AdaGrad improves upon stochas-
tic gradient methods—as basic sanity check. To that end,
in our first collection of experiments, we compare PAGAN
against standard implementations of private AdaGrad and
SGD methods. We also compare our method against Pro-
jected DP-SGD (PDP-SGD), a recent method proposed by
Zhou et al., which projects the noisy gradients into a low-
dimensional subspace, given by the top k eigenvectors of
the second moment of gradients.

We consider an absolute regression problem with data z; =
(a;,b;) € R? x R and loss F(z;a:,b;) = |[{a;,z) — byl.
Given n datapoints (a1, b1),. .., (ay,b,), we wish to

Tlli az, bl (11)

We construct our dataset by first drawing a (popula-
tion) optimal z* ~ Uni{—1,1}¢, then sampling a; Y
N(0,diag(c)?) for a vector o € R%. We set b; =

(a;,x*) + &; for noise &; S Lap(0, 7), where 7 > 0.

minimize f(z

We compare six (divided into three pairs) algorithms in
this experiment. The first are non-private SGD and Ada-
Grad. The second are the naive implementations of pri-
vate SGD (PASAN) and AdaGrad (PAGAN), Algorithm 1
and Algorithm 2, respectively, with Ay = [. Finally,
we run PAGAN with the optimal diagonal matrix scaling
Ay, as we derive in Section 3.2. In our experiments, we
use the parameters n = 5000, d = 100, o; = j /2,
7 = 0.01, and the batch size for all methods is b = 70.
As optimization methods are sensitive to stepsize choice
in general (even non-privately (Asi & Duchi, 2019)), we
run each method with different values of initial stepsize in
{0.005,0.01,0.05,0.1,0.15,0.2,0.4,0.5,1.0} to find the
best stepsize value. Then we run each method 7' = 30
times and report the median of the loss as a function of the
iterate with 95% confidence intervals.

Figure 1 demonstrates the results of this experiment. Each
plots the loss of the methods against iteration count in
various privacy regimes. In the high-privacy setting (Fig-
ure 1(a)), we see that the performance of all private meth-
ods is worse than the non-private algorithms, though PA-
GAN (Alg. 2) seems to be outperforming other algorithms.
As we increase the privacy parameter—reducing privacy
preserved—we see that PAGAN quickly starts to enjoy faster
convergence, resembling non-private AdaGrad. In contrast,
the standard implementation of private AdaGrad—even in
the moderate privacy regime with ¢ = 4—appears to obtain
the slower convergence of SGD rather than the Adaptive
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Figure 1. Sample loss as a function of the iterate for various optimization methods for synthetic absolute regression problem (11)
with varying privacy parameters €. (a) e = 0.1. (b)e = 1. (c) e = 4.

methods. This is consistent with the predictions our theory
makes: the isometric Gaussian noise addition that stan-
dard private stochastic gradient methods (e.g. PASAN and
variants) employ eliminates the geometric properties of gra-
dients (e.g., sparsity) that adaptive methods can leverage—
indeed, must leverage (Levy & Duchi, 2019)—for improved
convergence.

6.2. Training Private Language Models on WikiText-2

Following our simulation results, we study the performance
of PAGAN for fitting a next word prediction model. Here,
we train a variant of a recurrent neural network with Long-
Short-Term-Memory (LSTM) (Hochreiter & Schmidhuber,
1997) on the WikiText-2 dataset (Merity et al., 2017), which
is split into train, validation, and test sets. We further split
the train set to 59,674 data points, where each data point
has 35 tokens. The input data to the model consists of a
one-hot-vector z € {0,1}%, where d = 8,000. The first
7,999 coordinates correspond to the most frequent tokens in
the training set, and the model reserves the last coordinate
for unknown/unseen tokens. We train a full network, which
consists of a fully connected embedding layer x — Wx
mapping to 120 dimensions, where W € R120x8000; o
layers of LSTM units with 120 hidden units, which then out-
put a vector h € R12%; followed by a fully connected layer
h +— ©h expanding the representation via © ¢ R3000x120,
and then into a softmax layer to emit next-word probabilities
via a logistic regression model. The entire model contains
2,160,320 trainable parameters.

We use Abadi et al.’s moments accountant analysis to track
the privacy losses of each of the methods. In each experi-
ment, for PAGAN we use gradients trained for one epoch on a
held-out dataset (a subset of the WikiText 103 dataset (Mer-
ity et al., 2017) which does not intersect with WikiText-
2) to estimate moment bounds and gradient norms, as in
Section 4; these choices—while not private—reflect the
common practice that we may have access to public data
that provides a reasonable proxy for the actual moments

on our data. Moreover, our convergence guarantees in Sec-
tion 3 are robust in the typical sense of stochastic gradient
methods (Nemirovski et al., 2009), in that mis-specifying
the moments by a multiplicative constant factor yields only
constant factor degradation in convergence rate guarantees,
so we view this as an acceptable tradeoff in practice. It
is worth noting that we ignore the model trained over the
public data and use that one epoch solely for estimating the
second moment of gradients.

In our experiments, we evaluate the performance of the
trained models with validation- and test-set perplexity.
While we propose adaptive algorithms, we still require hy-
perparameter tuning, and thus perform a hyper-parameter
search over three algorithm-specific constants: a multi-
plier « € {0.1,0.2,0.4,0.8,1.0,10.0,50.0} for step-size,
mini-batch size b € {50,100, 150, 200, 250}, and projec-
tion threshold B € {0.05,0.1,0.5,1.0}. Each run of these
algorithms takes < 4 hours on a standard workstation with-
out any accelerators. We trained the LSTM model above
with PAGAN, comparing its performance to DP-SGD (Abadi
et al., 2016) and PDP-SGD proposed by Zhou et al.. To
do a fair comparison, and similar to PAGAN, we use the
second moment estimate cmpouted over the public data for
PDP-SGD as well, and do not update this estimate over
iterates. Finally, we also include completely non-private
SGD and AdaGrad for refrence. For each of the privacy
levels ¢ € {1,3} we consider, we present the performance
of each algorithm in terms of best validation set and test-set
perplexity in Figure 2 and Table 1. In our results, LargeAux
and SmallAux correspond to two different sizes for the pub-
lic dataset, where in the former the size of public dataset
is equal to the training set, and in the latter, it is equal to
one fifth of the size of training set. The code is available
online?.

We highlight a few messages present in Figure 2. First, PA-

https://github.com/apple/
ml-private-adaptive-gradient-methods
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Figure 2. Minimum validation perplexity versus training
epoch for PAGAN and the standard differentially private
stochastic gradient method (DP-SGD) (Abadi et al., 2016),
varying privacy levels € € {1, 3}.

Table 1. Test perplexity error of different methods. For
reference, non-private SGD and AdaGrad (without clip-
ping) achieve 75.45 and 79.74, respectively.

Algorithm e=3 e=1
DP-SGD (Abadi et al., 2016) | 240.32 287.81
SmallAux

Zhou et al. with & = 50 280.19 -
PAGAN 236.03 265.35
LargeAux
PAGAN 228.72 251.01

GAN consistently outperforms the non-adaptive methods—
though all allow the same hyperparameter tuning—at all pri-
vacy levels, excepting the non-private € = +o00, where PA-
GAN without clipping is just AdaGrad and its performance
is comparable to the non-private stochastic gradient method.
Certainly, there remain non-negligible gaps between the
performance of the private methods and non-private meth-
ods, but we hope that this is a step at least toward effective
large-scale private optimization and modeling.
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