
Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

Supplementary Material
A. Non-Contractivity of Mirror Descent
In this section, we provide counter examples that show that Mirror Descent is not a contraction in general. To this end, we
consider the standard mirror descent algorithm with KL-regularization over the simplex ∆d−1 = {x ∈ Rd+ : ‖x‖1 = 1},
that is, the following update with h(x) =

∑d
j=1 xj log xj ,

xk+1 = argmin
x∈∆

{
〈∇f(xk), x〉+

1

ηk
Dh(x, xk)

}
,

which yields the update

xk+1 =
xk · e−η∇f(xk)∥∥xk · e−η∇f(xk)

∥∥
1

. (1)

We let xk+1 = MDη,f (xk) denote the above mirror descent update. The following lemma shows that mirror descent is not
contractive even for linear functions.

Lemma A.1. There exists a linear function f : ∆2 → R such that for every 0 < η ≤ 1, there are x0, y0 ∈ ∆2 such that the
mirror descent update x1 = MDη,f (x0) and y1 = MDη,f (y0) have

‖x1 − y1‖1 ≥ (1 + η/4) ‖x0 − y0‖1 , Dh(x1, y1) ≥ (1 + η/4)Dh(x0, y0).

Proof. We consider a linear function f(x1, x2, x3) = −x2 − x3, and two starting iterates for n > 0 to be chosen presently

x0 =

(
1− 3

n
,

1

n
,

2

n

)
, y0 =

(
1− 3

n
,

2

n
,

1

n

)
.

First, notice that for this setting of parameters, we have that:

‖x0 − y0‖1 =
2

n
, Dh(x0, y0) = Dkl(x0, y0) =

log 2

n
.

Using mirror descent update (1), we have

x1 =
1

c
(x0,1, x0,2 e

η, x0,3 e
η) , y1 =

1

c
(y0,1, y0,2 e

η, y0,3 e
η) ,

where c = 1 + 3
n (eη − 1). Setting n ≥ 100(eη − 1)/η, we get that c ≤ 1 + η/20. Since x0,1 = y0,1, we get that

‖x1 − y1‖1 =
eη

c
‖x0 − y0‖1

≥ 1 + η

1 + η/20
‖x0 − y0‖1

≥ ‖x0 − y0‖1 +
η

4
‖x0 − y0‖1 .

Moreover, for KL-divergence we have

Dkl(x1, y1) =
eη

c
Dkl(x0, y0)

≥ (1 + η/4)Dkl(x0, y0).

Although Lemma A.1 says that mirror descent update is not contractive even for linear functions, it does not preclude the
possibility that mirror descent is stable. Indeed, the following lemma shows that mirror descent enjoys similar stability
guarantees to SGD for linear functions. Extending this stability result to general convex functions is an interesting open
question.



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

Lemma A.2. Let S = (z1, . . . , zn) and S ′ = (z′1, . . . , zn) be neighboring datasets where xi ∈ Rd and ‖zi‖∞ ≤ L.
Consider the functions f(x; z) = 〈z, x〉. Let {xk}Tk=0 be the iterates of Algorithm 4 on S with x0 = 1

d · 1 for R rounds and
η > 0. Similarly, Let {yk}Tk=0 be the iterates of Algorithm 4 on S ′ with y0 = 1

d · 1 for R rounds and η > 0. Then after R
rounds (T = Rn iterates),

‖xT − yT ‖21 ≤ Dkl(xT , yT ) +Dkl(yT , xT ) ≤ 4η2L2R2.

Proof. First, note that

log
xk
yk

= η

k−1∑
i=1

(g′i − gi) + C,

where C is a constant vector, gi and g′i are the (sub)-gradients for S and S ′, respectively. Thus we have that

Dkl(xT , yT ) +Dkl(yT , xT ) = 〈xk − yk, log
xk
yk
〉

= η〈xk − yk,
k−1∑
i=1

(g′i − gi)〉

≤ η
√
Dkl(xT , yT ) +Dkl(yT , xT )

k−1∑
i=1

‖g′i − gi‖∞

≤ 2ηLR
√
Dkl(xT , yT ) +Dkl(yT , xT ) ,

where the first inequality follows from holder’s inequality and the strong convexity of KL-divergence with respect to ‖·‖1
(this is Pinsker’s inequality; see e.g., Duchi, 2019) and the second inequality follows since the first sample z1 (or z′1) appears
R times. The claim follows.

Algorithm 4 Stochastic Mirror Descent
Require: Dataset S = (z1, . . . , zn) ∈ Zn, step sizes η, initial point x0, number of rounds R;

1: k ← 0
2: for r = 1 to R do
3: Sample a random permutation π : [n]→ [n]
4: for i = 1 to n do
5: Set gk = ∇f(xk; zπ(i))

6: Find xk+1 := argminx∈∆d−1
{〈gk, x− xk〉+ 1

ηDh(x, xk)} where h(x) =
∑d
j=1 xj log xj

7: k ← k + 1
8: end for
9: end for

10: return x̄T = 1
T

∑T
k=1 xk

B. Rates for General `p-Geometry
In this section, we extend our algorithms to work for general `p-geometries for p > 1. Here, the optimization is over the
domain X = {x ∈ Rd : ‖x‖p ≤ 1} and we consider functions f : X → R that are L-Lipschitz with respect to ‖·‖p, that is,
‖g‖q ≤ L for all x and sub-gradient g ∈ ∂f(x) where 1/p+ 1/q = 1.

B.1. Algorithms for ERM for 1 ≤ p ≤ 2

To extend Algorithm 1 to work for general geometries, we need to bound the sensitivity of the gradients. Consider 1 ≤ p ≤ 2
then q > 2 which implies that ‖g‖2 ≤ d1/2−1/q ‖g‖q , that is, the function is d1/2−1/qL with respect to ‖·‖2.

Theorem 10. Let 1 < p ≤ 2, h : X → R be 1-strongly convex with respect to ‖·‖p, x? = argminx∈X F̂ (x;S), and assume

Dh(x?, x0) ≤ D2. Let f(x; z) be convex and L-Lipschitz with respect to ‖·‖p for all z ∈ Z . Setting 1 ≤ b, T = n2

b2 and



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

Algorithm 5 Noisy Mirror Descent for General Geometries
Require: Dataset S = (z1, . . . , zn) ∈ Zn, 1 < p and convex set X = {x ∈ Rd : ‖x‖p ≤ 1}, convex function h : X → R,

step sizes {ηk}Tk=1, batch size b, initial point x0, number of iterations T ;
1: Find q ≥ 1 such that 1/q + 1/p = 1
2: for k = 1 to T do
3: Sample S1, . . . , Sb ∼ Unif(S)

4: Set ĝk = 1
b

∑b
i=1∇f(xk;Si) + ζi where ζi ∼ N(0, σ2Id) with σ = 100L

√
d1−2/q log(1/δ)/bε

5: Find xk+1 := argminx∈X {〈ĝk, x− xk〉+ 1
ηk
Dh(x, xk)}

6: end for
7: return x̄T = 1

T

∑T
k=1 xk (convex)

8: return x̂T = 2
T (T+1)

∑T
k=1 kxk (strongly convex)

ηk = D√
T

1√
L2+4d2/qσ2 log d

, Algorithm 5 is (ε, δ)-DP and

E[F̂ (x̄T ;S)− F̂ (x?;S)] ≤ LD ·O

(
b

n
+

√
d log 1

δ (1 + log d · 1{p < 2})
nε

)
.

Moreover, if f(x; z) is λ-strongly convex relative to h(x), then setting ηk = 2
λ(k+1)

E[F̂ (x̂T ;S)− F̂ (x?;S)] ≤ O
(
L2b2

λn2
+
L2d log 1

δ (1 + log d · 1{p < 2})
λn2ε2

)
.

Proof. Following the proof of Theorem 3, privacy follows from similar arguments, and for utility we need to upper bound
E[‖g̃k‖q]. Note that for p = q = 2 we have E[‖g̃k‖2q] ≤ d. Otherwise we have

E[‖g̃k‖2q] ≤ 2L2 + 2E[‖ζk‖2q] ≤ 2L2 + 2d2/qE[‖ζk‖2∞] ≤ 2L2 + 2d2/qE[‖ζk‖2∞] ≤ 2L2 + 8d2/qσ2 log d.

Now we complete the proof for p < 2. The same proof works for p = 2. The previous bound implies

E[F̂ (x̄T ;S)− F̂ (x?;S)] ≤ D2

Tη
+ ηL2 + 4ηd2/qσ2 log d

≤ 2D
√

(L2 + 4d2/qσ2 log d)/T

≤ LD ·O

 b

n
+

√
d log d log 1

δ

nε

 ,

where the second inequality follows from the choice of η. For the second part, Lemma 3.2 implies that

E[F̂ (x̂T ;S)− F̂ (x?;S)] ≤ L2

λ
O

(
b2

n2
+
d log d log 1

δ

n2ε2

)
.

B.2. Algorithms for SCO

We extend Algorithm 2 to work for general `p-geometries by using the general noisy mirror descent (Algorithm 5) to solve
the optimization problem at each phase. The following theorem proves our main result for `p-geometry, that is, Theorem 5.

Theorem 11. Let 1 < p ≤ 2. Assume diamp(X ) ≤ D and f(x; z) is convex and L-Lipschitz with respect to ‖·‖p for all
z ∈ Z . If we set

η =
D

L
min

{
1/
√

(p− 1)n, ε/
√
d log 1

δ (1 + log d · 1{p < 2})
}
,



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

then Algorithm 6 requires O(log n ·min(n3/2
√

log d, n2ε/
√
d)) gradients and its output has

E[F (xk)− F (x?)] = LD ·O

(
1√

(p− 1)n
+

√
d log 1

δ (1 + log d · 1{p < 2})
(p− 1)nε

)
.

Proof. The proof follows from identical argument to the proof of Theorem 4 using the fact that hi(x) = 1
2(p−1) ‖x− xi−1‖2p

is 1-strongly convex with respect to ‖·‖p.

Algorithm 6 Localized Noisy Mirror Descent
Require: Dataset S = (z1, . . . , zn) ∈ Zn, 1 ≤ p, constraint set X , step size η, initial point x0;

1: Set k = dlog ne
2: for i = 1 to k do
3: Set ni = 2−in, ηi = 2−4iη
4: Apply Algorithm 5 with (ε, δ)-DP, batch size bi = max(

√
ni/ log d,

√
d/ε), T = n2

i /b
2
i and hi(x) =

1
2(p−1) ‖x− xi−1‖2p for solving the ERM over Xi = {x ∈ X : ‖x− xi−1‖p ≤ 2Lηini(p− 1)}:

Fi(x) =
1

ni

ni∑
j=1

f(x; zj) +
1

ηini(p− 1)
‖x− xi−1‖2p

5: Let xi be the output of the private algorithm
6: end for
7: return the final iterate xk

C. Implications for Strongly Convex Functions
When the function is strongly convex, we use standard reductions to the convex case to achieve better rates (Feldman et al.,
2020a). Given a private algorithm A for the convex case, we use the following algorithm for the strongly convex case
(see (Feldman et al., 2020a)): run A for k = dlog log ne iterates, each initialized at the output of the previous iterate and run
for ni = 2i−2n/ log n. Using this reduction with our algorithms for convex functions, we have the following theorems for
non-smooth and smooth functions.

Theorem 12. Assume diam1(X ) ≤ D and f(x; z) is convex, L-Lipschitz, and λ-strongly convex with respect to ‖·‖1
for all z ∈ Z . Then using Algorithm 2 in the above algorithm results in an algorithm that uses O(log n log log n ·
min(n3/2

√
log d, n2ε/

√
d)) gradients and outputs x̂ such that

E[F (x̂)− F (x?)] = LD ·O

(
log d

n
+
d log3 d log 1

δ

n2ε2

)
.

Theorem 13. Let δ ≤ 1/n and assume that diam1(X ) ≤ D, m ≤ O(d) and that f(x; z) is convex, L-Lipschitz, λ-strongly
convex and β-smooth with respect to ‖·‖1 where β = O(L/D). Then using Algorithm 3 in the above algorithm results in an
algorithm that uses O(n) gradients and outputs x̂ such that

E[F (x̂)−F (x?)] ≤ LD ·O
(

log d log2 n

n

)
+ LD ·O

(
log(1/δ) logm log2 n

nε

)4/3

.

The proof follows directly from the proof of Theorem 5.1 in (Feldman et al., 2020a), together with the bounds of Section 3
and Section 4.

D. Proofs of Section 3
D.1. Proof of Theorem 3

Proof. The privacy proof follows directly using moments accountant, that is, Theorem 1 in (Abadi et al., 2016), by noting
the the `2-norm of the gradients is bounded by ‖∇f(x; zi)‖2 ≤ ‖∇f(x; zi)‖∞

√
d ≤ L

√
d for all x ∈ X and z ∈ Z . Now



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

we analyze the utility of the algorithm. To this end, we have that E[‖ĝk‖2∞] ≤ 2L2 + 2E[‖ζk‖2∞] ≤ 2L2 + 4σ2 log d.
Lemma 3.1 now implies that

E[F̂ (x̄T ;S)− F̂ (x?;S)] ≤ D2

Tη
+ ηL2 + 2ησ2 log d

≤ 2
D
√
L2 + 2σ2 log d√

T

≤ O

(
LD

(
b

n
+

√
d log d log(1/δ)

nε

))
,

where the second inequality follows from the choice of η. Now we prove the claim for strongly convex functions. Lemma 3.2
implies that

E[F̂ (x̂T ;S)− F̂ (x?;S)] ≤ O
(
L2b2

λn2
+
L2d log d log(1/δ)

λn2ε2

)
.

D.2. Proof of Lemma 3.2

Proof. First, by strong convexity we have

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 − λDh(x?, xk)

= 〈gk, xk − x?〉+ 〈∇f(xk)− gk, xk − x?〉 − λDh(x?, xk). (2)

Let us now focus on the term 〈gk, xk − x?〉. The definition of xk+1 implies that for all y ∈ X

〈gk +
1

ηk
(∇h(xk+1)−∇h(xk)), y − xk+1〉 ≥ 0.

Substituting y = x?, we have

〈gk, xk − x?〉 = 〈gk, xk − xk+1〉+ 〈gk, xk+1 − x?〉

≤ 〈gk, xk − xk+1〉+
1

ηk
〈∇h(xk+1)−∇h(xk), x? − xk+1〉

(i)
= 〈gk, xk − xk+1〉+

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1)−Dh(xk+1, xk))

(ii)

≤ ηk
2
‖gk‖2∞ +

1

2ηk
‖xk − xk+1‖21 +

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1)−Dh(xk+1, xk))

(iii)

≤ ηk
2
‖gk‖2∞ +

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1)) ,

where (i) follows from the definition of bregman divergence, (ii) follows from Fenchel-Young inequality, and (iii) follows
since h(x) is 1-strongly convex with respect to ‖·‖1. Substituting into (2),

f(xk)− f(x?) ≤ ηk
2
‖gk‖2∞ + 〈∇f(xk)− gk, xk − x?〉+

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1))− λDh(x?, xk).

Multiplying by k and summing from k = 1 to T , we get

T∑
k=1

k(f(xk)− f(x?)) ≤ 1

2λ

T∑
k=1

‖gk‖2∞ + 〈∇f(xk)− gk, xk − x?〉

+
λ

2
(k(k − 1)Dh(x?, xk)− k(k + 1)Dh(x?, xk+1))

≤ 1

2λ

T∑
k=1

‖gk‖2∞ + 〈∇f(xk)− gk, xk − x?〉.

The claim now follows by taking expectations and using Jensen’s inequality.



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

D.3. Proof of Lemma 3.3

First, we prove that x̂i ∈ Xi. The definition of x̂i implies that

1

ni

ni∑
j=1

f(x̂i; zj) +
1

ηini(p− 1)
‖x̂i − xi−1‖2p ≤

1

ni

ni∑
j=1

f(xi−1; zj).

Since f(x; z) is L-Lipschitz, we get

1

ηini(p− 1)
‖x̂i − xi−1‖2p ≤ L ‖x̂i − xi−1‖1 ≤ 2L ‖x̂i − xi−1‖p

where the last inequality follows from the choice of p (since ‖z‖1 ≤ d1−1/p ‖z‖p ≤ 2 ‖z‖p for all z ∈ Rd), hence we get
‖x̂i − xi−1‖p ≤ 2Lηini(p− 1). Thus, we have that x̂i ∈ Xi = {x : ‖x− xi−1‖p ≤ 2Lηini(p− 1)}.

Now, note that the function Fi(x) is λi-strongly convex relative to hi(x) = 1
p−1 ‖x− xi−1‖2p where λi = 1

ηini
. Moreover,

the function ri(x) = 1
ηini(p−1) ‖x− xi−1‖2p is 4L-Lipschitz with respect to ‖·‖1 for x ∈ Xi. Therefore using the bounds

of Theorem 3 for noisy mirror descent and observing that Fi(x) is λi-strongly convex with respect to ‖·‖p,

λi
2
E[‖xi − x̂i‖2p] ≤ E[Fi(xi)− Fi(x̂i)] ≤ O

(
L2d log d log(1/δ)

n2
i ε

2λi

)
,

implying that E[‖xi − x̂i‖2p] ≤ O
(
L2η2i d log d log(1/δ)

ε2

)
.

D.4. Proof of Lemma 3.4

The proof follows from Theorems 6 and 7 in (Shalev-Shwartz et al., 2009) by noting that the function r(x; zj) = f(x; zj) +
1

ηini(p−1) ‖x− xi−1‖2p is 1
ηini

-strongly convex and O(L)-Lipschitz with respect to ‖·‖1 over Xi.

E. Proofs of Section 4
To simplify notation, in this section we use the notion of (ε, δ)-indistinguishability; we say that two random variables
X and Y are (ε, δ)-indistinguishable, denoted X ≈(ε,δ) Y , if for every O, Pr(X ∈ O) ≤ eε Pr[Y ∈ O] + δ and
Pr(Y ∈ O) ≤ eε Pr[X ∈ O] + δ.

E.1. Proof of Lemma 4.1

The main idea for the privacy proof is that each sample in the set St,s is used in the calculation of vt,s at most Nt,s = 2t−|s|

times, hence setting the noise large enough so that each iterate is ε
Nt,s

-DP, we get that the final mechanism is ε-DP using
basic composition. Let us now provide a more formal argument. Let S = (z1, . . . , zn−1, zn),S ′ = (z1, . . . , zn−1, z

′
n) be

two neighboring datasets with iterates x = (x1, . . . , xK) and x′ = (x′1, . . . , x
′
K), respectively. We prove that x and x′ are

ε-indistinguishable, i.e., x ≈(ε,0) x
′. Let St,s be the set (vertex) that contains the last sample (i.e., zn or z′n) and let j = |s|

denote the depth of this vertex. We will prove privacy given that the n’th sample is in St,s, which will imply our general
privacy guarantee as this holds for every choice of t and s.

Note that |St,s| = 2−jb and that this set is used in the calculation of vk for at most 2t−j (consecutive) iterates, namely
these are leafs that are descendants of the vertex ut,s. Let k0 and k1 be the first and last iterate such that the set St,s
is used for the calculation of vk, hence k1 − k0 + 1 ≤ 2t−j . The iterates (x1, . . . , xk0−1) and (x′1, . . . , x

′
k0−1) do not

depend on the last sample and therefore has the same distribution (hence 0-indistinguishable). Moreover, given that
(xk0 , . . . , xk1) ≈(ε,0) (x′k0 , . . . , x

′
k1

), it is clear that the remaining iterates (xk1+1, . . . , xK) ≈(ε,0) (x′k1+1, . . . , x
′
K) by

post-processing as they do depend on the last sample only through the previous iterates. It is therefore enough to prove
that (xk0 , . . . , xk1) ≈(ε,0) (x′k0 , . . . , x

′
k1

). To this end, we prove that for each such iterate, wk ≈(ε/2t−j ,0) w
′
k, hence using

post-processing and basic composition (Lemma 2.1) the iterates are ε-indistinguishable as k1 − k0 + 1 ≤ 2t−j . Note that
for every k0 ≤ k ≤ k1 the sensitivity |〈ci, vk − v′k〉| ≤ DL

2−jb . Hence, using privacy guarantees of report noisy max [Dwork
& Roth, 2014, claim 3.9], we have that wk ≈(ε/2t−j ,0) w

′
k since λt,s = 2LD2t

bε .



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

Now we prove the second part of the claim. Standard results for the expectation of the maximum of m Laplace random
variables imply that E[〈vt,s, wt,s〉] ≤ min1≤i≤m〈vt,s, ci〉+O(LD2t

bε logm). Since X = conv{c1, . . . , cm}, we know that
for any v ∈ Rd, argminw∈X 〈w, v〉 ∩ {c1, . . . , cm} 6= ∅ [Talwar et al., 2015, fact 2.3] which proves the claim.

E.2. Proof of Lemma 4.2

The claim follows directly from the following lemma.

Lemma E.1. Let (s, t) be a vertex and σ2 = (L2 + β2D2)/b. For every index 1 ≤ i ≤ d,

E
[
eλ(vt,s,i−∇Fi(xt,s))

]
≤ eO(1)λ2σ2

.

Lemma E.1 says that vk,i −∇Fi(xk) is O(σ2)-sub-Gaussian for every 1 ≤ i ≤ d, hence standard results imply that the
maximum of d sub-Gaussian random variables is E ‖vt,s −∇F (xt,s)‖∞ ≤ O(σ)

√
log d. The claim follows.

Lemma E.1. Let us fix i for simplicity and let Bt,s = vt,s,i −∇Fi(xt,s). We prove the claim by induction on the depth of
the vertex, i.e., j = |s|. If j = 0 then s = ∅ which implies that vt,∅ = ∇f(xt,∅;St,∅) where St,∅ is a sample of size b. Thus
we have

E[eλBt,∅ ] = E
[
eλ(vt,∅,i−∇Fi(xt,∅)

]
= E

[
e
λ( 1
b

∑
s∈St,∅

∇fi(xt,∅;s)−∇Fi(xt,∅)
]

=
∏

s∈St,∅

E[e
λ
b (∇fi(xt,∅;s)−∇Fi(xt,∅))]

≤ eλ
2L2/2b,

where the last inequality follows since for a random variableX ∈ [−L,L] and E[X] = 0, we have E[eλX ] ≤ eλ2L2/2 [Duchi,
2019, example 3.6]. Assume now we have s with |s| = j > 0 and let s = s′c where c ∈ {0, 1}. If c = 0 the claim
clearly holds so we assume c = 1. Recall that in this case vt,s = vt,s′ +∇f(xt,s;St,s) −∇f(xt,s′ ;St,s), hence Bt,s =
vt,s,i−∇Fi(xt,s) = Bt,s′+∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′) Letting S<t,s = ∪(t1,s1)<(t,s)St1,s1
be the set of all samples used up to vertex t, s, the law of iterated expectation implies

E[eλBt,s ] = E[eλ(Bt,s′+∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ ))]

= E
[
E[eλ(Bt,s′+∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ ))] | S<(t,s)

]
= E

[
E[eλBt,s′ ) | S<(t,s)] · E[eλ(∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ )) | S<t,s]

]
= E[eλBt,s′ )] · E[eλ(∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ )) | S<t,s].

Since f(·; s) is β-smooth with respect to ‖·‖1, we have that |∇fi(xt,s;St,s) − ∇fi(xt,s′ ;St,s)| ≤ β ‖xt,s − xt,s′‖1.
Moreover, as ut,s is the right son of ut,s′ , the number of updates between xt,s and xt,s′ is at most the number of leafs visited
between these two vertices which is 2t−j . Hence we get that

‖xt,s − xt,s′‖1 ≤ Dηt,s′2
t−j ≤ D2−j+2,

which implies that |∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)| ≤ βD2−j+2. Since E[∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s) | S<t,s] =
∇Fi(xt,s)−∇Fi(xt,s′), by repeating similar arguments to the case ` = 0, we get that

E[eλ(∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ )) | S<t,s] ≤ eO(1)λ2β2D22−2j/|St,s|

≤ eO(1)λ2β2D22−j/b.

Overall we have that E[eλBt,s ] ≤ E[eλBt,s′ ] · eO(1)λ2β2D22−j/b. Applying this inductively, we get that for every (t, s)

E[eλBt,s ] ≤ eO(1)λ2(L2+β2D2)/b.



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

E.3. Proof of Lemma 4.3

For this proof, we use the following privacy amplification by shuffling.

Lemma E.2 (Feldman et al., 2020b, Theorem 3.8). Let Ai : T i−1 × Z → T for i ∈ [n] be a sequence of algorithm
such that Ai(w1:i−1, ·) is (ε0, δ0)-DP for all values of w1:i−1 ∈ T i−1 with ε0 ≤ O(1). Let AS : Zn → T n be an
algorithm that given z1:n ∈ Zn, first samples a random permutation π, then sequentially computes wi = Ai(w1:i−1, zπ(i))
for i ∈ [n] and outputs w1:n. Then for any δ such that ε0 ≤ log( n

16 log(2/δ) ), the algorithm As is (ε, δ + 20nδ0) where

ε ≤ O(ε0

√
log(1/δ)/n).

We use the same notation as Lemma 4.1 where S = (z1, . . . , zn−1, zn),S ′ = (z1, . . . , zn−1, z
′
n) denote two neighboring

datasets with iterates x = (x1, . . . , xK) and x′ = (x′1, . . . , x
′
K). Here, we prove privacy after conditioning on the event

that the n’th sample is sampled at phase t and depth j. We need to show that the iterates are (ε, δ)-indistinguishable. We
only need to prove privacy for the iterates at phase t as the iterates before phase t do not depend on the n’th sample and the
iterates after phase t are (ε, δ)-indistinguishable by post-processing.

Let us now focus on the iterates at phase t. Let u1, . . . , up denote the vertices at level j that has samples S1, . . . , Sp each of
size |Si| = 2−jb. We will have two steps in the proof. First, we use advanced composition to show that the iterates that are
descendant of a vertex ui are (ε0, δ0)-DP where roughly ε0 = 2j/2ε. As we have p = 2j vertices at depth j, we then use the
amplification by shuffling result to argue that the final privacy guarantee is (ε, δ)-DP (see Fig. 2 for a demonstration of the
shuffling in our algorithm).

Let Ai be the algorithm that outputs the iterates corresponding to the leafs that are descendants of ui; we denote this output
by Oi. Note that the inputs of Ai are the samples at ui, which we denote as Si, and the previous outputs O1, . . . , Oi−1. In
this notation, we have that Oi = Ai(O1, . . . , Oi−1, Si). We let Ai, Si and Oi denote the above quantities when the input
dataset is Si and similarly A′i, S′i and O′i for S ′. To prove privacy, we need to show that (O1, . . . , Op) ≈(ε,δ) (O′1, . . . , O

′
p),

that is (O1, . . . , Op) and (O′1, . . . , O
′
p) are (ε, δ)-indistinguishable

To this end, we first describe an equivalent sampling procedure for the sets S1, . . . , Sp. Given r samples, the algorithm
basically constructs the sets S1, . . . , Sp by sampling uniformly at random p sets of size r/p without repetition. Instead, we
consider the following sampling procedure. First, we randomly choose a set of size p(r − 1) samples that does not include
the n’th sample and using this set we randomly choose r/p− 1 samples for each set Si. Then, we shuffle the remaining
p samples and add each sample to the corresponding set. It is clear that this sampling procedure is equivalent. We prove
privacy conditional on the output of the first stage of the randomization procedure which will imply privacy unconditionally.

Assuming without loss of generality that the samples which remained in the second stage are zn−p+1, . . . , zn, and letting
π : [p]→ {n− p+ 1, . . . , n} denote the random permutation of the second stage, the algorithms Ai and A′i can be written
as a function of the previous outputs and the sample zπ(i). This is true since the S and S ′ differ in one sample and therefore
the first r/p− 1 samples in the sets Si and S′i are identical. Thus, we can write Oi = Ai(O1, . . . , Oi−1, zπ(i)).

Using the above notation, we are now ready to prove privacy. First, we show privacy for each i using advanced composition.
Similarly to Lemma 4.1, as each iterate k which is a leaf of ui has sensitivity |〈ci, vk − v′k〉| ≤ DL

2−jb , we have that

xk and x′k are ε
2T/2−j log(n/δ)

-indistinguishable since λt,s = LD2T/2 log(n/δ)
bε . Since there are 2t−j leafs of ui, advanced

composition (Lemma 2.2) implies that Oi ≈(ε0,δ0) O
′
i where ε0 = ε

2T/2−j log(n/δ)

√
2t−j log(1/δ0) ≤ O(ε)√

log(1/δ)2−j/2
by

setting δ0 = δ/n.

Finally, we can use the amplification by shuffling result to finish the proof. First, note that we need ε0 ≤ log( 2j

16 log(2/δ) )

to be able to use Lemma E.2. If 2j ≤ O(log(1/δ)) then we do not need the amplification by shuffling result as ε0 ≤
O(ε2j/2/

√
log(1/δ)) ≤ O(ε). Otherwise 2j is large enough so that we can use Lemma E.2. Since each Ai and A′i are

(ε0, δ0)-DP and since the second stage shuffles the inputs to each algorithm, Lemma E.2 now implies that the outputs of the

algorithms Ai and A′i are (εf , δ + 20nδ0)-DP where εf ≤
ε0
√

log(1/δ)

2j/2
≤ O(ε) which proves the claim.

E.4. Proof of Theorem 7

The assumptions on β ensure that 2T ≤ b and the assumptions on ε ensure ε ≤ 2−T/2 log(n/δ) hence the privacy follows
from Lemma 4.3. The utility analysis is similar to the proof of Theorem 6. Repeating the same arguments in the proof



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

of Theorem 6 while using the new value of λt,s, we get

E[F (xK)− F (x?)] ≤ O
(
D(L+ βD)

√
log d√
b

+
βD2

2T
+DL

2T/2 log(n/δ) logm

bε

)
.

As the number of samples is upper bounded by T 2 · b, we set T = 2
3 log

(
bεβD

L log(n/δ) logm

)
and b = n/ log2 n to get the first

part of the theorem. Note that the condition on β ensure the term inside the log is greater than 1.

F. Proofs for Section 5
F.1. Proofs for Lemma 5.1

Without loss of generality, we assume that D = 1. Moreover, similarly to the proof of Theorem 9, we prove lower bounds
on the sample complexity to achieve a certain error which will imply our lower bound on the utility. For an algorithm A and
data S ∈ Zn, define the error of A:

Err(A,S) = E

 d∑
j=1

|z̄j |1{sign(A(S)j) 6= sign(z̄j)}

 .
The error of a A for datasets of size n is Err(A, n) = supS∈Zn Err(A,S).

We let n?(α, ε) denote the minimal n such that there is an (ε, δ)-DP (with δ = n−ω(1)) mechanism A such that
Err(A, n?(α, ε)) ≤ α. We prove the following lower bound on the sample complexity which implies Lemma 5.1.
Proposition 1. Let zi ∈ {−1/d, 1/d}d, α ≤ 1, and ε ≤ 1. Then

n?(α, ε) ≥ Ω(1) ·
√
d

αε log d
.

The proof follows directly from the following two lemmas.
Lemma F.1 (Talwar et al. (2015), Theorem 3.2). Let the assumptions of Proposition 1 hold. Then

n?(α = 1/4, ε = 0.1) ≥ Ω(1) ·
√
d

log d
.

The following lemma shows how to extend the above lower bound to arbitrary accuracy and privacy parameters.
Lemma F.2. Let ε0 ≤ 0.1. For α ≤ α0/2 and ε ≤ ε0/2,

n?(α, ε) ≥ α0ε0

αε
n?(α0, ε0).

Proof. The proof follows the same arguments as in the proof of Lemma F.5.

F.2. Proof of Theorem 9

In this section, we prove Theorem 9. We begin by recalling the lower bound of Talwar et al. (2015) and showing how it
implies Lemma F.3.

Talwar et al. (2015) consider the family of quadratic functions where f(x; ai, bi) = (aTi x− bi)2 where ai ∈ Rd and bi ∈ R.
We assume X = {x : ‖x‖1 ≤ D}, ‖ai‖∞ ≤ C, and |bi| ≤ CD. Note that the function f is L-Lipschitz and β-smooth with
L ≤ O(C2D) and β ≤ O(C2) and there is a choice of ai, bi that attains these. Theorem 3.1 in (Talwar et al., 2015) gives a
lower bound of 1/n2/3 when C = 1, D = 1, and d ≥ Ω̃(n2/3). For general values of C and D, noticing that the function
value is multiplied by C2D2, the following lower bound follows as LD = C2D2.
Lemma F.3. Let X = {x ∈ Rd : ‖x‖1 ≤ D} and d ≥ Ω̃(n2/3). There is family of convex functions f : X × Z → R that
is L-Lipschitz and β-smooth with β ≤ L/D such that any (0.1, δ)-DP algorithm A with δ = o(1/n2) has

sup
S∈Zn

E
[
F̂ (A(S);S)−min

x∈X
F̂ (x;S)

]
≥ Ω̃

(
LD

n2/3

)
.



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

Now we proceed to prove Theorem 9 and we assume without loss of generality that L = 1 and D = 1. We use techniques
from (Steinke & Ullman, 2017) to extend the lower bound of Lemma F.3 to hold for arbitrary d and ε. To this end, instead
of lower bounding the excess loss, it will be convenient to prove lower bounds on the sample size to achieve a certain excess
loss α. More precisely, given a dataset S ∈ Zn and algorithm A, we define its empirical excess loss on S

E(A,S) = E
[
F̂ (A(S);S)−min

x∈X
F̂ (x;S)

]
.

We also define its worst-case excess loss over all datasets of size n

E(A, n) = sup
S∈Zn

E(A,S).

We let n?(α, ε) be the minimal sample size that is required to achieve excess loss E(A, n?(α, ε)) ≤ α using an (ε, δ)-DP
algorithm A with δ = n−ω(1). We prove the following lemma which implies Theorem 9.
Lemma F.4. Let the assumptions of Theorem 9 hold. Then

n?(α, ε) ≥

{
Ω̃
(

1
α3/2ε

)
if α = 1/d

Ω̃
(√

d
αε

)
if α ≤ 1/d

The proof of Lemma F.4 basically follows from the following two Lemmas.
Lemma F.5. For 0 < α ≤ α0 and 0 < ε ≤ ε0 ≤ 0.1,

n?(α, ε) ≥ Ω
(α0ε0

αε
n?(α0, ε0)

)
.

Lemma F.6. We have that
n?(α = 1/d, ε = 0.1) ≥ Ω̃

(
d3/2

)
.

Before proving Lemmas F.5 and F.6, let us finish the proof of Lemma F.4. First, consider the case α = 1/d. Lemma F.6
implies that

n?(α = 1/d, ε) ≥ Ω

(
n?(α = 1/d, ε = 0.1)

ε

)
≥ Ω̃

(
d3/2/ε

)
= Ω̃

(
1

α3/2ε

)
.

If α ≤ 1/d, then similarly we have

n?(α, ε) ≥ Ω

(
1

dαε

)
n?(α = 1/d, ε = 0.1) ≥ Ω̃

(√
d

αε

)
.

Hence Lemma F.4 follows. Finally, we provide proofs for the remaining lemmas.

Lemma F.6. This lemma follows directly from Lemma F.3. Indeed, Lemma F.3 implies that if d ≥ Ω̃(n2/3) and ε = 0.1, the
excess loss is lower bounded by E(A, n) ≥ Ω̃(1/n2/3). Stated differently, if n ≤ Õ(d3/2) then E(A, n) ≥ Ω̃(1/n2/3) ≥
Ω̃(1/d) which proves the claim.

Lemma F.5. Given an (ε, δ)-DP algorithm A with E(A, n) ≤ α, we show how to construct A′ that is (ε0, 4δε0/ε)-DP
algorithm that works on datasets of size n′ = Θ( αε

α0ε0
n) such that E(A′, n′) ≤ α0. This will prove the claim as we know

that n′ ≥ n(α0, ε0). We now describe the construction of A′. Given S ′ ∈ Zn′ and k > 0 to be chosen presently, we define
a new dataset S as follows: the first kn′ samples are k copies of S ′ and the remaining n− kn′ are new samples z ∈ Z that
have the loss function f(x; z) = 0 for all x ∈ X . Clearly, these functions are convex, 0-Lipschitz, and 0-smooth. We then
define A′(S ′) = A(S). Note that for all x we have that F̂ (x;S) = kn′

n F̂ (x;S ′), which implies that

E(A′,S ′) = E[F̂ (A(S);S ′)−min
x∈X

F̂ (x;S ′)]

=
n

kn′
E[F̂ (A(S);S)−min

x∈X
F̂ (x;S)]

=
n

kn′
E(A,S) ≤ nα

kn′
.



Private Stochastic Convex Optimization: Optimal Rates in `1 Geometry

Therefore if n′ ≥ nα/kα0 we get E(A′,S ′) ≤ α0. Hence it remains to argue for privacy. Using the group privacy property
of private algorithms (Steinke & Ullman, 2017)(Fact 2.2), the algorithmA′ is (kε, e

kε−1
eε−1 δ)-DP. Setting k = blog(1 + ε0)/εc

implies the claim as ekε − 1 ≤ ε0 and kε ≤ ε0.


