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Abstract

Stochastic convex optimization over an /{;-
bounded domain is ubiquitous in machine learn-
ing applications such as LASSO but remains
poorly understood when learning with differ-
ential privacy. We show that, up to logarith-
mic factors the optimal excess population loss
of any (e,0)-differentially private optimizer is
\/log(d)/n + +/d/en. The upper bound is based
on a new algorithm that combines the iterative
localization approach of Feldman et al. (2020a)
with a new analysis of private regularized mirror
descent. It applies to £, bounded domains for
p € [1,2] and queries at most n>/? gradients im-
proving over the best previously known algorithm
for the /5 case which needs n? gradients. Fur-
ther, we show that when the loss functions satisfy
additional smoothness assumptions, the excess
loss is upper bounded (up to logarithmic factors)
by \/log(d)/n + (log(d)/en)?/3. This bound is
achieved by a new variance-reduced version of the
Frank-Wolfe algorithm that requires just a single
pass over the data. We also show that the lower
bound in this case is the minimum of the two rates
mentioned above.

1. Introduction

Convex optimization is one of the most well-studied prob-
lems in private data analysis. Existing works have largely
studied optimization problems over ¢3-bounded domains.
However several machine learning applications, such as
LASSO and minimization over the probability simplex, in-
volve optimization over ¢1-bounded domains. In this work
we study the problem of differentially private stochastic
convex optimization (DP-SCO) over ¢;-bounded domains.
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In this problem (DP-SCO), given n i.i.d. samples 2y, ..., 2,
from a distribution P, we wish to release a private so-
lution 2 € X C R? that minimizes the population loss
F(z) =E,p|[f(x; 2)] for a convex function f over x. The
algorithm’s performance is measured using the excess pop-
ulation loss of the solution x, that is F'(z) — minyecx F(y).
The optimal algorithms and rates for this problem—even
without privacy—have a crucial dependence on the geom-
etry of the constraint set X and in this work we focus on
sets with bounded ¢, -diameter. Without privacy constraints,
there exist standard and efficient algorithms, such as mir-
ror descent and exponentiated gradient decent, that achieve
the optimal excess loss O(y/log(d)/n) (Shalev-Shwartz &
Ben-David, 2014). The landscape of the problem, however,
with privacy constraints is not fully understood yet.

Most prior work on private convex optimization has fo-
cused on minimization of the empirical loss F(x) =
LS f(x;2) over {y-bounded domains (Chaudhuri
et al., 2011; Bassily et al., 2014; 2019). Bassily et al.
(2014) show that the optimal excess empirical loss in this
setting is ©(v/d/en) up to log factors. More recently,
Bassily et al. (2019) give an asymptotically tight bound of
1/y/n + +/d/(en) on the excess population loss in this set-
ting using noisy gradient descent. Under mild smoothness
assumptions, Feldman et al. (2020a) develop algorithms that
achieve the optimal excess population loss using n gradient
computations.

In contrast, existing results for private optimization in ¢;-
geometry do not achieve the optimal rates for the excess
population loss (Kifer et al., 2012; Jain & Thakurta, 2014;
Talwar et al., 2015). For the empirical loss, Talwar et al.
(2015) develop private algorithms with O(1/(ne)?/?) ex-
cess empirical loss for smooth functions and provide tight
lower bounds when the dimension d is sufficiently high.
These bounds can be converted into bounds on the ex-
cess population loss using standard techniques of uniform
convergence of empirical loss to population loss, however
these techniques can lead to suboptimal bounds as there
are settings where uniform convergence is lower bounded
by Q(y/d/n) (Feldman, 2016). Moreover, the algorithm
of Talwar et al. (2015) has runtime O(n°/3) in the moderate
privacy regime (¢ = ©(1)) which is prohibitive in practice.
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On the other hand, Jain & Thakurta (2014) develop algo-
rithms for the population loss, however, their work is limited

to generalized linear models and achieves a sub-optimal rate
O(1/n'/3).

In this work we develop private algorithms that achieve
the optimal excess population loss in /1 -geometry, demon-
strating that significant improvements are possible when
the functions are smooth, in contrast to ¢5-geometry where
smoothness does not lead to better bounds. Specifically,
for non-smooth functions, we develop an iterative local-
ization algorithm, based on noisy mirror descent which
achieves the optimal rate +/log(d)/n 4 v/d/en. With ad-
ditional smoothness assumptions, we show that rates with
logarithmic dependence on the dimension are possible using
a private variance-reduced Frank-Wolfe algorithm which
obtains the rate /log(d)/n + (log(d)/en)?/? and runs in
linear (in n) time. This shows that privacy is essentially
free in this setting even when d > n and ¢ is as small as
n~—1/4, Moreover, we show that similar rates are possible
for general £,,-geometries for non-smooth functions when
1 < p < 2. Finally, our algorithms query at most O(n?/?)
gradients which improves over the best known algorithms
for the non-smooth case in f,-geometry which require n2
gradients (Feldman et al., 2020a).

The following two theorems summarize our upper bounds.

Theorem 1 (non-smooth functions). Let X C R% be a
convex body with {1 diameter less than 1. Let f(-;z) be
convex, Lipschitz with respect to ||-||, for any z € Z. There
is an (,0)-DP algorithm that takes a datasetr S € Z",
queries at most O(logn - min(n3/2\/Tog d, n*c /\/d)) and

outputs a solution % that has

E[F(%)] < min F(z) + O ( logd n Vdlog d) |
Ter n ne

where the expectation is over the random choice of S and
the randomness of the algorithm.

Theorem 2 (smooth functions). Let X = {x € R? :
lz||, < 1} be the £y-ball. Let f(-; z) be convex, Lipschitz
and smooth with respect to ||-||, for any z € Z. There is an
(e, 6)-DP linear time algorithm that takes a dataset S € Z™
and outputs a solution & that has

2/
E[F(zk)] < minF(gg)+5< logd " (logd> 3) |

reX n ne

where the expectation is over the random choice of S and
the randomness of the algorithm.

We also show how to improve these rates for strongly convex
functions in Appendix C.

Before proceeding to review our algorithmic techniques,
we briefly explain why the approaches used to obtain op-
timal rates in /5-geometry (Bassily et al., 2019; Feldman
et al., 2020a) do not work in our setting. One of the most
natural approaches to proving bounds for private stochastic
optimization is to use the generalization properties of differ-
ential privacy to derive population loss bounds for a private
ERM algorithm. This approach fails to give asymptotically
optimal bounds for the /5 case (Bassily et al., 2014), and
similarly gives suboptimal bounds for the ¢; case. Broadly,
there are two approaches that have been used to get opti-
mal bounds in the {5 case. An approach due to Bassily
et al. (2019) uses stability of SGD on sufficiently smooth
losses (Hardt et al., 2016) to get population loss bounds.
These stability results rely on contractivity of gradient de-
scent steps. However, as we show in an example that appears
in Appendix A, the versions of mirror descent that are rel-
evant to our setting do not have this property. Feldman
et al. (2020a) derive generalization properties of their one
pass algorithms from online-to-batch conversion. However,
their analysis still relies on contractivity to prove the privacy
guarantees of their algorithm. For their iterative localization
approach Feldman et al. (2020a) use stability of the optimal
solution to ERM in a different way to determine the scale
of the noise added in each phase of the algorithm. In ¢; ge-
ometry the norm of the noise added via this approach would
overwhelm the signal (we discuss this in detail below).

We overview the key techniques we use to overcome these
challenges below.

Mirror descent based Iterative Localization. In the
non-smooth setting, we build on the iterative localization
framework of Feldman et al. (2020a). In this framework
in each phase a non-private optimization algorithm is used
to solve a regularized version of the optimization problem.
Regularization ensures that the output solution has small
sensitivity and thus addition of Gaussian noise guarantees
privacy. By appropriately choosing the noise and regulariza-
tion scales, each phase reduces the distance to an approx-
imate minimizer by a multiplicative factor. Thus after a
logarithmic number of phases, the current iterate has the
desired guarantees. Unfortunately, addition of Gaussian
noise (and other output perturbation techniques) results in
sub-optimal bounds in ¢;-geometry since the ¢ -error due to
noise grows linearly with d. In contrast, the £5-error grows

as \/&

Instead of using output perturbation, we propose to use a
private optimization algorithm in each phase. Using stabil-
ity properties of strongly convex functions, we show that
if the output of the private algorithm has sufficiently small
empirical excess loss, then it has to be close to an approx-
imate minimizer. Specifically, we reduce the distance to a
minimizer by a multiplicative factor (relative to the initial
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conditions at that phase). We show that a private version
of mirror descent for strongly convex empirical risk mini-
mization achieves sufficiently small excess empirical loss
giving us an algorithm that achieves the optimal rate for
non-smooth loss functions. More generally, this technique
reduces the problem of DP-SCO to the problem of DP-ERM
with strongly convex objectives. We provide details and
analysis of this approach in Section 3.

Dyadic variance-reduced Frank-Wolfe. Our second al-
gorithm is based on recent progress in stochastic opti-
mization. Yurtsever et al. (2019) developed (non-private)
variance-reduced Frank-Wolfe algorithm that achieves the
optimal O(1/4/n) excess population loss improving on the
standard implementations of Frank-Wolfe that achieve pop-
ulation loss O(1/n'/?). The improvement relies on a novel
variance reduction techniques that uses previous samples to
improve the gradient estimates at future iterates (Fang et al.,
2018). This frequent reuse of samples is the main challenge
in developing a private version of the algorithm.

Inspired by the binary tree technique in the privacy litera-
ture (Dwork et al., 2010; 2015), we develop a new binary-
tree-based variance reduction technique for the Frank-Wolfe
algorithm. At a high level, the algorithm constructs a binary
tree and allocates a set of samples to each vertex. The gra-
dient at each vertex is then estimated using the samples of
that vertex and the gradients along the path to the root. We
assign more samples (larger batch sizes) to vertices that are
closer to the root, to account for the fact that they are reused
in more steps of the algorithm. This ensures that the privacy
budget of samples in any vertex is not exceeded.

Using this privacy-aware design of variance-reduction, we
rely on two tools to develop and analyze our algorithm.
First, similarly to the private Frank-Wolfe for ERM (Talwar
et al., 2015), we use the exponential mechanism to privatize
the updates. A Frank-Wolfe update chooses one of the ver-
tices of the constraint set (2d possibilities including signs
for /1-balls) and therefore the application of the exponen-
tial mechanism leads to a logarithmic dependence on the
dimension d. This tool together with the careful account-
ing of privacy losses across the nodes, suffices to get the
optimal bounds for the pure e-DP case (6 = 0). To get the
optimal rates for (g, §)-DP, we rely on recent amplification
by shuffling result for private local randomizers (Feldman
et al., 2020b). To amplify privacy, we view our algorithm
as a sequence of local randomizers, each operating on a
different subset of the tree. Section 4 contains details of this
algorithm.

In independent and concurrent work, Bassily et al. (2021)
study differentially private algorithms for stochastic opti-
mization in £,-geometry. Similarly to our work, they build
on mirror descent and variance-reduced Frank-Wolfe al-

gorithms to design private procedures for DP-SCO albeit
without the iterative localization scheme and the binary-
tree-based sample allocation technique we propose. As a
result, their algorithms achieve sub-optimal rates in some
of the parameter regimes: in /1-geometry, they achieve
excess loss of roughly log(d)/ey/n in contrast to the
Vlog(d)/+/n +log(d)/(en)?/3 rate of our algorithms. For
1 < p < 2, their algorithms have excess loss of (up to
log factors) min(d*/*/\/n,\/d/(en®/*)), whereas our al-
gorithms achieve the rate of v/d/en. On the other hand,
Bassily et al. (2021) develop a generalized Gaussian mech-
anism for adding noise in £,-geometry. Their mechanism
improves over the standard Gaussian mechanism and can
improve the rates of our algorithms for ¢,-geometry (The-
orem 5) by a v/log d factor. Moreover, they prove a lower
bound for ¢,-geometries with 1 < p < 2 that establishes
the optimality of our upper bounds for 1 < p < 2.

2. Preliminaries
2.1. Stochastic Convex Optimization

We let S = (z1,...,2,) denote datasets where z; € Z
are drawn i.i.d. from a distribution P over the domain
Z. Let X C R< be a convex set that denotes the set of
parameters for the optimization problem. Given a loss func-
tion f(z;2) : X x Z — R that is convex in z (for every
z), we define the population loss F(z) = E,.p[f(x; 2)].
The excess population loss of a parameter x € X is then
F(z) — mingex F(y). We also consider the empirical
loss Fi(x;8) = LS f(x;2) and the excess empiri-
cal loss of z € X is F(x;8) — mingex F(y;S). For
a set X', we will denote its ¢, diameter by diam,(X) =
sup, yex |7 = yll,-

As we are interested in general geometries, we define the
standard properties (e.g., Lipschitz, smooth and strongly
convex) with respect to a general norm which are frequently
used in the optimization literature (Duchi, 2018).

Definition 2.1 (Lipschitz continuity). A function f : X —
R is L-Lipschitz with respect to a norm ||-|| over X if for
every x,y € X we have |f(x) — f(y)| < Lz —y].

A standard result is that L-Lipschitz continuity is equivalent
to bounded (sub)-gradients, namely that ||g||, < L for all
x € X and sub-gradient g € 0f(x) where ||-||, is the dual
norm of [|-|.

Definition 2.2 (smoothness). A function f : X — R is
B-smooth with respect to a norm ||-|| over X if for every
2,y € X we have |V f(x) — Vi), < 6 |z - yl.

Definition 2.3 (strong convexity). A function f : X — R

is A-strongly convex with respect to a norm ||-|| over X

if for any x,y € X we have f(x) + (Vf(x),y — z) +
2

3 ly —=ll” < f(v).
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Since we develop private versions of mirror descent, we
define the Bregman divergence associated with a differ-
entiable convex function h : X — R to be Dy(z,y) =
h(z) — h(y) — (Vh(y),z — y). We require a definition of
strong convexity relative to a function which has been used
in several works in the optimization literature (Duchi et al.,
2010; Lu et al., 2018).

Definition 2.4 (relative strong convexity). A function f :
X — R is A-strongly convex relative to h : X — R if for
any z,y € X, f(x) +(Vf(2),y —x) + ADu(y,z) < f(y).

Note that if h(z) is convex, then h(z) is 1-strongly convex
relative to h(z) according to this definition. Moreover, the
function f(z) = g(x) 4+ h(x) is also 1-strongly convex
relative to h(x) for any convex function g(z).

2.2. Differential Privacy
We recall the definition of (e, §)-differential privacy.

Definition 2.5 (Dwork et al., 2006b;a). A randomized algo-
rithm A is (e, §)-differentially private ((e,0)-DP) if, for all
datasets S, S’ € Z™ that differ in a single data element and
for all events O in the output space of A, we have

Pr[A(S) € O] < e Pr[A(S') € O] + 6.

When § = 0, we use the shorter notation e-DP. We also use
the following privacy composition results.

Lemma 2.1 (Basic composition Dwork & Roth, 2014). If
Ai, ..., Ay are randomized algorithms that each is e-DP,
then their composition (A1 (S), ..., Ar(S)) is ke-DP.

Lemma 2.2 (Advanced composition Dwork & Roth, 2014).
If Ay,..., A are randomized algorithms that each is
(€,0)-DP. then their composition (A1(S), ..., Ax(S)) is
(v/2klog(1/0")e + ke(e® — 1),8" + kd)-DP.

3. Algorithms for Non-Smooth Functions

In this section, we develop an algorithm that builds on the
iterative localization techniques of Feldman et al. (2020a) to
achieve optimal excess population loss for non-smooth func-
tions over the /1 -ball. Instead of using output perturbation to
solve the regularized optimization problems, our algorithm
uses general private algorithms for solving strongly convex
ERM problems. This essentially reduces the problem of
privately minimizing the population loss to that of privately
minimizing a strongly convex empirical risk. In Section 3.1
we develop private versions of mirror descent that achieve
optimal bounds for strongly convex ERM problems, and in
Section 3.2 we use these algorithms in an iterative localiza-
tion framework to obtain optimal bounds for the population
loss.

3.1. Private Algorithms for Strongly Convex ERM

In this section, we consider empirical risk minimization
for strongly convex functions and achieve optimal excess
empirical loss using noisy mirror descent (Algorithm 1).

Algorithm 1 Noisy Mirror Descent

Require: Dataset S = (z1,...,2,) € Z", convex set X,
convex function b : X — R, step sizes {ny }+_,, batch
size b, initial point zy, number of iterations 7’;

1: fork=1toT do
: Sample Sy,..., S, ~ Unif(S)
3 Set gy = L0 Vf(xk;Si) + ¢ where ¢ ~

N(0,021;) with o = 100L+/dlog(1/5)/be

4:  Find xpy = argmingcp{(gr.z — xr) +
nith(:c, xk)}

5: end for

6: return Zr = & S1_| ), (convex)

7: return Ip = ﬁ Zle kxj, (strongly convex)

Theorem 3. Let h : X — R be 1-strongly convex with
respect to ||-||;, ** = argming,cy F(x;5), and assume
Dy(x*,20) < D2 Let f(x; 2) be convex and L-Lipschitz
with respect to ||-||, forall z € Z. Setting1 < b, T = Z—j

- D 1 , . ]
and 1y = 7= WiErsErr Algorithm 1 is (¢,8)-DP and

) R \/dlogdlog %
E[F(z7;S)—F(«*;5)] < LD-O <b+5>.

n ne

Moreover, if f(x;z) is A-strongly convex relative to h(x),

then setting n, = ﬁ

. . L2b2 L2dlogdlog L
E[F(iT;S)—F(m*;S)}§O< b 8 °g5>.

An2 An2e2

To prove Theorem 3, we need the following standard results
for the convergence of stochastic mirror descent for convex
and strongly convex functions.

Lemma 3.1 (Duchi, 2018, Corollary 4.2.11). Assume
h(x) is I-strongly convex with respect to ||-||,. Let
f(z) be a convex function and x* = argmin ., f(x).
Consider the stochastic mirror descent update 11 =
argming ¢ y{(gr, z — 1) + iDh(x, xr)} where E[gi] €

Of (zx) with E [||gk||io} < L% If gy = n for all k then the

average iterate Ty = 7 Z;il x; has B[f () — f(z*)] <
Dy(z*,21) | nL?

Tn + 2 -
We also need the following result which states the rates
of stochastic mirror descent for strongly convex functions.
Similar results appear in the optimization literature (Lacoste-
Julien et al., 2012), though as the statement we require is
less common, we provide a proof in Appendix D.2.
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Lemma 3.2. Under the same notation of Lemma 3.1, if
f (@) is A-strongly convex relative to h(x), then setting ny, =

% the weighted average T = ﬁ Zle kxy, has

E[f(ir) — f(z*)] < 5oy

We are now ready to prove Theorem 3.

Proof. The privacy guarantees follow from standard prop-
erties of the Gaussian mechanism and Moments accoun-
tant (Abadi et al., 2016); we provide full details in Ap-
pendix D. Now we prove the utility of the algorithm. To
this end, we have that E[||g]%.] < 2L% + 2E[[|¢]1%] <
2L2 + 40%log d. Lemma 3.1 now implies that

D? 2 2
< — +nL* +2no°logd
Tn

< 2D+/(L2 + 202logd)/T

\/dlogdlog
i_’_i

n ne

E[F(Zr;S) — F(z*; 9)]

<LD-0O

where the second inequality follows from the choice of 7.
For the second part, Lemma 3.2 implies that

< LTQO (b2Jr dlogdlog%)

O
n? n2e?

E[F(dr1;S) — F(z*;S)]

3.2. Private Algorithms for SCO

Building on the noisy mirror descent algorithm of Sec-
tion 3.1, in this section we develop a localization based
algorithm for the population loss that achieves the optimal
bounds in ¢; geometry. The algorithm iteratively solves
a regularized version of the (empirical) objective function
using noisy mirror decent (Algorithm 1). The output of each
iterate is accurate enough to allow to shrink the diameter
of the domain at the next iterate (increasing regularization),
hence making the optimization problem easier.

We present the full details in Algorithm 2 which enjoys the
following guarantees.

Theorem 4. Assume diam1(X) < D and f(x;z) is convex
and L-Lipschitz with respect to ||-||, for all z € Z. If we set

{\/W,E/ dlogdlog};},

1= - min
then Algorithm 2 is (e,0)-DP, uses O(logn
min(n3/2\/logd,n?c/\/d)) gradients and its output
has

\/10@Jr
Jn

3 1
E[F (z3)—F(2*)] = LD-O( dlogngdlog 1 )

Algorithm 2 Localized Noisy Mirror Descent

Require: Dataset S = (21,...,2,) € Z", constraint set
X, step size 7, initial point xzq;
1: Setk = [logn],p=1+41/logd
2: fori=1tok do
3 Setn; =27n,n; =24y
4:  Apply Algorithm 1 with (g, §)-DP, batch size b; =
max(y/n;/logd, \/d/e), T = n?/b? and h;(z) =
-2 |l — wi_1% for solving the ERM over X; =
{z e X flz — 2, <2Lnini(p— 1}

1 |z — 21|
Filw) = -2 flwz) + nini(p — 1)p
3 J::l 3 1

5:  Let z; be the output of the private algorithm
end for
7: return the final iterate x,

ng

D

We begin with the following lemma which bounds the dis-
» tance of the private minimizer to the true minimizer at each
iteration.

Lemma 3.3. Ler &; = argmin,c y Fi(z). Then,

L?n2n;
A 112 ;1
Eflas - &%) < 0 (5

Tog d +L2nfdlogdlog(1/5)/52>.

The next lemma follows from Shalev-Shwartz et al. (2009).

Lemma 3.4. Let #; = argmin, . Fi(z) andy € X. If
f(x; 2) is L-Lipschitz with respect to ||-||,, then E[F (z;)] —

Elly—i—1 2]
F(y) < — o> + O(L*n,).

We are now ready to prove Theorem 4.

Proof. First, note that the algorithm is (e, J)-DP as each
sample is used in one iterate, hence the privacy claim follows
from the guarantees of Algorithm 1 and post-processing.
Now we prove the claim about the number of queried gradi-
ents. Algorithm 1 requires n? /b; gradients hence since b; =
max(y/n;/logd, \/d/e) we get that the number of gra-
dients at each stage is at most min(n3/2\/Tog d, n*c /\/d),
implying the claim as we have logn iterates. Next, we
prove utility which is similar to the proof of Theorem 4.4

in (Feldman et al., 2020a). Letting &y = x*, we have:
E[F(zy)] - F(z)

k
1

- ZE[F(x ) — F(&-1)] + E[F(zy) — F(2)).
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First, note that Lemma 3.3 implies

E[F(zg) — F(2x)]
< LE[||lzg — @xll,]

< Ly\ER2 ||z, — ik”i]

< CL?ng(v/ni/logd + +/dlogdlog(1/6)/e)

< 027 [2n(y/n/logd + \/dlog dlog(1/5)/e)
< CLD/n?,

where the last inequality follows

L min(/log(d)/n, e/\/dlog dlog(1/9)).
and 3.3 imply

since n <
Lemmas 3.4

Efl|#i-1 — @i 1” ]
771”7 )

k

D2

<——+Y c@ri+
mm(p — 1) ;

k

D2
< ————— +4CL*n+C Y 27°
nn(p—1) z;

2 2
< D +20L ndlog dlog(1/4) +4CL,
nm(p—1)

ne?(p— 1)
The claim now follows by setting the value of 7. [

CLQ?%‘

<Z

LQnidlogdlog(l/&)
ne2(p—1)

L?ndlog dlog(1/4)
ne?(p — 1)

Finally, we can extend Algorithm 2 to work for general
¢, geometries for 1 < p < 2, resulting in the following
theorem. We defer full details to Appendix B.

Theorem 5. Ler1 < p < 2. Assume diamy,(X') < D and
f(z;2) is convex and L-Lipschitz with respect to ||-||,, for
all z € Z. Then there is an (g,0)-DP algorithm that uses
O(logn - min(n3/?\/log d, n*c /\/d)) and outputs i such
that

(p—1)ne

E[F(&)—F(z*)] = LD-O< — 1)n+

If p = 2 then the output & has

E[F(2) — F(z*)] = LD - O (1 + leogé).

vn ne

4. Efficient Algorithms for Smooth Functions

Having established tight bounds for the non-smooth case,
in this section we turn to the smooth setting and develop

1 ,/dlogdlog%)

linear-time private Frank-Wolfe algorithms with variance-
reduction that achieve the optimal rates. Specifically, our
algorithms achieve the rate O(1/4/ne) for pure e-DP and
O (1/v/n+1/(ne)*3) for (e,8)-DP. These results im-
ply that the optimal (non-private) statistical rate O(1//n)
is achievable with strong privacy guarantees—whenever
e > Q(1/n'/*) for (e, d)-DP—even for high dimensional
functions with d > n.

The starting point of our algorithms is the recent non-private
Frank-Wolfe algorithm of Yurtsever et al. (2019) which uses
variance-reduction techniques to achieve the (non-private)
optimal rates. Due to the high reuse of samples, a direct
approach to privatizing their algorithm would result in sub-
optimal bounds. To overcome this, we design a new binary-
tree scheme for variance reduction that allows for more
noise-efficient private algorithms.

We describe our private Frank-Wolfe procedure in Algo-
rithm 3. We present the algorithm in a more general setting
where X’ can be an arbitrary convex body with m vertices.
The algorithm has 7" phases (outer iterations) indexed by
1 <t < T and each phase ¢ has a binary tree of depth ¢. We
will denote vertices by us where s € {0, 1}= is the path to
the vertex; i.e., up will denote the root of the tree, ug; will
denote the right child of ug. Each vertex us is associated
with a parameter z; s, a gradient estimate v; 5, and a set of
samples S; s of size 277b where j is the depth of the vertex.
Roughly, the idea is to improve the gradient estimate at a
vertex (reduce the variance) using the gradient estimates
at vertices along the path to the root. Crucially, the large
sample size at vertices with smaller depth allows these ver-
tices to apply gradient corrections for their relatively large
sub-trees with mild privacy cost.

More precisely, the algorithm traverses through the graph
vertices according to the Depth-First-Search (DFS) ap-
proach. At each vertex, the algorithm improves the gradient
estimate at the current vertex using the estimate at the par-
ent vertex. When the algorithm visits a leaf vertex, it also
updates the current iterate using the Frank-Wolfe step with
the gradient estimate at the leaf.

For notational convenience, we let DFS(¢) denote the
DFS order of the vertices in a binary tree of depth ¢
(root not included), i.e., for ¢ = 2 we have DFS(t) =
{UO, U0, U1, UL, U10,s Ull}. Moreover, for s € {0, 1}t we
let ¢(s) denote the integer whose binary representation is
s. In the description of the algorithm, we denote iterates by
x1,s where t is the phase and s € {0,1}" is the path from
the root. In our proofs, we sometimes use the equivalent
notation xj, where k = 2!=1 4 {(s).

We analyze Algorithm 3 for pure and approximate DP.
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Figure 1. Binary tree at phase ¢ = 3 of the algorithm. At the leaf w101, the algorithm has the gradient estimate v¢ 101 Which is
calculated along the path to the root where every right son applies a correction step to the estimate. Using the gradient estimate
v¢,101, the algorithm applies a Frank-Wolfe step to calculate the next iterate and put its value in the next DFS vertex, namely

Ut,11-

Algorithm 3 Private Variance Reduced Frank-Wolfe
Require: Dataset S = (21,...,2,) € Z", constraint set
X = conv{ey,...,¢n}, number of phases T, batch
size b, initial point z;
1: fort =1toT do
2: Set Tpp = Tt—1,L,_q
3:  Draw b samples to the set S,
4 vpg < V(29 Se0)
5:  for u, € DFS[2'] do
6
7
8
9

Let s = s'cwhere c € {0,1} and j = |s]

if ¢ = 0 then
Vt,s — Vt,s'5 Tt,s — Tt,s!
: else
10: Draw 27b samples to the set St.s
11: Vgs ¢ Vtsr + vf(xt,s; St,s) - Vf(xt,s’; St,s)
12: end if
13: if j =t then
14: Let s be the next vertex in the DFS iteration
15: Wy, 4 ArgMing . ;<. (Ci,ve,s) + ¢; Where
¢i ~ Laplace(A¢ s) o
16: Ty, (1 =1¢6)Te,s + 10, swe, s Where 1y s =
17: end if
18:  end for
19: end for

20: return the final iterate x g

4.1. Pure Differential Privacy

The following theorem summarizes our guarantees for pure
privacy. We defer missing proofs to Appendix E.

Theorem 6. Assume that diamy(X) < D, m < O(d)
and that f(x; z) is convex, L-Lipschitz and 3-smooth with

2
respect 10 ||||,. Assume also that Zlesmloan < 5 <

neD
t
Setting b = n/log’n, A\, = ZLZEQ and

nLlogm
eDlog?n"

T = % log (Lbiien>, Algorithm 3 is e-DP, queries n gradi-

ents, and has
E[F(zk) — F(z")]

<0 (D(L+ﬁD) Vl"?\jﬁl"g” n \/BLT\/I%dlogn> |

2
Moreover, if B < % then setting T = 1 and

b = n, Algorithm 3 is e-DP, queries n gradients, and has

Vlogd n
Vn

loid)JrO(ﬁD?).

B[P ()~ F(z*)] < DL-O (

To prove the theorem, we begin with the following lemma
that gives pure privacy guarantees.

Lemma 4.1. Assume 27 < b. Setting \, = 202" AL

gorithm 3 is e-DP with ¢ < 1. Moreover, E[(v; 5, wy s)] <

E[min,ex (ve,s, w)] + O(Lfft

logm).

Proof. (sketch) Let S = (z1,...,2n—-1,2n) and &' =
(21,...,2n—1, #,,) be two neighboring datasets. We prove
privacy given that the n’th sample belongs to the set .S 5,
which will imply our general privacy guarantee as this holds
for every choice of ¢ and s. The main idea is that each sam-
ple in the set S;  is (directly) involved in the calculation of
a Frank-Wolfe update at most N; ; = 2t=Is! times. Hence,
setting the noise level \; ; large enough to guarantee that
each iterate is €/ N, s-DP, basic composition implies the
final output is e-DP. O

The next lemma upper bounds the variance of the gradients.

Lemma 4.2. At the vertex (L, s), we have
E |Jvr.s = VF(2,)l, < (L +8D) - O (/og(d)/b)

Using the previous two lemmas, we can prove Theorem 6.
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Proof. The setting of the parameters and the condition on
(3 ensures that 2T < b hence Lemma 4.1 implies the claim
about privacy. Now we proceed to prove utility. In this proof,
we use the equivalent representation k = 2!=1 4 ¢(s) for
a leaf vertex (t, s) where £(s) is the number whose binary
representation is s. By smoothness we get,

F(zk41)
< F(ag) + (VF(2k), g1 — k) + Bllops1 — 171@”? /2
< F(ag) + np(VF(g), wg — x3) + B D? /2
= F(xk) + ne(VF(zk), 2" — zi) + ni(or, we — 27)

+ i (VF(21) — v, wp — %) + BniD?/2
< F(xg) + ne(F(z*) — F(x

+ (o, wi) — min (o, w)) + BniD?/2.

Subtracting F'(z*) from each side, using Lemmas 4.1
and 4.2 and taking expectations, we have

E[F(zk41) — F(27)]
* log d
< (1 —m)E[F(zx) — F(z*)] + mD(L + BD)
i 21
+ %5p? 4 DL =8
2 be
Letting o, = mD(L + (D) /logd + %iﬂDz 4
UkDL?I,)%, we have
K
E[F(zx) — F(a*)] < 3o [J0 =)
k=1 >k

=

<Songer

Since t < T and K = 27T, simple algebra now yields

_ (k=1Dk
*; KK+1

ElF(zk) — F(2")]
V1o D? 2T logm
gO(D(LJrﬂD) \/§ +ﬁ2T +DL bgg >

The number of samples in the algorithm is upper bounded
by T2 - b hence the first part of the claim follows by setting
b=n/ logZnand T = % log <Lb1€ngm). The condition on
[ ensures that the term inside the log is greater than 1. The
second part follows similarly using 7’ = land b =n. [O

4.2. Approximate Differential Privacy

The previous section achieves the optimal non-private rate
1/4/n only for ¢ = ©(1). In this section we show that for
approximate differential privacy, it is possible to achieve the

k) + D |VF(zr) — vil o

optimal rates when & > Q(n~'/%). The first approach to
improve the privacy analysis is to use advanced composition
for approximate DP. Unfortunately, it is not enough by itself
and we use amplification by shuffling results to achieve the
optimal bounds. The following theorem summarizes the
guarantees of Algorithm 3 for approximate privacy.

Theorem 7. Let 6 < 1/n and assume that diam;(X) < D,

m < O(d) and that f(x; z) is convex, L-Lipschitz and 3-

smooth with respect to ||| Assume £228n/9) l‘gmlog t <

g < /n Lls%(ﬁ{;g logm nd e < (Llog("/fﬁ ;%)T/);/‘*m

Let M\ = W, b = n/log n, and T =
beBD

% log (W), then Algorithm 3 is (6, 6)-DP
queries n gradients, and has

E[F(zx)~F(2")] <O (D(L + 5D)\ﬂo@10gn>

Vn
L0 <\/BLD2 log(1/4) log m log? n)

ne

The following lemma proves privacy in this setting.

Lemma 43. Ler 27 < b § < 1/n and ¢ <
V2 Tlog(1/6). Setting A\¢s = w Algo-
rithm 3 is (O(g),216)-DP. Moreover, E[(v; s, wy,s)] <
E[ming,ex (vt s, w)] + O(LD27/?1og(n/5)log(m)/be).

Proof (sketch). Let S = (z1,...,2p-1,2,) and &’ =
(21, ..., 2n—1, #,,) denote two neighboring datasets with it-
erates * = (z1,...,2¢k) and 2’ = (x},...,2%). Here, we

prove privacy after conditioning on the event that the n’th
sample is sampled at phase ¢ and depth j. We only need to
prove privacy for the iterates at phase ¢ as the iterates before
phase ¢ do not depend on the n’th sample and the iterates
after phase ¢ are (e, §)-DP by post-processing.

Let us focus on the iterates at phase ¢. Let uq, .. ., u, denote
the vertices at level j that has samples S1, ..., S, each of
size |S;| = 279b. Let A; denote the algorithm that outputs
the iterates corresponding to the descendant of the vertex ;.
The proof has two steps: first, we use advanced composition
to show that each A; is (g, dg)-DP where roughly ey =
27/2¢. Then, as we have p = 27 vertices at depth j with
random samples (that is, shuffled between vertices), we use
the amplification by shuffling result (Feldman et al., 2020b)
(see Lemma E.2) to argue that the final algorithm is (g, §)-
DP (see Fig. 2 for a demonstration of the shuffling). O

Theorem 7 now follows using similar arguments to the proof
of Theorem 6 (see Appendix E.4).
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Figure 2. We view Algorithm 3 as a sequence of algorithms A, . .

., Ap, each A; operating on the subtree of the vertex u; using

the outputs of the previous algorithms. The gray set denotes the subtree over which A2 operates; its outputs are the iterates
corresponding to the leafs of this subtree. If each A; is (g0, do)-DP, then shuffling the samples at nodes of depth j (in blue)

amplifies the privacy to roughly (eo

5. Lower Bounds

We conclude the paper with tight lower bounds. Our lower
bounds are for the excess empirical loss but these can be
translated to lower bounds for excess population loss using
a simple bootstrapping approach (Bassily et al., 2019).

5.1. Lower Bounds for Non-Smooth Functions

In this section, we prove tight lower bounds for non-smooth
functions using bounds for estimating the sign of the mean.
In this problem, given a dataset S = (zy,...,z,) with
mean Z, we aim to design private algorithms that estimate
sign(z). The following lemma provides a lower bound for
this problem. We defer the proof to Appendix F.1.

Lemma 5.1. Let § = (z1,...,2,) where z; € Z =
{-D/d,D/d}* and let z = L 37" | 2. Then any (,9)-
DP algorithm A : Z — {—1,+1}% has

max E
SezZn

d
jz::l |Z;[1{A(S); # sign(z;)}| > Q <n€10gd

The previous lemma implies our desired lower bound.
Theorem 8. Let f(x;2;) = L|jx — 2;||; where z; € Z =
{~D/d,D/d}", F(2;8) = LY o — 2], and X =

T n

{z :||z||; < D}. Then any (¢, 6)-DP algorithm A has

max E | F(A(S); S) — minF(x;S)} >0 <LD\/(§> .

Sezn TEX nelogd

Proof. First, note that f(x; z;) is L-Lipschitz with respect
to ||-||;. Moreover, it is immediate to see that the minimizer
of F(:;8) is a* = sign(2)D/d where z = L ™" | 2 is
the mean. Letting & = A(S), simple algebra yields

d
F(2;8) - F(2%;8) > LZ |z;|1{sign(&;) # sign(z;)} .

The claim now follows from Lemma 5.1 as sign(A(S)) is
differentially private by post-processing. O

log(1/8)/27,8 + ndo)-DP.

D\/Zi>

5.2. Lower Bounds for Smooth Functions

In this section we prove tight lower bounds for smooth
function. Specifically, we focus on /3-smooth functions with
B ~ L/D; such an assumption holds for many applications
including LASSO (linear regression). Our results in this
section build on the lower bounds of Talwar et al. (2015)
which show tight bounds for private Lasso for sufficiently
large dimension. We have the following lower bound for
smooth functions which we prove in Appendix F.2.

Theorem 9. Let X = {x € R? : |z||, < D}. There
is family of convex functions f : X x Z — R that is
L-Lipschitz and B-smooth with 8 < L/D such that any
(¢,6)-DP algorithm A with § = n=%() has

sup E [F(.A(S); S) — min F(z; S)]
Sezn z€X

= . 1 Vd
>LD-Q<m1n ((”5)2/3’715>>

The lower bound of Theorem 9 implies the optimality of our
upper bounds; if d > O((ne)?/?) then the lower bound is es-
sentially 1/(ne)?/? which is achieved by the private Frank-
Wolfe algorithm of Section 4, otherwise d < O((ne)/?)
and the lower bound is \/d/ne which is the same bound that
private mirror descent (Section 3) obtains.
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