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Abstract

In this paper we address a variant of the con-
tinuous multi-armed bandits problem, called the
threshold estimation problem, which is at the
heart of many psychometric experiments. Here,
the objective is to estimate the sensitivity thresh-
old for an unknown psychometric function ¥,
which is assumed to be non decreasing and con-
tinuous. Our algorithm, Dichotomous Optimistic
Search (DOS), efficiently solves this task by tak-
ing inspiration from hierarchical multi-armed ban-
dits and Black-box optimization. Compared to
previous approaches, DOS is model free and
only makes minimal assumption on ¥ smooth-
ness, while having strong theoretical guarantees
that compares favorably to recent methods from
both Psychophysics and Global Optimization. We
also empirically evaluate DOS and show that it
significantly outperforms these methods, both in
experiments that mimics the conduct of a psycho-
metric experiment, and in tests with large pulls
budgets that illustrate the faster convergence rate.

1. Introduction

Psychophysics investigates the connection between physical
stimuli and the subjective responses (such as sensations,
or perceptions) they produce. This field of research has
widespread applications, including the study of attention
(Scheuerman et al., 2017), and the evaluation of treatments
for pain relief (Nir et al., 2011). One of the key aspect
of Psychophysics is the evaluation of human perception,
which is generally assessed by performing psychometric
experiments. They unfold as follows : the experimenter
presents to an individual, called the observer, a sequence
of stimuli of varying intensities (for instance, the volume
of a specific sound, see e.g. (Hirahara, 2004)), and try to
measure how often the different intensities are perceived by
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the observer. In particular, many experiments are interested
in measuring the sensitivity threshold, where the stimulus is
just noticeable (Kontsevich & Tyler, 1999).

Human perception is generally modeled as follows. For
any given stimulus intensity s, the stimulus is perceived by
the observer with (unknown) probability ps, and the rela-
tion between s and i for a given observer is called the
psychometric function, noted ¥, and is defined such that
U(s) = us for any stimulus intensity s. By definition, ¥
is assumed to be non-decreasing (the stronger the stimu-
lus, the easier it is to perceive it) and continuous (Leek,
2001). Given a target perception probability ., the objec-
tive of these psychometric experiments is to estimate the
sensitivity threshold s, such that W(s,) & p.. To achieve
this, the experimenter must both choose a sequence of stim-
uli to present to the observer (which must be as short as
possible, to limit the fatigue of the observer (Wichmann &
Hill, 2001a)) and estimate s, given the observer responses.
In this work, this task will be referred to as the threshold
estimation problem.

One of the most commonly used technique for solving this
problem is the constant stimuli method (Wichmann & Hill,
2001a), where the observer is presented with a fixed se-
quence of stimuli, spanning the range of sensation from
imperceptible to consistently perceptible. After collecting
the observer responses, the parameters of ¥ are estimated
using the maximum likelihood method — where the shape of
WU is assumed to be known, e.g. a Gaussian cumulative distri-
bution function (c.d.f.). Finally, s, is estimated as U~ (..).
However, this approach suffers from many limitations. First,
the parametric models have been shown to be frequently
inconsistent with the observations, or to require many small
empirical corrections to fit the data with an acceptable accu-
racy (Wichmann & Hill, 2001b). Second, the fixed sequence
does not account for individual specificity, a key problem as
it has been shown that the sensitivity threshold can vary by
a factor of ten between individuals (Benson et al., 1989).

Consequently, there has been an increased interest in us-
ing adaptive algorithms (Leek, 2001), where an agent A)
aims at estimating directly the sensitivity threshold without
estimating ¥, therefore reducing the difficulty of the prob-
lem and B) adapts the sequence of stimulus intensity based
on the observer responses. One popular such method in
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Psychophysics is arguably the staircase (and its iterations)
(Cornsweet, 1962; Lengyel & Fiser, 2019). However these
methods generally rely on strong assumptions about the
smoothness and shape of W, and seldomly provide theoreti-
cal guarantees on the the estimator they provide. Therefore,
proposing a novel, model free and principled algorithm that
addresses the threshold estimation problem may bring sig-
nificant improvements to psychometric experiments.

Fortunately, in recent years multiple techniques have been
developed for the stochastic adaptive optimization of black-
box functions of unknown smoothness (see e.g. (Grill et al.,
2015; Shang et al., 2019)). In particular, in hierarchical
bandits methods, the agent uses various concentration in-
equalities to explore a hierarchical partition of the arm space,
progressively narrowing the candidate subspace that may
contain the maximum. While the task of locating the ex-
tremum of a noisy function is different from threshold esti-
mation, the two problems present similarities with respect to
the difficulties they encounter. Therefore, methods and algo-
rithms developed in the former may give valuable hindsights
into addressing the latter.

Following this idea, in this paper, we show that the threshold
estimation problem can be rewritten as a pure exploration
continuous multi-armed bandit problem, with interesting
twists (Section 2). Then, we introduce the Dichotomous
Optimistic Search algorithm (DOS), that takes inspiration
from hierarchical bandits, and black box optimization to
solve this problem (Section 4). The idea behind DOS is
to perform a stochastic continuous binary search, while
achieving the correct trade off between the depth of the
binary tree, and the confidence in its noisy comparisons.

This method has multiple advantage over existing algo-
rithms. First, DOS is model free, in the sense that it does
not requires the knowledge of the shape of the psychometric
function and only assumes that ¥ is mildly smooth around
S« (in fact, we show that local Holder continuity is a suffi-
cient condition). Moreover, the agent does not require the
knowledge of the smoothness of U, or the use of a suited
hierarchical partition. Second, DOS has advantageous theo-
retical guarantees: we prove (see Theorem 1) that the simple
regret Ry of DOS is upper bounded as follows

E(Ry) < O (\/(logT)ngglogT)> '

This highlights the advantage of DOS over existing methods
used in psychometric experiments, which to the best of our
knowledge, do not have similar guarantee except in narrow
settings. Moreover, this upper bound compares favorably
to state of the art results, such as the simple regret bounds
of POO (Grill et al., 2015), as it is independent of the local
near-optimality dimension (a measure of the optimization
problem difficulty, see e.g. (Shang et al., 2019)).

Third, we also extensively evaluate DOS in a wide range
of experiments (Section 5). We show that our agent sig-
nificantly outperforms adaptive psychometric methods and
recent global optimization methods in both experiments that
mimic the conduct of a psychometric experiment, and in
tests with large pulls budgets that illustrate the faster con-
vergence rate of our agent.

2. The Threshold Estimation Problem

Notation. Let 7' denote the time horizon (i.e. the max-
imum number of stimulus presented during the experi-
ment), [ C R the (closed) interval of possible stimuli,
U : T~ [0,1] the psychometric function, u. € [0, 1] the
target probability, s, = W1 (u,) the sensitivity threshold.
Finally, let pimin = infser U(s) and pimax = sup,ep Y(s).

In the following we assume without any loss of generality
that T = [0,1]. We also assume that the target threshold
is strictly reachable, i.e. pmin < px < Umax. Due to
the nature of the task (detecting stimuli of various inten-
sity), the psychometric function is commonly assumed to be
continuous and strictly increasing (see e.g. (Leek, 2001)).

The objective of the threshold estimation problem is to find
an estimator § of the sensitivity threshold s, with at most
T stimuli. I, T" and p, are known to the agent (here the
experimenter), but ¥ and s, are not. The process unfolds as
follows. For each round ¢ € [1, ..., T1, first the agent pulls
an arm (i.e. chooses an intensity) s € I and then the envi-
ronment (here the observer) draws an independent Bernoulli
random variable with mean ¥(s), and communicates the
result to the agent, representing the detection of the stimulus.
Attime ¢ = T, the agent returns the arm § that is her best
guess for the target stimulus s,. The performance of the
agent is then evaluated using the simple regret R, defined as

R(8) = |ps — ¥ (3)]- (D

Note that (1) is similar to the definition of simple regret
in hierarchical bandits (Valko et al., 2013). The relation
between the two is discussed later in this section.

Remark 1 (Lapses and Guessing). Due to the subjective
nature of perception, in general fi,;n > 0 and ppmax < 1,
even for completely undetectable (resp. unmissable) stimuli
(Wichmann & Hill, 2001a). Indeed, pi,i, is identified as the
guess rate, i.e. the chance that the observer correctly guesses
the answer independently of the stimulus. Similarly 1 —
Umax 18 called the lapse rate and represents the probability
of the observer missing the stimulus due to factors external
to the experiment (such as blinking for a visual stimulus).
These values are generally unknown at the beginning of the
experiment, and most methods in psychophysics require the
use of heuristics to estimate (i, and piyax (Wichmann &
Hill, 2001a), before using these estimate to normalize the
data. Importantly, this is not the case for DOS, which does
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not require any prior information on fiyin and fimax -

In the rest of this paper, we make the following mild as-
sumption on the smoothness of ¥, which is required to
prove DOS theoretical guarantees.

Assumption 1 (¥ is smooth around s,). There exists v >
0,and 0 < p < 1suchthatVh > 0, Vs € I,

s — s <27 = |U(s) — U(s.)| < v

This hypothesis implies that ¥ is smooth enough around s,
and prevents the well known “find the needle in a haystack”
problem of global optimization (Valko et al., 2013). This
assumption is similar to the ones used in recent black-box
optimization methods of function of unknown smoothness
such as (Grill et al., 2015). Notably, Assumption 1 does
not restrict the choice of possible ¥, as shown by Lemma 1,
whose proof can be found in the supplementary materials.

Lemma 1. Let ¥ : [ — [0, 1], and V be a neighborhood of
Sy Then, Voo > 0

U is locally a—Holder

. = U satisfies Assumption 1.
continuous on'V
Proof. By definition, 3r > 0 such that V contains a ball B
of radius » > 0 centered on s,. ¥ is a—Holder on B, thus
3C > O such that Vs’ € B, |[¥(s) — U(s")| < C|s — §'|*,
hence it is easy to see that Assumption 1 is satisfied on B
for p=2"%and v = C. For I \ B, we just observe that

vs' eI\ B, [s—5] > = 2183,

and thus that Assumption 1 is satisfied on I\ B for p = 27¢
log r
and v = Qp@. Hence the conclusion. O

In particular, all continuously differentiable ¥ (and con-
sequently all the commonly used psychometric functions)
satisfy Assumption 1. Importantly, DOS does not require
the knowledge of the smoothness parameters (v, p).

Relation with Global Optimization Let ¥ be a psycho-
metric function and p, a target probability. Define f as:

f: I—[-1,0] 2
5= —lp. —U(s).

It is easy to see that f admits s, as its unique maximum,
and that f(s,) = 0. Moreover, the regret defined by (1)
is equivalent to the usual definition of simple regret for f
(see e.g. (Bubeck et al., 2011)). Similarly, Assumption
1 implies a similar smoothness condition for f around its
maximum. Therefore, (2) draws a link between the black
box optimization of f and the threshold estimation of W.
However, since ¥ is unknown and can only be observed

through the realizations of Bernoulli random variables, it
is impossible to directly use global optimization strategies
to solve the threshold optimization problem. Nevertheless,
this transformation is useful to draw parallels between the
two problems and their solutions.

3. Related Works

Threshold Estimation in Psychophysics. Several adap-
tive algorithms have proposed to solve the threshold esti-
mation problem in psychometric experiments. On the one
hand, the staircase algorithm, arguably the most popular
adaptive method, has been discussed and improved upon
significantly in recent years (Wichmann & Jikel, 2018).
However, this method can only be used for a very limited
list of target probability (such as p,. = 0.5) (Brown, 1996),
and convergence is only guaranteed for specific shape of
the psychometric function (such as Gaussian c.d.f.) (Levitt,
1971). On the other hand, there has been increasing interest
in parametric Bayesian adaptive algorithms. The purpose
of these methods is generally to estimate the entire func-
tion ¥, using a model based approach (e.g. ¥ is assumed
to be a Gaussian c.d.f.). Notably, in (Kontsevich & Tyler,
1999) the authors proposed a method which aims at each
step to minimize the entropy of the distribution of possible
parameters for ¥, while in (Shen & Richards, 2012), the
authors introduced a sampling method that aims at minimiz-
ing the variance of each parameter. However, these meth-
ods also require the prior knowledge on the psychometric
function shape, which significantly limits their applications,
and (Garcia-Pérez & Alcald-Quintana, 2007; Hatzfeld et al.,
2016) have empirically shown that all the aforementioned
methods produce significantly worse estimations and might
even diverge when this assumption is false. More recently,
several works have proposed to use Gaussian Processes
(GP) to approximate ¥ (Gardner et al., 2015a;b; Song et al.,
2017). These algorithms are compatible with a much wider
range of possible ¥ and can outperform other methods for
some applications (see e.g. (Gardner et al., 2015a)). How-
ever these methods have a different, more general objective
as they generally aim to estimate W, and thus are more
costly than methods that only approximate s,. Moreover,
they require the choice of a proper kernel and a mean func-
tion, as well as a grid of hyperparameters; and they perform
best when these elements are hand crafted for the problem
(Gardner et al., 2015a), using prior information regarding
¥ — and may perform poorly when these assumptions are
false and when the kernel is ill-suited, see e.g. Section 5.
Conversely, our method, DOS, is completely model free,
a significant advantage when nothing is known about the
psychometric function, a situation that occurs frequently
in psychophysics research (see e.g. (Schiitz et al., 2008)).
Finally, and contrarily to the aforementioned methods, DOS
has strong theoretical guarantees regarding its estimation of
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Sy« (see Theorem 1).

Global Optimization. To address the problem of black
box optimization of an unknown function f in presence of
noise, two families of solutions have been proposed. In the
first, f is assumed to have some strong global smoothness,
such as a Lipschitz condition (see e.g. the Lipschitz multi
armed bandit problem (Kleinberg et al., 2008; 2019)). In
the second category, f is only assumed to have some local
smoothness around its maximum (see e.g. (Valko et al.,
2013)). This framework leads to arguably more difficult
problems, in particular when the smoothness is unknown.
However it has been shown that even in this setting it is
possible to achieve near optimal regret bounds, for instance
by using a hierarchical bandit approach such as POO — Par-
allel Optimistic Optimization, see e.g. (Grill et al., 2015;
Shang et al., 2019). This latest setting is the closest to our
problem. Indeed, Assumption 1 can be seen as similar to
their minimal assumption (see e.g. (Grill et al., 2015)) — but
Assumption 1 is slightly weaker in the sense that in our case
the agent does not have access to a hierarchical partition that
is well suited for the function f. Importantly, in both cases
the smoothness parameters (v, p) are unknown. One other
significant difference between the two settings is the non de-
creasing property of W. There is no equivalent hypothesis in
the global optimization setting; and this property of ¥ is key
to DOS, our solution to the threshold optimization problem,
and its significantly better regret bound (see Theorem 1).

Other related works. The threshold estimation problem
shares some similarities with the noisy bissection problem
(Chakraborty et al., 2011) and the learning the demand curve
problem (Chhabra & Das, 2011). However, they are multi-
ple crucial differences between these topics. For instance,
in the later, the objective can be reformulated as minimizing
the cumulative regret, instead of the simple regret (1) — lead-
ing to very different, non equivalent solutions (Bubeck et al.,
2011). Additionally, in both cases strong assumptions are
made on the properties of the noise (e.g. Gaussian, (Jedynak
et al., 2012)), the shape of the function or its smoothness
(Chakraborty et al., 2011) — which is very different from our
model free approach, and cannot be easily adapted. Finally,
the closest works to ours are arguably (Fontaine et al., 2020;
Audiffren, 2021). The first has been developed simultane-
ously and independently, and while their algorithm also uses
repeated pull of a candidate arm to obtain high probability
comparison, it significantly differs from ours as : A) their al-
gorithm was designed to optimize the cumulative regret, and
the simple regret bound that can be derived from their work
is significantly worse than ours, and B) their method cannot
be applied to our problem (and conversely), as they rely
on different, non equivalent hypotheses as well as different
types of feedback (noisy gradient in their case). The second
is an extended abstract that discusses general ideas related

to DOS, but does not provide any theoretical analysis or
regret bound and only limited empirical evaluation, which
are main contributions of this work.

4. Contributions

In this section, we introduce DOS and discuss its key ideas
before proving an upper bound for its simple regret which
compares favorably to the existing regret bounds in global
optimization. We provide sketches of proof for the different
results — the detailed proofs can be found in the supplemen-
tary materials.

4.1. DOS

In the following, we use log?(T") = log(log(T')). Let x de-
note the number of different arms that are pulled by DOS
during the attributed time budget 7". Since there is a con-
tinuous set of possible arms, and x < T, most arms will
never get pulled; and in the following we say that the agent
activates an arm when she pulls it for the first time. For any
1 <4 < K, weuse s; (resp. N;(t), f1;(t) and p;) to denote
the stimulus value (resp. the number of pulls, the empirical
average and the true probability value) associated to the ¢-th
activated arm at time ¢. Finally, let A; = |u; — p.| —i.e. the
regret obtained by the agent if she chooses to return the arm
iwhent =T.

DOS strategy. The general idea of DOS is inspired by
the deterministic dichotomous search algorithm : the agent
aims to produce a sequence of intervals Iy, ... I, C I such
that

Vi<i<k, |]<2 ‘ands,cl; 3)

Note that if (3) is true, then |s,;, —s.| < 27" and Assumption
1 implies that

A, <vp© 4)

in other words, the sequence s, (resp () converges expo-
nentially fast toward s, (resp p.). To produce this sequence,
DOS proceeds as follows. To obtain I;;1 given the interval
I;, the agent activates s;11 = % — the arm located at the
center of I; — and repeatedly pulls this new arm, until the
time budget is elapsed (t = T") or one of the two possible
new arm activation criteria is satisfied. Then she compares
11+, the target probability, and fi;+1(N;+1), i.e. the empiri-
cal proportion of stimuli of intensity s, that were detected.
Depending on the result, the agent defines the next interval
I; 11 in the sequence as :

2k; 2k; +1

2T 2+1} i e < i,

., =
+ [2/@- 41 2k +2

9iF1 il } otherwise.
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Algorithm 1 DOS
Parameters (.. (objective), T' (time horizon)
Initialization ¢ < 1 (current arm), s; < 1/2 (current
stimulus ), N1 < 0 (number of pulls of s1), fi; < 0
(empirical average of s1), t «— 0 (total pulls), S = NULL
the latest promising arm, N, as in (8) and Br(-) as in (7).
Main Loop
Whilet < T':
If ‘/J* — ﬂz(t)| > QBT(NZ‘(t)) or Ni(t) > N, :
If N;(¢t) > N, Then S < i EndIf
Activate new arm: ¢ < ¢ + 1 and

sic1+ (1/29) i p > flia
S i . ~
sic1— (1/2") if e < i
EndIf
Sample arm s;, update ¢, N;, fi;
EndWhile

S if § # NULL,

Output: s, , where ¢, = .
K otherwise.

Here the agent leverages the fact that ¥ is monotonically
increasing. Importantly, this strategy presents key differ-
ences with the deterministic dichotomous search, which are
discussed below. The pseudocode for DOS can be found
in Algorithm 1. Note that DOS is completely model-free,
in the sense that it does not uses any parameter or prior
knowledge regarding W, including (v, p), the parameters of
W local smoothness.

DOS noisy comparisons. Contrarily to the deterministic
setting, here the agent has only access to noisy observations
of U(s;). Therefore, for any arm s; the agent can only
compare fi; and p,, and can never be sure if U(s;) > u.. To
quantify this uncertainty, DOS uses a Hoeffding-Chernoff
concentration bound (see e.g. (Auer et al., 2007)):

Pl — ilt)] > £) < 2exp (= 2Ni(1)e?). (5)

Let Q; be the event where DOS reaches the wrong conclu-
sion about the position of the arm s; with respect to s :

o {{mm <}
) 2 )

and let ¢; = P(Q;). While ¢; can be reduced by pulling the
arm s; multiple times — and thus reducing the confidence
interval — the number of pulls required increases drastically
as the distance A; decreases. This is compounded by (4), as
A; can be expected to decrease exponentially as 7 increases.

. (6)
if Mg < s

Meanwhile, decreasing the uncertainty of the comparisons
comes at a cost on the number of activated arms, as more

time is spent on each arm — and (4) gives insight into the link
between the number of activated arms « and the quality of
the arm s,,. Hence, the agent must achieve a proper trade-off
between two opposite objective:

¢ Confidence: Pull each activated arm more to increase
confidence in the comparison between [ and p,

¢ Depth: Increase the number of activated arm to im-
prove the bound for A, provided by (4).

Moreover, identifying the correct trade-off between the two
objectives is complicated by the fact that while ¥ is as-
sumed to satisfy Assumption 1, the parameters v and p are
unknown to the agent. This raise additional difficulties as
these parameters are crucial to the quality of the upper regret
bound (4) and to assess the behavior of ¥ around s... This
conundrum is discussed below.

Activation criteria. DOS uses two different activation
rules to achieve the proper trade-off between Confidence
and Depth. These two rules both rely on (5), but with
different perspectives. The first rule forces the activation of
anew arm if

log (T')
N;(t) -~

e — a(0)] > Br(Ni(t)) = 5 )

Note that (7) is a confidence interval commonly used for
the optimism against uncertainty principle, see e.g. (Auer
et al., 2007). If (7) is achieved, then the agent is considered
confident enough to activate the next arm, regardless of the
number of pulls NV;, as stated by the following Lemma:

Lemma 2. If (7) is satisfied for the arm s;, then q; < T3
Proof. Without any loss of generality, assume that fi; > fi..
Using the second triangular inequality ft; — s > fl; — fbs —
|fi; — i), hence the conclusion by using (5) and (7). O

However, the number of pull required to achieve (7) can
be too large, in particular if A; is small. Hence the second
rule plays an important role in achieving the aforementioned
exploration trade-off, by setting a maximum number of pulls
for the arm ¢ before the activation of the next arm. Indeed,
this rules forces the activation of a new arm if

, T
Nilt) > No = hlog T)(log” T )J ' ®

Therefore, (8) provides a lower bound on the depth of the
search: independently of observed results, DOS activates
at least k = |(logT)(log”> T)| arms. Moreover, it can
be shown (see Lemma 3) that if (8) occurs, then s; is a
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promising arm, i.e. AA; is small enough for s; to be a good
estimator of s,. These arms are key to DOS estimation of
the sensitivity threshold, as discussed below.

Lemma 3. If (7) is false, bur (8) is satisfied, then with
probability at least 1 — 2,

A, < g/ QosT)*(log” )

T
Proof. Note that since (7) is not satisfied for N; = N,, we
have |p. — f1;(t)] < Br(N.). Hence, using the triangular
inequality, A; = [p. — pi| < | — fis| + |pi — f1i]- The
result is then obtained by using the concentration inequality
(5) and the definition of NV, (8). O

DOS final output. When the time horizon is reached (t =
T), there are two possible scenarios. In the first case, the
activation rule (8) was used at least once, and the agent
found at least one promising arm. Then the agent returns
the last encountered promising arm, and the regret incurred
is controlled by Lemma 3. In the second case, no promising
arm was found during the exploration process and all arms
were activated using (7). In this scenario, the agent returns
the last activated arm s,,. To upper bound A, let

AT = (V< TV <k, g — (D)) < Br(N)))

In other words, A* is the event where the empirical aver-
age of all activated arms are concentrated around their true
mean. First note that on A%, if an arm is activated using (7),
then the algorithm necessarily the right conclusion when
comparing fi; and p, — and thus (3) is true. Thus, in this
scenario, the event A* has a probability close to one, as
stated by the following Lemma.

Lemmad. P(A*) >1- 2.

Proof. First note that on .4*, DOS always reach the right
conclusion when comparing /i; and p, after the activation
rule (7). Thus in this scenario the sequence of arms s; is
fixed (but not their respective number of pulls) and the result
is then obtained by taking the union bound on all arms and
on all times t < T'. O

Since (3) is true, then (4) is also true and the regret of s,
is directly related to the number of activated arms «. The
following proposition proves a lower bound for k.

Proposition 1. Let i, defined as

e Llog ((log2 TilogT)Q) 210g11/p)J - O

Then all the following properties are true

(A) iflog®> T > —1/logpandT > 16, theni, < Kk

log” T') (log T)?
(B) Vi > iv, A as. A, < vy 15 THOETE
Proof. (A) is proved by using the fact that the definition
of N, (8) implies that x > log(T') log®(T). (B) is derived
from (4) by using the definition of ¢z, (9). O

In other words, (B) upper bounds DOS regret provided that
the agent has activated at least ¢, arms, and (A) states that
for T' large enough, more than 7, arms are activated. By
combining all the previous results, it is possible to prove the
following upper bound on the regret incurred by DOS:

Theorem 1 (Upper Bound on simple regret). Assume that
Hypothesis 1 is true. Then, YT > 0, the simple regret of
DOS R is upper bounded by

(log T')* log”(T')

E(Rr) < (3+v) T

(10)

Proof. This results from noting that by definition R < 1,
and then using Lemma 3, Lemma 4 and Proposition 1. [

Note that (10) does not depend on p, i.e. the bound is
uniform for any value of p < 1. This is a very important
property, as p is directly linked with the difficulty of the
problem. Indeed, for a value of p close to one, the set of
arms that are both A) close enough to require very large
number of comparisons to be eliminated and B) not close
enough to be a sufficiently good estimator of the sensitivity
threshold may be very large. This problem is related to the
notion of near optimality dimension, discussed below.

Comparison with POO regret bound. Using the trans-
formation described in (2), it is interesting to compare (10)
to the upper regret bound for POO, which achieves state
of the art performance in black box optimization problems
(Shang et al., 2019). POO regret bound relies on the notion
of near optimality dimension (Grill et al., 2015), for which
we provide below an equivalent definition in the threshold
estimation setting.

Definition 1 (Near optimality dimension). Let v > 0 and
0 < p < 1. The near optimality dimension of ¥, noted
d(v, p), is defined as

d(v,p) =inf {d' € R : 3C,h > 0,
U (e + 20p") = O (e — 20p") < 0(2/)4/)”}

Intuitively, the d(v, p) represents the measure of the size of
the near optimal set; the larger, the more candidates for the
optimal arm. The following regret bound has been shown
for POO (Grill et al., 2015; Shang et al., 2019):
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Figure 1. Comparison of the evolution of the average regret over 100 runs as a function of the number of stimuli presented to the observer,
for a time horizon of 7" = 200, for each psychometric function. The standard deviation is reported using the shaded area.

Theorem 2 (Theorem 1 from (Grill et al., 2015)). Let
Pmax < 1, Vmax € R. Then IK > 0 € R, such that
Vp < pmax YV < Vimax,

Y

log2 (T) T
T

E(Rr) <K (

Note that while (10) has an additional v/ 1og2 T term, (11)is
worse than (10) in the threshold estimation problem for two
reasons. First, the constant K in (11) depends on pp,ax, and
K — +00 when ppax — 1. Therefore, (11) is not uniform
on p, and requires additional information on ¥ smoothness
to be used. Second, the rate of convergence of (11) is strictly
worse than (10) for any U that have a strictly positive near
optimality dimension. The following proposition shows
the existence of such function in the threshold estimation
problem, highlighting the advantage of DOS.

Proposition 2 (Non zero optimality dimension). There exist
psychometric functions V satisfying Assumption 1 such that
mindy (v, p) > log2 > 0.

v,p

5. Experiments

We now evaluate the performance of DOS in three different
settings, with multiple psychometric functions. First, we
use a small time budget (I = 200) — this aims at repro-
ducing the constraints of real psychometric experiments,
where only a few hundred stimuli can be presented to the
observer before the fatigue and learning effects significantly
interfere with the experiment (Wichmann & Hill, 2001a).

Second, we take interest in DOS performance for large val-
ues of T, to illustrate its faster convergence rate. The final
set of experiments, described below, aim at illustrating the
advantages and limitations of the different procedure with
very small time budget (I" = 50 and 100). All experiments
were performed with custom script using Python 3.7, unless
mentioned otherwise.

Baselines. We compare DOS to three methods used in
Psychophysics : Staircase, arguably the most commonly
used methods in Psychophysics (see e.g. (Lengyel & Fiser,
2019)), Psimethod (Kontsevich & Tyler, 1999) is a popular
Bayesian algorithm that assumes that U is e.g. a Gaussian
c.d.f., and GP, a recent algorithm for psychometrics experi-
ments based on Gaussian Processes — see e.g.(Gardner et al.,
2015a; Song et al., 2017). We also compared DOS to the
black box optimization algorithm POO (Parallel Optimistic
Optimization)(Grill et al., 2015), using (2) to transform the
threshold estimation problem. Finally, in the last round
of experiment, we compare also DOS to Quest+ (Watson,
2017), a recent algorithm that improves over Psimethod
and is particularly efficient for small time budgets. For
Staircase, PsiMethod and Quest+, we used the implemen-
tation provided by (Peirce et al., 2019), and the parameters
recommanded by their respective papers. We used the di-
chotomous partition of [0,1] for POO and DOS, and ran
GP with the kernel and hyperparameters recommended by
(Song et al., 2017).

Psychometric FunctionsWe used six different psychome-
tric functions to assess the behavior of DOS. They can
be roughly divided into two families, “flat” and “steep”,
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Table 1. Average (£ standard deviation) over 100 runs of the simple regret, for each method and Psychometric functions with time horizon
T = 500, 2000 or 5000. The reported regret has been multiplied by 10 for readability purpose. The best results are written in bold.

T ' GP DOS Staircase POO PsiMethod
steep N 1.01 (£0.68) 0.48 (£0.33) 0.81 (£0.70) 1.30 (£0.23) 1.52(£1.20)
steep 3 0.85 (£0.56)  0.43 (£0.36) 0.98 (+0.76) 1.24 (+0.25) 1.29 (+0.85)

500 steep ¥, 0.80 (£0.69)  0.25 (£0.26) 0.86 (£0.90) 1.17 (£0.27) 0.62 (£0.45)
flat N/ 0.54 (£0.47)  0.46 (£0.36) 0.52 (+0.44) 0.86 (+0.23) 0.61 (+0.29)
flat 8 1.02 (£0.84) 0.49 (+£0.38) 0.67 (£0.54) 1.06 (£0.23) 1.12(+£0.35)
flat ¥, 0.84 (£1.30) 0.35(+0.35) 0.65 (+0.64) 0.88 (+0.18) 0.58 (+0.13)
steep N 0.85 (£0.95) 0.31 (£0.26) 1.05(£0.77) 1.04 (£0.30) 1.09 (£0.87)
steep 3 0.78 (£0.94) 0.40 (£0.31) 1.09 (+0.71) 0.98 (+0.21) 1.22 (+0.97)

2000 steep ¥,, 0.89 (£0.70) 0.21 (+0.24) 0.73 (£0.78) 0.73 (£0.15) 0.72 (£0.36)
flat N/ 0.48 (£0.36) 0.44 (+0.34) 0.65 (+0.42) 0.73 (+0.15) 0.59 (+0.25)
flat 8 0.87 (£0.74) 0.43 (£0.30) 0.71(£0.52) 0.80 (£0.16) 1.03 (£0.17)
flat W, 0.58 (£0.46)  0.28 (+0.29) 0.48 (+0.50) 0.64 (+0.14) 0.58 (+0.13)
steep N/ 0.76 (£0.90) 0.27 (£0.21) 1.10(£0.75) 0.84 (+0.18) 0.96 (£1.02)
steep 3 0.7 (£0.79) 0.28 (+£0.26)  0.93 (+0.73)  0.75(£0.13)  1.19 (£0.91)

5000 steep ¥,, 0.92 (£0.61) 0.12 (+0.16) 0.79 (£0.85) 0.54 (£0.13) 0.70 (£0.28)
flat N 0.44 (£0.65) 0.31 (£0.27) 0.54 (£0.54) 0.53 (+0.11)  0.50 (+0.16)
flat 8 0.64 (£0.64) 0.34 (£0.26) 0.63 (£0.57) 0.67 (£0.10) 1.02 (£0.17)
flat W, 0.55 (£0.27)  0.17 (£0.20)  0.58 (+0.56)  0.47 (+0.12) 0.68 (+0.13)

depending on their behavior around the objective s, — flat-
ter functions varying less around s.. They include two
functions, N, and ./\/;teep, based on a Gaussian c.d.f., with
mean and standard deviation of respectively m = 0.35
and o = 0.5 for My (resp. m = 0.66 and o = 0.2 for
J\/;leep). This is the most advantageous setting for Staircase
and PsiMethod, as this setting satisfies the Gaussian hypoth-
esis. Two other functions, g, and Byeep, are based on the
c.d.f. of Beta variables, with respectively « = 2 and 5 = 1
for Bpac (resp. & = 2 and = 5 for Neep). While not Gaus-
sian, these functions are usual c.d.f. and are strongly smooth
(continuously differentiable). The last two functions, Wi
and W, are non decreasing Holder continuous functions

steep

(the hardest setting) defined as :

W (" + 2) = o+ Losolal™* — Locole]*

where k; = 1.5 and k_ = 0.5 for g}, (resp. kL = 1 and
k_ = 0.3 for U, ). For each function, the objective is
to identify the stimulus s, such that p, = 0.707 (for flat
functions) or p, = 0.5 (for steep functions) — values that
are reachable by Staircase. Importantly, the psychometric
functions were clipped to the probability interval [0.2, 0.8]
for steep functions, [0.1, 0.9] for flat functions, to represent
arbitrary guess and lapse rates. During the experiments, only
the value of i, was provided to the different algorithms.

Results

Small Time Horizon. Figure 1 reports the evolution aver-
age simple regret over 100 runs for 7" = 200. First, note that
all methods tend to perform better on “flat” functions than

on their “steep” counterpart — since they vary less around
S«, it is easier to find a reasonably good estimator. In par-
ticular, all methods achieve good results for Wi, which
is significantly flat to the right of s,. Second, PsiMethod
performs poorly for non Gaussian W, as they violate the as-
sumption on its shape. Moreover, fimin and fimax Were con-
sidered unknown — which is generally the case in practice—
and this lack of prior information is known to impact the
performance of Bayesian methods (Garcia-Pérez & Alcala-
Quintana, 2007). Third, while POO seems to converge
toward the solution for every function, it achieves the worst
regret in all the studied settings, as the rate of convergence is
slow (POO cannot take advantage of the monotonic property
of U). Finally, while GP and Staircase achieve reasonable
performance, DOS provides one of the best estimation — if
not the best — in all these settings, particularly for “difficult”
functions such as \Ilg{;ep Interestingly, the regret trajectory
of DOS sometimes increases for a short time. This is due
to the fact that when the agent activates a new arm, she
might moves from a s; > s, toa s;11 < s, (Or vice versa),
and the regret may increase temporarily. However, as ad-
ditional arms are pulled, the sequence s; converges toward
S«, resulting in a small R.

Large Time Horizon. Table 1 reports the average simple
regret over 100 runs for different algorithm and psychome-
tric function for three different time horizons : 7' = 500,
2000 and 5000. It can be seen that DOS outperforms its
competitor in every case, and its advantage increases with
T'. Interestingly, Staircase and PsiMethod do not appear
to converge, as they display little improvement between
T = 500 and T = 5000. This is due to the fact that these
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Table 2. Average (& standard deviation) over 100 runs of the simple regret in the psychometric setting, for each method and Psychometric
functions with time horizon 7" = 50 and 100 . The reported regret has been multiplied by 10 for readability purpose.

Setting v T DOS Stair. PsiM. Quest+ GP POO
Gaussian 50  1.01(0.50) 0.98(0.72) 0.94(0.58) 0.90(0.41) 1.52(0.46) 1.72(0.66)

Yes/No 100 0.70(0.47) 0.90(0.64) 0.72(0.32) 0.70(0.50) 1.22(0.34) 1.51(0.60)
Holder 50 1.08(0.56) 1.17(0.55) 1.22(0.91) 1.31(1.11) 1.73(1.66) 1.68(0.70)

100 0.83(0.58) 1.03(0.62) 1.12(0.72) 1.15(0.87) 1.25(0.75) 1.38(0.62)

Gaussian 50 1.14(0.60) 1.28(0.73) 1.53(0.90) 1.33(0.62) 1.67(0.64) 1.70(0.67)

2-AEC 100  0.90(0.56) 1.15(0.69) 1.33(0.69) 1.20(0.55) 1.27(0.44) 1.52(0.37)
Holder 50 1.05(0.58) 1.41(0.71) 1.74(1.10) 1.70(1.23) 1.65(0.63) 1.69(0.81)

100 0.85(0.47) 1.25(0.72) 1.68(1.08) 1.71(1.25) 1.45(0.54) 1.40(0.79)

methods rely on manually constructed grids of hyperparam-
eter (discretization of loc and scale for PsiMethod; scale of
step size for Staircase) — which need to be tuned to ¥ to
ensure convergence for large values of 7', and thus requires
prior knowledge of the function shape. Conversely, POO
and GP tend to converge toward s,, but DOS appears to
consistently outperforms them. For POO, this can be seen
as an illustration of DOS better regret bounds, while GP has
no such theoretical guarantees. Finally, GP appears to be
performing poorly for Wy, .; this can be explained by the
fact that its kernel was suboptimal to estimate non standard

M m
functions such as W,

Mimicking Psychometric Experiments. In Table 2, we
compared all the procedures in a setting which mimics
the behavior of a small budget psychometric experiment
(T'" = 50 and 100). We used two frameworks, which
illustrates two common type of experimental settings :
YES/NO (ftmin = 0, hmax = 1, ux = 0.5) and 2-AFC
(Umin = 0.5, tmax = 0.96, p, = 0.707), and two psy-
chometric functions : the steep Gaussian c.d.f. and Holder
function previously described. The Yes/No Gaussian (resp.
2-AFC Holder) setting was expected to be the most (resp.
least) favorable for Bayesian methods (i.e. PsiMethod and
Quest+).

Table 2 shows that indeed, for the first setting, Bayesian
methods are slightly better than DOS, and that all meth-
ods are very close for 7 = 100 Yes/No Gaussian c.d.f..
Conversely, DOS is slightly better than its counterparts for
T = 50 Yes/No Holder and 2-AFC Gaussian, and signif-
icantly better in the other cases. In summary, these ex-
periments show that DOS performs almost as good as its
Bayesian counterparts in their ideal setting, and quickly out-
performs them in non ideal settings or when 7" increases.

6. Discussion

In this works, we discussed a new method for solving the
threshold estimation problem, DOS. Compared to previ-

ous works in global optimization such as POO (Grill et al.,
2015), we showed that DOS has better regret bounds, and
consistently performs better in our experiments. This is due
to the fact that POO was developed for a different, more
general setting and thus cannot take advantage of the proper-
ties of psychometric functions. Compared to other methods
used in Psychophysics (Staircase, PsiMethod, GP), DOS is
completely model free, does not require any assumption on
the shape of W, is parameter free, has strong theoretical guar-
antees and performs better empirically. Importantly, DOS is
not a replacement for Bayesian psychometric methods such
as PsiMethod and GP. Indeed, these model-based methods
are designed to estimate the entire ¥ function, while DOS
only estimates s, (and thus is able to do it more efficiently).
Consequently, they remain the tool of choice to use when
the shape of the ¥ is known (e.g. Gaussian c.d.f.), and
when the general behavior of the function is of interest to
the experimenter — for instance when establishing a person’s
audiogram (Gardner et al., 2015b). However, when little is
known about ¥, or when the objective is to estimate s, —
the most frequent case in Psychophysics research, see e.g.
(Schiitz et al., 2008; Garcia-Pérez & Alcala-Quintana, 2007)
— then DOS is a significantly better solution.

Future works might include the application of DOS to other
problems outside the domain of Psychophysics, such as the
handover of signal on a cellular network, see e.g. (Sun et al.,
2019).
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A. Technical Proofs

Proof of Lemma 2

Lemma. If (7) is satisfied for the arm s;, then

Qi<ﬁ

Proof. Without any loss of generality suppose that (; > fi..
Note that

{02i(T) + Br(Ni(t)) < pa} C {pi — 1(T) > Br(Ni(t))}

Hence, using the Chernoff Hoeffding concentration inequal-
ity (5) and (7),

q; < 2exp (—2Ni(t)BT(

=
—~
~
N
~
V)
~—

Proof of Lemma 3

Lemma. If (7) is false, but (8) is satisfied, then with proba-
bility at least 1 — %

2 2
A, <3 (log T)*(log™ T')
T
Proof. We have

< i — guil + | — o]
—_—
A B

Since the first rule was not activated, this implies that (7) is
not true, hence
B < Bp(N.,).

Moreover, using the Chernoff Hoeffding concentration in-
equality (5), we have that with probability at least 1 — %,

A < Bp(N,).
Hence,

A; < 2Bp(N,)

<3 logT
- Nx*

2 2
<3 (logT)?(log” T)

Proof of Theorem 1

Let A = {V1 <i <k, N;(T) < N.}. In other words, A
is the event where (10) is never satisfied, thus all arms are
activated using rule (8).

On Q \ A, at least one arm satisfy (10), hence a promising
arm is returned. Hence by using Lemma 3 we have

P|Rp<2 Q\A| >1-=

T2
(12)

(log T)2(log® T) 2
T

In the following, we examine the behavior of the regret on
A. Let

AT = AN{VES T < kv, s — u(t)] < Br(No)},

Let Py« (1) = P(-|A*). We say that an event & is A*
almost sure (A* a.s.) if P4+ (£) = 1. One difficulty of our
setting is that the sequence of activated arms (s;),-, is a
priori random, as DOS has two choice for each new arm.
However this problem is easily solved on A*, as stated by
Lemma ??.

Lemma5. Py (V& > > 1,841 = 8; + srrsign(ps — ;) =

1

Proof. Let k > ¢ > 0. Suppose without any loss of gener-
ality that u. > u; (the other case is proved similarly). A*
a.s., we have

proe — (1i(T) = poe — i + pi — f1i(t:)

> i — fi(tig1) (13)
> —B(6, T, Ni(tit1))
But arm ¢ + 1 was activated using (8) hence
I — 1 (T)| > Br(Ni(T)).
Thus,
Hox — ﬂz(T) > 0.
Hence the conclusion. O

An consequence of Lemma ?? is that on .A* the sequence
of arms s; is fixed. Note that the number of pull per arm is
still random. Now we can prove that the event .4* has high
probability on A.

Lemma. P (A*) =P (A*NA) > P(A) — 2.

Proof. This directly results from Lemma 2 and the previous
lemma by taking the union bound on all arms and all times.
O



DOS to Quantify Human Perception

The following Lemma shows that the sequence of activated
arms s; converge exponentially fast toward the threshold s.,
independently of the smoothness of W.

Lemma 6. Vi, P4 (|s; — s,/ <277) =1

Proof. We prove Lemma ?? by iteration. For i = 1, we
have sy = 1/2. Since s, € [0,1], |s. — 1/2] < 1/2. Hence
the result is true for rank ¢ = 1. Now suppose that the result
holds for rank 7. Then, A* a.s.,

8541 — 84| = |55 + 27 T sign(p. — p15) — 54|
= |s; — 5. + 27 Tlsign(s, — ;)]
< 2i+1
where we used Lemma ?? in the first line, ¥ non decreasing
for the second line, and for the last line the fact that the

result holds at rank 4 and sign(s. — s;) = —sign(s; — s.).
Hence the result is true at rank ¢ + 1. O

Corollary 1. If Assumption 1 is true, then

Pa- (Vi>0,A; <vp') =1 (14)

Proof. This corollary is an immediate consequence of
Lemma ?? and Assumption 1. O

Proposition. Let i, defined as

= Llog <(10g2 T;IOgT)Q) 210;1/,0)J '

Then all the following properties are true

(A) iflog®T > —1/logpand T > 16, then i, < K

(B) Vi > i, A* a.s.

2 2
A, <o (log T)jglogT) 7

Proof. Proof of (A).

1
1, <log <(log2 T)(logT)2> 21og(1/p)
log(T')
< Sloa(1/p)
(log T)(log? T)
~ 2(log” T) log(1/p)
. (logT)(log®T) _
= 2 2

where in the second line we used log ((log® T') (log 7)?) >
0 and in third line we used the fact that log® T > —1/ log p.

Proof of (B).

First note that

p™ = exp(i, log p)

1 log?
< oxp (2log (<0g

(log” T) (log T)?
<\

(&)

Hence, using Corollary ??,

2 2
A <upi <y /w

To conclude proof of Theorem 1, let

e {Rr < 5y o208 T) |

Note that

W P(E) + (1 - B(£))

§@+unﬂ959;9532+u P(€))

where in the first line we used the fact that R < 1. More-
over,

E(Rr) <(3+v)

PE)=PENA)+PENA\AY)) +PEN(Q\A)

>P(ENA)+PEN 2\ A)).
Aq As

Using Proposition 1,
P(ENA") =P(EJA")P(AY) =P(A")
and using (??),

PEN(Q\A) =PEIQ\ APQN A)

z<1,;)Pm\A)
> PO\ A) — =

T?
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thus by using Lemma 4,

P(E) > P(A") + PO\ A) —
>1-PA\AY) -
4
>1- -
- T

hence the conclusion.

Proof of Proposition 2

Proposition (Non zero optimality dimension). There exist
psychometric functions ¥ satisfying Assumption 1 such that

mindy (v, p) > 0. In particular, for
v,p

min (1, gy + exp(—1/|x — s4]))  ifz > ss

U(x) =
() max(O,u*+\$—S*|2/5) ifr < s,
(15)
we have dy > loglso%gz;

Proof. Let VU as defined in (??). It is easy to see that U is
strictly increasing. Moreover ¥ « Holder continuous for
a = 2/5, and therefore it satisfies Assumption 1. Addition-

ally,
U gy + 200" = O (e — 2ph) > -
~ log(vp")
(16)
Now let C, d’ as in (1). We have, using (??)
2 /
- < C2p?)"
log(vph) ~ @e%)

Note that when h — oo the left part is O(1/h) while the
h ’

right part is (’)((QP%) ). Consequently 2p? < 1is a

necessary condition for the inequality to be true when i —

00, which is turn implies the conclusion. O



