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Abstract The canonical federated learning problem involves learning 

Federated Learning is a distributed learning set-
ting where the goal is to train a centralized model 
with training data distributed over a large num-
ber of heterogeneous clients, each with unreli-
able and relatively slow network connections. A 
common optimization approach used in feder-
ated learning is based on the idea of local SGD: 
each client runs some number of SGD steps lo-
cally and then the updated local models are av-
eraged to form the updated global model on the 
coordinating server. In this paper, we investigate 
the performance of an asynchronous version of 
local SGD wherein the clients can communicate 
with the server at arbitrary time intervals. Our 
main result shows that for smooth strongly con-
vex and smooth nonconvex functions we achieve 
convergence rates that match the synchronous 
version that requires all clients to communicate 
simultaneously. 

1. Introduction 
Federated learning (FL) is a distributed machine learning 
setting that aims to collaboratively train a model under 
the orchestration of a central server. Practical applications 
of FL range from cross-device scenarios, where a huge 
number of typically unreliable clients with small quantities 
of data per client participate, to cross-silo scenarios with 
smaller numbers of reliable clients, each possessing larger 
quantities of data (Kairouz et al., 2019). Typically, in a FL 
application the clients perform most of the computation, 
and a central parameter server updates the model parame-
ters using the information returned by the clients. Without 
explicit sharing of data from clients, FL can mitigate some 
of the privacy risks associated with traditional distributed 
learning techniques. 
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a single, global statistical model from data stored on lots 
of remote devices. In particular, the goal is typically to 
minimize the following objective function: 

NX1 
f (i)(x),min f(x) where f(x) = (1) 

x N 
i=1 

where each f (i) is based on data available on client i. Here, 
N is the number of clients. Federated learning brings 
in some unique characteristics in solving the optimization 
problem posed in (1), which also makes the federated learn-
ing distinct from traditional distributed learning. 

(i) Communication is a critical bottleneck in federated set-
tings. Federated networks are potentially comprised of 
a massive number of devices, and communication in the 
network can be slower than local computation by many 
orders of magnitude (Kairouz et al., 2019). 

(ii) Devices frequently generate and collect data in a var-
ied manner, e.g., mobile phone users may use language 
differently which might affect the next word predic-
tion task. This means that the training data are non-
identically distributed, that is, a device’s local data can-
not be regarded as samples drawn from the overall dis-
tribution. 

(iii) One fnal difference is that unlike traditional distributed 
learning systems, in the FL setting the server has no con-
trol over users’ devices. For example, when a WiFi ac-
cess on a device is temporarily unavailable, the device 
may not communicate with the server for many rounds. 

1.1. Our Model and Results 

We propose a federated learning algorithm that tries to ad-
dresses all the three challenges laid above. In particular, 
we get away from commonly used two impractical assump-
tions: (a) identical data distribution across clients and (b) 
all clients can synchronize and communicate periodically 
or as demanded by the server. 

With the goal of increasing the compute to communication 
ratio, a common idea in federated/distributed setup is that 
instead of keeping the iterates on different clients in sync, 
we allow them to evolve locally on each machine, inde-
pendent from each other, and only average the sequences 
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Table 1: Comparison of our bounds with existing results (under similar assumptions) to reach asymptotically the same 
statistical term as the convergence rate of minibatch SGD. Larger Δ is preferable for reducing communication. Basu et al. 
(2019) results also consider additional gradient compression techniques, which are ignored here for a direct comparison. 

Assumption on f 
Bound on Δ 

with sync. local SGD p Previous Bound on Δ 
with async. client updates 

Our Bound on Δ 
with async. client updates 

Smooth, 
Strongly Convex 

O( T/N) 
(Basu et al., 2019) 

O((T/N)
1/4) 

(Basu et al., 2019) 
p

O( T/N) 

Smooth, 
Nonconvex 

1/4
O(T 3/4 )/N 

(Yu et al., 2019b; Basu et al., 2019) 

1/8
O(T 3/8)/N 

(Basu et al., 2019) 
1/4

O(T 3/4 )/N 

once per several iterations. Such a strategy is commonly 
referred to as local SGD (Mangasarian, 1995; Zinkevich 
et al., 2010; Coppola, 2015; Stich, 2018; Zhou & Cong, 
2018), but is also known in the literature under various 
other names (such as parallel SGD) (Yu et al., 2019b). 

In the simplest version of synchronous local SGD, each 
client performs local SGD updates in parallel on the local 
data, and the server averages all clients iterates after every 
Δ updates.1 

In this paper, we use an asynchronous model for client 
communication, where all the client iterates evolve at the 
same rate, but communicate with the server at arbitrary 
times decided individually by each client2 In this asyn-
chronous model, variants of which were recently consid-
ered by (Stich, 2018; Basu et al., 2019; Stich & Karim-
ireddy, 2019), each client takes the same number of steps 
per unit time according to a global clock. So the local it-
erations are in synchrony with respect to the global clock, 
but the asynchrony comes with the communication of the 
clients. As we will discuss the only assumption on the 
client communication we make is that each client commu-
nicates to the server at least once every Δ ≥ 1 rounds. 

In this paper, we analyze the local SGD algorithm in this 
asynchronous communication setting.3 We consider both 
smooth strongly convex as well as smooth nonconvex ob-
jectives. Under a standard assumption of bounded second 
moment (Rakhlin et al., 2012; Yu et al., 2019b; Stich, 2018; 
Basu et al., 2019), we show that the convergence rate of our 
proposed local SGD with asynchronous update matches 
that of synchronous local SGD where all clients communi-
cate together every Δ rounds. This is the frst result show-
ing that local SGD even with asynchronous updates from 

1Local SGD is different from minibatch SGD where the av-
eraging happens after every iteration, but more closely related to 
minibatch SGD with Δ times larger batchsizes on each client. 

2This model also subsumes the standard synchronous model 
where all clients communicate in each round. 

3Stich (2018) considered a different variant of asynchronous 
local SGD, where each client has identical data distribution; how-
ever, the clients can evolve their computation at slightly different 
rates resulting in delayed stochastic gradient updates. 

the clients performs as well as the synchronous local SGD 
in the heterogeneous (non-identical) data setting. Previous 
convergence bounds from (Basu et al., 2019) were consid-
erably weaker under similar assumptions. In other words, 
while due to asynchronous nature of communication the 
gradient information for some of the clients at the server 
might be stale, somewhat surprisingly our results show that 
as long as this period of staleness is bounded by some Δ, 
we get similar convergence behavior (under our assump-
tions) as a synchronous local SGD where the communica-
tion happens every fxed Δ rounds. 

For simplicity of discussion, in this section we ignore the 
dependence on various parameters such as strong convex-
ity, smoothness, variance bound, and gradient norm bound. 
Table 1 summarizes our main theoretical results. 

For smooth strongly convex functions, we show that an av-
eraged iterate x̂T satisfes (see Theorem 2.2 for a precise� � 
statement): E[f(x̂T ) − f(x?)] = O 1/NT +Δ2/T 2 , 

?where x is a minimizer of f . In particular, we can setp
Δ = O( T/N) and reach asymptotically the same conver-
gence rate of minibatch SGD of O(1/NT ).4 This matches 
the bound on Δ known with synchronous local SGD (Basu 
et al., 2019, Corollary 3) and improves the previously 
best known bound on Δ in our asynchronous update set-
ting (Basu et al., 2019, Corollary 5) by a square factor, fromp
(T/N)1/4 to T/N . 

For smooth nonconvex functions, we show that iterate 
xt satisfes (see Theorem 2.4 for a precise statement):� �PT √ 
1 E[krf(xt)k2] = O 1/ NT + NΔ2/T .T t=0 

In particular, we can set Δ = O(T 
1/4
/N 

3/4) and reach 
asymptotically the same convergence rate of minibatch 

√SGD of O(1/ NT ). Again, this matches the bound on Δ 
known with synchronous local SGD, see e.g., (Basu et al., 
2019, Corollary 2) or (Yu et al., 2019b, Corollary 3). Sim-
ilarly, this improves the previously best known bound on 
Δ in our asynchronous update setting (Basu et al., 2019, 

1/8 1/43/8 3/4Corollary 4) by a square factor, from T /N to T /N . 

4It is desirable to have larger Δ as it translates into lower com-
munication overhead. 
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Finally, we also empirically evaluate multiple instantiations 
of our scheme to demonstrate the various factors affecting 
the performance in practice. 

Comparison to Federated Averaging. Federated Aver-
aging (FedAvg) (McMahan et al., 2017; Konečnỳ et al., 
2016), one of the most widely used algorithm for FL ap-
plications, is a variant of local SGD. In the basic version 
of FedAvg, the participating devices (clients) are sampled 
randomly in each round, and only those devices perform 
the SGD steps on their local data and send back the results 
to the server. Notice that even though related, our model, 
which is the asynchronous communication version of local 
SGD as also discussed in (Stich, 2018; Basu et al., 2019; 
Stich & Karimireddy, 2019), is different in that we assume 
all the clients perform local updates in each round. Stan-
dard analyses of FedAvg (as defned above), in the non-
identical data setting, rely on the assumption that the server 
gets access to a random subset of clients, and if the clients 
are unavailable, then either the assumptions are violated or 
we run into straggler issues (Kairouz et al., 2019). A com-
mon practical heuristic in this case is to over sample and 
then take the frst few responding clients, but this in fact 
constructs a biased set at the server (since more powerful 
clients are selected). Another point of distinction is that, 
unlike our model, FedAvg does not capture scenarios where 
clients communicate at their convenience. 

1.2. Related Work 

With the increasing popularity of federated learning there 
has been lots of recent interest in understanding the conver-
gence properties of local SGD. We refer the reader to recent 
excellent surveys (Kairouz et al., 2019; Li et al., 2020a) for 
a more comprehensive review of developments in federated 
learning algorithms. To emphasize the difference of our re-
sults from previous ones, we categorize the previous results 
into different (non-exclusive) groups. Also note that not all 
these previous results had strong theoretical convergence 
guarantees which is of focus in this paper. 

Identical Data Distribution on Clients. A line of work 
has focused on analyzing local SGD under identical data 
distribution on clients (Zhou & Cong, 2017; Jiang & 
Agrawal, 2018; Wang & Joshi, 2018; Stich, 2018; Stich & 
Karimireddy, 2019; Haddadpour et al., 2019; Khaled et al., 
2019b; Wang & Joshi, 2018). If all the clients have identi-
cal data distribution, then that would result in unbiasedness 
of gradients at every client, resulting in slightly easier anal-
ysis. However, as discussed earlier, this is not a reason-
able assumption for FL applications where data available 
locally fail to represent the overall distribution. We make 
no assumptions on the local data distributions. 

Synchronous/Random Client Communication with 
Non-identical Data Distributions. Another line of work 

has focused on synchronous local SGD with non-identical 
data distribution across clients wherein all clients commu-
nicate their local parameter to the server every fxed Δ 
rounds (Yu et al., 2019b; Haddadpour & Mahdavi, 2019; 
Khaled et al., 2019b;a; Wang et al., 2019c; Basu et al., 
2019; Li et al., 2019b). Again as discussed, the require-
ment of full device (synchronous) participation is not gen-
erally practical in FL. Another variant is that a set of ran-
dom clients communicate in each round (McMahan et al., 
2017; Li et al., 2018; 2019a), which again is hard to en-
sure or verify in practice. We make no assumptions on 
the client communication patterns except that each client 
participates at least once in Δ rounds. In particular, syn-
chronous and random client communication can be thought 
as special cases of our setup. 

Extensions to SGD. We note that more sophisticated lo-
cal stochastic gradient methods have also been consid-
ered, for example with momentum (Yu et al., 2019a; Wang 
et al., 2019b) with gradient compression (Jiang & Agrawal, 
2018; Basu et al., 2019; Reisizadeh et al., 2020), with other 
various variance-reduction methods (Liang et al., 2019; 
Sharma et al., 2019; Karimireddy et al., 2019). Our work 
is complimentary to these approaches, and focuses on the 
vanilla version of local SGD commonly used in practice. 

The most relevant result to us is that of (Basu et al., 2019), 
who considered an asynchronous communication setting 
similar to that discussed in this paper. They also study 
additional gradient compression techniques not addressed 
here. For completeness, we include a discussion of re-
sults from (Basu et al., 2019) in Section 2.1. Our conver-
gence results are much tighter, for both strongly convex and 
nonconvex cases, suggesting that the clients can communi-
cate much less frequently to achieve the same convergence 
guarantee. 

Preliminaries. Since f in (1) is an average of f (i)’s, we 
express it as f = avgi(f

(i)) to simplify the presentation. 
Assume all functions f (i) : Rd → R. We review some 
basic optimization concepts in Appendix A. In this paper, 
we assume that all f (i)’s (and therefore f ) are L-smooth. 
See Table 2 for a full list of notation. 

2. Our Algorithm 
In Algorithm ASYNCCOMMSGD (Algorithm 1), we 
present our local SGD approach. We assume that there are 
N clients, labeled 1, . . . , N . For each client i, we maintain 
two parameter vectors: x(i) , the local parameter vector ont 

the client, and y(i), the server copy of the last (at round t ort 
earlier) parameter vector received by the server from client 
i. The server maintains a global parameter vector xt which 
accumulates local updates. 

At each round t, each client performs a stochastic gradi-
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Table 2: Notation used in the paper. 

Notation Explanation 
Problem parameters 
N The number of clients 
f (i) Function at the ith client P

1 f (i)f The objective function: f = N i∈[N ] 
fmax Bound on the objective value: fmax = f(x0) − f(x?) 

Smoothness parameter of f and f (i), i ∈ [N ]: krf(x) −rf(y)k ≤ Lkx − yk 
λλ (Theorem 2.2) Strong convexity parameter of f : f(x) ≥ f(y) + hrf(y), x − yi + kx − yk2 
2 

Δ Maximum gap between communications of a single client 
rF (i)(x, θ) Stochastic gradient computed by ith client at point x. θ is a parameter controlling randomness 

(i)E[· · · ] Expectation over stochastic randomness: E[· · · | θ , i ∈ [N ], t ∈ [T ]]t 

Gmax Maximum stochastic gradient norm: E[krF (i)k2] ≤ G2 
max 

σ2 Variance of stochastic gradients: for all i, Eθ[krF (i)(x, θ) −rf (i)(x)k2] ≤ σ2 

Sequences 
1 P 

avgi(. . .) Average over all clients: N i∈[N ] . . . 

x
(i) Value stored by ith client at tth iteration t 

xt Value stored by the server at tth iteration 
y
(i) The latest value communicated to ith client from the server before tth iteration t 

γt Gradient step size (learning rate) 
(i) (i) (i) (i) (i)

G Stochastic gradient computed by ith client at tth iteration at point x : G = rF (i)(x ; θ )t t t t t 

zt A virtual sequence zt+1 = zt − γt avgi(G
(i)
)t 

Ct A set of clients communicating at tth iteration 
ρ(i)(t) (App. B) Last communication round for machine i up to iteration t: ρ(i)(t) = max({τ ≤ t | i ∈ Cτ } ∪ {0}) 

ent descent step. Then a subset of clients Ct+1 (possibly 
empty) send their updates to the server. The server aggre-
gates them, updates the global parameter vector xt+1 and 
y
(i) , and sends it back to clients from Ct+1. The clientst 

update their local parameter vector x(i) to global param-t+1 
eter vector xt+1. A similar local SGD with asynchronous 
update algorithm was also considered by Basu et al. (2019, 
Algorithm 2) with the additional gradient compression op-
erator. 

For constructing xt+1, we average over the latest parameter 
vectors of all the clients currently available on the server. 
This on the frst glance might look problematic as some of 
these updates might be stale say if a client has not com-
municated recently. This is also different from a typical 
Federated Averaging scheme, where the averaging is done 
only over the parameter vectors of a random set of commu-
nicated clients. However, this averaging is crucial for our 
analysis. In fact, Federated Averaging scheme based on 
clients communicating randomly will not have a good con-
vergence rates if there are rounds in which only a small set 
of clients communicate, something that our analysis does 
not suffer from. Moreover, if some clients don’t communi-
cate, then it’s impossible to fnd a minimizer of the objec-
tive, since each client could have different data distribution. 
Therefore, it is crucial to have an upper bound (Δ) on the 

maximum delay between each clients update times. 

Note that the set Ct+1 doesn’t need to be known to the 
server; for example, a round can start and end at a pre-
specifed global clock time, and all the clients that com-
municate within this time window then form the set Ct+1. 
This way the communication patterns are controlled by 
the clients and is not at the behest of the server. For ex-
ample, in a FL setting, if a client has connectivity issue, 
then client could communicate back when the connectiv-
ity is restored. For simplicity of presentation, in Algo-
rithm ASYNCCOMMSGD, we assume that server knows 
Ct+1. 

2.1. Convergence Analysis 

In this section we present our main convergence results for 
local SGD with asynchronous updates, obtained by running 
Algorithm ASYNCCOMMSGD on smooth functions, both 
strongly convex and nonconvex. Missing details from this 
section are collected in Appendix B. We use the following 
standard assumptions. 

i. Smoothness: All local functions f (i) (i ∈ [N ]) are 
L-smooth (see Defnition 3, Appendix A) 

ii. Bounded second moment: There exists a Gmax > 
0 such that E[krF (i)(x)k2] ≤ G2 for all x ∈max 
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Algorithm 1 ASYNCCOMMSGD 

parameters: { γt } – step sizes, T – the number of 
rounds, x0 – starting point, { Ct } – for each t, which 
clients communicate at iteration t 

On each client i ∈ [N ]: 
x
(i) ← x0 // Local parameters on the client 0 

y
(i) ← x0 // Last parameters received by the client 0 

for t = 0 . . . T − 1 do 
ClientUpdate: // Run on each client i 

(i) (i)
G ← stochastic gradient for f (i) at xt t 
(i) (i) (i)

v ← x − γtG // Local SGD step t+1 t t 
if i ∈ Ct+1 then 

(i) (i) (i)Send δ − y to the server t+1 := vt+1 t 
Receive xt+1 
(i)

xt+1 ← xt+1 
(i)

yt+1 ← xt+1 

else 
(i) (i)

x ← vt+1 t+1 
(i) (i)

y ← yt+1 t 
end if 

ServerUpdate: // Run on the server 
Receive δ(i) from clients i ∈ Ct+1t+1 P

1 (i)
xt+1 ← xt + N i∈Ct+1 

δt+1 // Aggregate updates 
Send xt+1 to clients i ∈ Ct+1 

end for 

Rd, i ∈ [N ], where rF (i)(x) is an unbiased stochas-
tic gradient of f (i) at x. This is a standard assump-
tion in the SGD literature (Rakhlin et al., 2012; Stich, 
2018; Stich et al., 2018; Yu et al., 2019b; Basu et al., 
2019) etc.5 Relaxing this bounded gradient assumption, 
as achieved through different parameters in recent dis-
tributed SGD/GD literature (see, e.g., (Wang & Joshi, 
2018; Khaled et al., 2019b; Haddadpour et al., 2019; 
Yu et al., 2019a; Li et al., 2020b; Wang et al., 2019a; 
Li et al., 2018)) is an interesting open problem. The 
second moment assumption also implies a bound on 
the variance, E[krF (i)(x) − rf (i)(x)k2] ≤ σ2 for all 
x ∈ Rd, i ∈ [N ] (where σ2 ≤ G2). 

(i) (i)Let G = rF (i)(x ) be a stochastic gradient computed t t 
by the ith client at the t-th round. Recall that Ct+1 is the 
set of clients communicating at the t-th round. Then our 
update equation on the clients has the following form: ( 

(i) (i) 
(i) xt − γtGt , ∈ Ct+1i / 

x = t+1 
xt+1, i ∈ Ct+1, 

5A consequence of this assumption is that it also bounds gra-
dient difference. For example krf (i)(x) −rf (i0)(x)k ≤ Gmax 

for any two clients i, i0 ∈ [N ] and for all x ∈ Rd . 

where xt+1 is the server model accumulating updates com-
municated to the server. 

Let ρ(i)(t) = max{τ ≤ t|i ∈ Cτ } be the last round before 
t such that the client i communicates with the server at this 
round. Since the server received updates from client i up to �Pρ(i) 

� 
(t) (i)this round, we have: xt = x0 − avgi γτ Gτ .τ=0 

To show convergence rates, we investigate kxt − x?k2 , 
where x? is a minimizer of f . Unfortunately, xt has a rather 
complicated update equation. To address this issue, we de-
fne a virtual sequence {zt}t∈N the following way: 

Defnition 1 (Virtual sequence) 
t−1X 

zt = x0 − γτ avgi(G
(i)).τ 

τ =0 

Similar virtual sequences have been utilized before in de-
centralized optimization under various contexts (Lian et al., 
2017; Yuan et al., 2016; Nedić et al., 2018; Stich, 2018). 

We show (see Proposition 2.1) that zt’s are close to xt and 
x
(i)’s for all clients i. The advantage of working with ztt 

is its simple update equation: zt+1 = zt − γt avgi(G
(i)
),t 

which makes the analysis cleaner. The following proposi-
tion bounds the distance between the virtual zt and the local 
x
(i) in terms of the parameter Δ. This proposition and its t 

proof is similar to (Stich, 2018, Lemma B.1). 

Proposition 2.1 (Distance Bound) Let {γt} be a non-
increasing sequence such that γt/γt+Δ ≤ 2. Then in Al-
gorithm ASYNCCOMMSGD for each client i ∈ [N ]: � � 
max E[kzt − x(i)k2], E[kzt − xtk2] ≤ 72γ2G2 Δ2 

t t max 

Analysis for Strongly Convex Functions. We now as-
sume that f (i) for i ∈ [N ] are L-smooth functions and f = 
avgi(f

(i)) is a λ-strongly convex (Defnitions 2 and 3). 

In Theorem 2.2, we state the convergence theorem for 
strongly convex functions when using Algorithm ASYNC-
COMMSGD. Instead of xt, we consider a weighted aver-PT1age x̂t = t=0 wtxt where wt = (Δ+ t)2 . Therefore,ST 

the sequence {x̂t}t∈[T ] can be easily computed from the 
sequence {xt}t∈[T ]. This choice of wt puts more weights 
on later rounds. A similar x̂t was also considered in the 
previous related work of (Stich, 2018; Basu et al., 2019). 

?Our analysis starts by bounding E[kzt+1 − x?k2], where x 
is the minimizer for f . Using properties of strong convexity 
and smoothness, along with Proposition 2.1, we establish,� � 

γtλE[kzt+1 − x ?k2] ≤ 1 − E[kzt − x ?k2]
2 

σ2 300γ3 
t− 2γt(f(zt) − f(x ?)) + γ2 + L2G2 Δ2 .t maxN λ 
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This along with a recurrence relation from (Stich et al., 
2018) gives a bound in terms of ẑT 

G2 (Δ + 4L/λ)3 
maxE[f(ẑT )] − f(x ?) ≤ 

4λST 

2T (T + 2Δ + 8L/λ) σ2 104T 
+ + L2G2 Δ2 .maxλST N λ3ST 

Now using Proposition 2.1, that shows that the virtual se-
quence ẑT is close to x̂T , yields the following result. 

Theorem 2.2 Let f (i)’s for i ∈ [N ] be L-smooth functions P 
and f = f (i) be a L-smooth λ-strongly convex i∈[N ] PTfunction. Let wt = (Δ + t)2 , St = ≥ T 3 , x̂t = t=0 wtPT1 After T rounds of Algorithm ASYNC-ST t=0 wtxt. 

8COMMSGD with γt = , we have λ(t+Δ+8L/λ) � 
LG2 (Δ + L/λ)3 

maxE[f(x̂T )] − f(x ?) = O 
λ2ST � 

LT (T +Δ+ L/λ) σ2 L3G2 Δ2T 
+ + max . 

λ2ST N λ4ST 

In particular, for a fxed Δ, we get a convergence rate of 
√ 

O(1/ NT + N/T ) (ignoring other terms). Using the fact 
that ST ≥ T 3 , we get the following result: 

Corollary 2.3 Under assumptions of Theorem 2.2, if T ≥p
N , Δ ≤ T/N and Δ ≥ L/λ, then 

E[f(xT ) − f(x ?)]� � �� 
Lσ2 LG2 1 L2 

max = O + √ + . 
λ2TN λ2TN TN λ2 

In particular, in terms of T and N we recover the stan-
dard minibatch SGD convergence rate for strongly convex 
functions of O(1/TN). In other words, for achieving this 
convergence rate within T rounds, we need each client to√ 
communicate T/Δ = Ω( TN) many times. 

Compare this with the corresponding result from (Basu 
et al., 2019, Corollary 5) (we change notation to match ours 
and consider the case without compression): 

E[f(x̂T ) − f(x ?)]� � 
G2 Δ3 (T + Δ) σ2 G2 Δ4 
max max = O + + 
λ2T 3 λ2T 2 N λ3T 2 

In our case, the last term has much better dependence on 
Δ (Δ2 instead of Δ4). As a consequence, we can improve p
bound on Δ from (T/N)1/4 to square of that: T/N . 

Analysis for Nonconvex Functions. We now assume that 
f (i) for i ∈ [N ] are L-smooth functions (see Defnition 3), 
but f is not necessarily convex. We use a fxed step size 

γ, and therefore the condition of Proposition 2.1 is always 
satisfed, and we can directly use the iterates xt produced 
by Algorithm ASYNCCOMMSGD. 

We again consider the virtual sequence zt per Defni-
tion 1. In this case, our analysis is based on boundingPT1 E[krf(zt)k2] withT t=0 

4(f(z0) − E[f(zT )]) Lσ2 

+ 4γ(10γL2G2 Δ2 + ).maxγT 2N 

Then we bound krf(xt)k in terms of krf(zt)k again us-
ing Proposition 2.1 as, 

E[krf(xt)k2] ≤ 2E[krf(zt)k2] + 36γ2L2G2 Δ2 .t max 

The following theorem follows from these inequalities. 

Theorem 2.4 Let fmax = f(x0) − f(x?). After T rounds 
of Algorithm ASYNCCOMMSGD with step size 0 ≤ γ ≤ 
1/(18L), we have 

TX1 
E[krf(xt)k2]

T 
t=0� � 

fmax Lσ2 

Δ2 = O + γ2L2G2 + γ .maxγT N 

The next corollary follows by substituting suitable γ and 
other parameters. 

Corollary 2.5 Let fmax = f(x0)−f(x?). In Theorem 2.4, 
√ √using step size γ = N/(L T ), we get 

TX1 
E[krf(xt)k2]

T 
t=0� � 

Lfmax N Lσ2 

= O √ + G2 Δ2 + √ .max
NT T NT 

√ √Using step size γ = N/(L T ), if T > N3 and Δ ≤ 
T 1/4/N3/4, we get 

X1 T � 
Lfmax √ 

Gmax
2 Lσ2 � 

E[krf(xt)k2] = O √ + + √ . 
T 

t=0 NT NT NT 

In particular, for a fxed Δ, we get a convergence rate of 
√ 

O(1/ NT + N/T ) (ignoring other terms). If T > N3 and 
T 1/4Δ ≤ /N3/4, then we recover the standard minibatch 

√SGD convergence rate of ≈ O(1/ NT ). In other words, for 
achieving this convergence rate within T rounds, we need 
each client to communicate Ω(N3/4T 3/4) many times. 

Again, compare this with the corresponding result 
from (Basu et al., 2019, Corollary 4): � √ � 

NG2 Δ4σ fmax fmax maxE[krf(x̂t)k2] = O √ + . 
σ2TNT 
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(a) MNIST with mixing rate 1 (b) FASHION-MNIST with mixing rate 1 (c) CIFAR-10 with mixing rate 1 
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(d) MNIST with mixing rate 1/2 (e) FASHION-MNIST with mixing rate 1/2 (f) CIFAR-10 with mixing rate 1/2 
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(g) MNIST with mixing rate 1/10 (h) FASHION-MNIST with mixing rate 1/10 (i) CIFAR-10 with mixing rate 1/10 
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(j) MNIST with mixing rate 0 (k) FASHION-MNIST with mixing rate 0 (l) CIFAR-10 with mixing rate 0 

Figure 1: For each mixing rate µ ∈ {1, 1/2, 1/10, 0}, we show the test accuracy as a function of total communication (the 
number of communicated client models). Left column corresponds to MNIST dataset, middle – to FASHION-MNIST, 
right – to CIFAR-10 (to improve the presentation, the results for CIFAR-10 with mixing rate 1 are slightly smoothed). 
We omit IMBALANCED COMMUNICATION here for clarity. The results suggest that a full synchronous update of all the 
clients to the server is unnecessary as long as the local data distributions are not completely disjoint. 

In our case, the second term has much better dependence on 
Δ (Δ2 instead of Δ4). As a consequence, we can improve 

1/8 1/43/8 3/4bound on Δ from T /N to square of that: T /N . 
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(a) CIFAR-10 with mixing rate 1/2 (b) CIFAR-10 with mixing rate 1/10 (c) CIFAR-10 with mixing rate 0 

Figure 2: Results on CIFAR-10 for Resnet-34 with µ ∈ {1/2, 1/10, 0}. The conclusions are same as in Figure 1 even with 
this bigger network. We omit FULLSGD(Δ = 5), FULLSGD(Δ = 25), RR(k = 2, Δ = 1), and RR(k = 2, Δ = 1) 
since their results are again similar to considered algorithms, as also observed in Figure 1. To improve the presentation, 
the plots were slightly smoothed. 

3. Experimental Evaluation 
In this section, we demonstrate the effectiveness of local 
SGD with asynchronous updates as compared to regular 
SGD or a synchronous local SGD where all communication 
takes place together. Our focus will be on illustrating the 
dependence of model accuracy on the total communication. 
We also investigate the role of (non)iidness of the clients 
data distributions. 

3.1. Datasets and Models 

We perform our evaluation on the following datasets: 
MNIST, FASHION-MNIST, CIFAR-10.6. We use a 
single-machine simulation of FL computation with 10 
clients. In this setup, the running time doesn’t take into 
account the actual communication time, hence not infor-
mative. 

Each of our dataset has 10 classes, and we split our data 
across 10 clients in the following manner. Each client is 
associated with a class. We defne a mixing rate µ which 
measures how identical the data distributions across differ-
ent clients are: for each client, (1 − µ) fraction of data is 
selected from the class corresponding to the client, while µ 
fraction is selected from a random class. In particular, for 
µ = 1 the data for all clients is identically distributed, and 
for µ = 0 each client holds only data corresponding to its 
class. We consider µ ∈ { 0, 1/10, 1/2, 1 } and show how µ 
affects convergence of our compared algorithms. 

MNIST and FASHION-MNIST. We use a one-layer neu-
ral network with softmax activation. At each round, clients 
process 103 samples (within the round, the client locally 
performs minibatch gradient descent with batch size 20). 

6Dataset and detailed network descriptions are given in Ap-
pendix C The entire code is provided in supplementary material. 

CIFAR-10. Here we use two networks. The frst one 
is a shallow convolutional neural network with 3 convo-
lutional layers with ReLU activation and max pooling and 
two dense layers with ReLU and softmax activations. The 
second network is the deep ResNet-34 (He et al., 2016) 
without batch normalization. 

3.2. Compared Approaches 

Since Algorithm 1 is quite general it covers multiple client 
communication scenarios depending on the selection of Ct. 
Here, we select a few of them to compare (all of whom 
are captured by our Algorithm 1) to understand the role of 
various factors involved in FL. 

Synchronous Local SGD. Each Δ rounds, all clients com-
municate with the server. Denoted by FULLSGD(Δ). Case 
Δ = 1 corresponds to a regular distributed SGD. 

Round Robin. Each Δ rounds, k clients communicate 
with the server: frst clients 1, . . . , k communicate, then 
clients k+1, . . . , 2k communicate, etc. In our experiments, 
we select k = 2, i.e. 1/5 fraction of clients communicates 
each Δ rounds. Denoted by RR(k, Δ). 

Random Communication. At each round, each client 
communicates with the server with probability p. This 
scheme is closely related to Federated Averaging where 
the participating clients are sampled randomly (McMahan 
et al., 2017). In our experiments, we select p = 1/5 and p = 
1/25. These approaches have the same expected amount of 
communication as RR(2, 1) and RR(2, 5) respectively, but 
it is not guaranteed that each client communicates at least 
once each Δ rounds. Denoted by RANDOM(p). 

Imbalanced Communication. Client i communicates ev-
ery i rounds. i.e. client 1 communicates every round and 
client 10 communicates every 10 rounds, leading to very 
imbalanced communication. 
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Among these scenarios, Round Robin, Random Commu-
nication, and Imbalanced Communication are all examples 
of asynchronous communication scenarios. 

3.3. Discussion of Results 

We present our results in Figures 1 and 2. For each mix-
ing rate µ, we show how accuracy as a function of the total 
communication, which is measured as the number of com-
municated local models. We note that, while the plots are 
cropped to match the lowest total communication among 
the algorithm, for most approaches their accuracy continue 
increasing. We make the following observations. 

Synchronous vs. Asynchronous: Among our imple-
mented methods, FULLSGD(1) has the largest commu-
nication cost per round, FULLSGD(5), RR(2, 1) and 
RANDOM(1/5) have approximately 1/5 of that communica-
tion per round, and RR(2, 5) and RANDOM(1/25) have ap-
proximately 1/25 of that communication per round. In Fig-
ure 1, approaches with similar communication per round 
achieve similar accuracy. For example, Figure 1e shows 
that FULLSGD(1) achieves 76% accuracy, approaches 
with 1/5 of communication per round achieve 80% − 81% 
accuracy, and approaches with 1/25 communication per 
round achieve 81.5% − 82.5% accuracy. The fact that 
RR(2, 1) achieves similar guarantees as FULLSGD(5) 
supports our theoretical conclusions that local SGD with 
asynchronous communication (like RR) performs as well 
as the synchronous local SGD (FULLSGD). The same con-
clusions also hold with Resnet-34 experiments (Figure 2). 
With IMBALANCED COMMUNICATION, even though some 
machine communicate much more often than others, for 
µ = 1/2 (Figure 2a) it outperforms FULLSGD(1) (38% 
against 30%). However, it’s noticeably outperformed by 
RANDOM approaches which have much lower communi-
cation per round while having similar communication gap. 

Role of Δ: FULLSGD(5), RR(2, 1) and RANDOM(1/5) 
have similar communication requirements; however 
RANDOM(1/5) is slightly outperformed by the other two. 
For example, 80.9% accuracy for RANDOM(1/5) against 
81.2% (for RR(2, 1)) and 82% (for FULLSGD(5)) in Fig-
ure 1b. Similarly, in the same plot, RANDOM(1/25) is 
outperformed by RR(2, 5) (82.4% against 83.4% accura-
cies). The gap becomes more prominent when µ decreases. 
For example, in Figure 1h, RANDOM(1/5) achieves 74.6% 
accuracy, while FULLSGD(5) and RR(2, 1) achieve 76% 
and 77.5% accuracy, respectively. 

Accuracy of RANDOM shows large fuctuations during 
training (see e.g. Figure 1k). We suspect that the reason 
for this behavior is that, unlike other approaches, RAN-
DOM doesn’t always guarantee that each client communi-
cates within Δ rounds (the guarantee only holds in expec-
tation). When the data is non-iid, IMBALANCED COMMU-

NICATION has the worst accuracy to communication ratio 
(see Figure 2), which is expected: while its communication 
gap is 10, the average communication per round is reduced 
only by the factor of ≈ 3.5. 

Role of (non)iidness: Comparing Figures 1a and 1d, 1b 
and 1e, 1c and 1f, we see that difference between cases 
µ = 1 and µ = 1/2 is minor. When further decreas-
ing µ to 1/10, for RR(2, 5) we observe 3% drop in accu-
racy for MNIST and FASHION-MNIST and 11% drop 
for CIFAR-10. However, the largest accuracy drop for 
RR(2, 5) is experienced when µ changes from 1/10 to 0: 
8%, 12% and 20% respectively. Note that when µ = 0 all 
the local distributions have support on different classes. 

In general, for µ ∈ { 1, 1/2, 1/10 }, approaches with less 
communication show better convergence, and the gap is 
more prominent at larger values of µ. The fact that this 
happens even when µ = 1/10 is interesting, suggesting that 
approaches like RR(2, 5) works well even when data dis-
tributions are far from identical. However, when the data 
distribution is completely non-iid (µ = 0), we observe the 
opposite behavior: approaches with less communication 
achieve lower accuracy (e.g., 68% accuracy for RR(2, 5) 
on FASHION-MNIST) compared to approaches with full 
communication (e.g., 71% accuracy for FULLSGD(1) on 
FASHION-MNIST). Again, the conclusions are the same 
with Resnet-34 (Figure 2). Due to its large communi-
cation gap, IMBALANCED COMMUNICATION suffers the 
most when µ decreases: it reaches 38% when µ = 1/2 but 
drops to 20% when µ = 1/10. Somewhat surprisingly, it 
doesn’t drop further when µ = 0 (18.5%). 

4. Concluding Remarks 
In this paper we demonstrated that we can signifcantly re-
lax the communication requirements on the clients to cap-
ture practical scenarios and still achieve the standard con-
vergence rates in a Federated Learning setting. We empha-
size that the remaining assumption on the communication 
gap is necessary: when it’s unbounded, learning algorithms 
can easily diverge. 

One possible future direction is to eliminate bounded gra-
dient assumption: E[krF (i)tk2] ≤ G2 . One possible max 
alternative is the assumption that gradients of local func-
tions are not much different from that of the global func-
tion: krf (i)(x) −rf(x)k < κ (Yu et al., 2019a; Li et al., 
2020b; Wang et al., 2019a). Our experiments support the 
idea that deviation from the global data distribution is an 
important parameter. However, this above condition with κ 
doesn’t fully capture our observations as our experiments 
show the accuracy improves dramatically even when only 
a small fraction of global data is present at every client, 
which is not enough to substantially decrease κ. 



Federated Learning under Arbitrary Communication Patterns 

References 
Basu, D., Data, D., Karakus, C., and Diggavi, S. Qsparse-

local-sgd: Distributed sgd with quantization, spar-
sifcation, and local computations. arXiv preprint 
arXiv:1906.02367 (Also in NeruIPS 2019), 2019. 

Coppola, G. F. Iterative parameter mixing for distributed 
large-margin training of structured predictors for natural 
language processing. 2015. 

Haddadpour, F. and Mahdavi, M. On the convergence of lo-
cal descent methods in federated learning. arXiv preprint 
arXiv:1910.14425, 2019. 

Haddadpour, F., Kamani, M. M., Mahdavi, M., and 
Cadambe, V. Local sgd with periodic averaging: Tighter 
analysis and adaptive synchronization. In Advances 
in Neural Information Processing Systems, pp. 11082– 
11094, 2019. 

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE 
conference on computer vision and pattern recognition, 
pp. 770–778, 2016. 

Jiang, P. and Agrawal, G. A linear speedup analysis of 
distributed deep learning with sparse and quantized com-
munication. In Advances in Neural Information Process-
ing Systems, pp. 2525–2536, 2018. 

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, 
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, 
G., Cummings, R., et al. Advances and open problems 
in federated learning. arXiv preprint arXiv:1912.04977, 
2019. 

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, 
S. U., and Suresh, A. T. Scaffold: Stochastic con-
trolled averaging for on-device federated learning. arXiv 
preprint arXiv:1910.06378, 2019. 

Khaled, A., Mishchenko, K., and Richtárik, P. First anal-
ysis of local gd on heterogeneous data. arXiv preprint 
arXiv:1909.04715, 2019a. 

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter the-
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